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Logistics

e Homework 1 released
O Due: May 23, Friday



Outline

e Contrastive learning

e Paper presentation:
O Andrii Dovhaniuk, Wendi Tan: “Machine learning center-specific models”



Recap: Self-Supervised Learning: Examples

» Predict any part of the input from any
other part.

» Predict the future from the past.

» Predict the future from the recent past.

» Predict the past from the present.

_)
» Predict the top from the bottom. ?
Predict the occluded from the visible A
Pretend there is a part of the input you < Past Present Future —
don’t know and predict that.

vy

[Courtesy: Lecun “Self-supervised Learning’]



Contrastive learning

o Take a data example x, sample a “positive” sample X,,,; and “negative” samples
Xneg In some way

e Then try fit a scoring model such that

Score(x, xpos) > score(x, Xneg)

Credit: [CVPR 2021 Tutorial] Leave Those Nets Alone: Advances in Self-Supervised Learning 5



Contrastive learning

o Take a data example x, sample a “positive” sample X,,,; and “negative” samples

Xneg in some way

“positive” sample: “negative” sample:
O Data of the same labels © Randomly sampled data
0 Data of the same pseudo-labels © Hard negative sample mining
o  Augmented /distorted version of x
© Data that captures the same target from

different views




Contrastive learning: Ex 1

Learning a similarity metric discriminatively

Sample a pair of images and compute their distance:

D, — ||I .I',HQ

If positive sample: : 0‘3‘? E
) 4

L,‘ = D;'

If negative sample:

L; = max ((), £ Dz'.))

2

X  neg

[Chopra et al., 2005; Hadsell et al., 20006]
Credit: [CVPR 2021 Tutorial] Leave Those Nets Alone: Advances in Self-Supervised Learning



Common contrastive learning functions

e Contrastive loss (Chopra et al. 2005)

e Tripletloss (Schroff et al. 2015; FaceNet)

e Lifted structured loss (Song et al. 2015)

e Multi-class n-pair loss (Sohn 2016)

e Noise contrastive estimation ("NCE”; Gutmann & Hyvarinen 2010)

e InfoNCE (van den Oord, et al. 2018)

e Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007,
Frosst et al. 2019)

[Courtesy: Weng & Kim, NeurlPS 2021 tutorial]



Contrastive learning: Ex 2

e SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021)



Contrastive learning: Ex 2

e SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021)
O Predict a sentence from itself with only dropout noise
o One sentence gets two different versions of dropout augmentations

(a) Unsupervised SimCSE

Different hidden dropout masks
in two forward passes

o
[ Two dogs are running. }' ~Q0Ox—>

A}

] I

A man surfing on the sea. | E (=22 ;‘

/

A kid is on a skateboard. ' —"'b}‘_l’;?"

P

: — Positive instance

. —~ Negative instance :

Figure 1: (a) Unsupervised SimCSE predicts the input sentence itself from in-batch negatives, with different hidden
dropout masks applied.
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Contrastive learning: Ex 2

e SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021)
O Predict a sentence from itself with only dropout noise

o One sentence gets two different versions of dropout augmentations

(a) Unsupervised SimCSE

[ Two dogs are running. }'

A man surfing on the sea.

A kid is on a skateboard.

: — Positive instance

. —- Negative instance :

Different hidden dropout masks
in two forward passes

o

(b) Supervised SimCSE

s (O]0) & Two dogs -'* There are animals outdoors.
\ . R
: \ are running. 1;1“\\\ label=entailment
— \ . ]
E =20 J,‘ “'L“ @O "-| The pets are sitting on a couch.
/ !I 111 \ label =contradiction
I e | “'ﬁquﬂx.,_
==/ =_= |V V==
— E || 1\ E label
|1 Illt-‘ 3 b
| | ot lf’.""_
(I label
(B
RePLO R (BT
11\ label
\Lll VT ]
S

label

Figure 1: (a) Unsupervised SimCSE predicts the input sentence itself from in-batch negatives, with different hidden
dropout masks applied. (b) Supervised SimCSE leverages the NLI datasets and takes the entailment (premise-
hypothesis) pairs as positives, and contradiction pairs as well as other in-batch instances as negatives.



Contrastive Iearning: Ex 3 — InfoNCE (Noise-Contrastive Estimation)

e The CPC model

O Cy: context representation from history
O Xtyk (or Zgyp): future target

Predictions

._.—;=:—'—._._.. -

= ——
. — i

S e
-
~

Zt+1 ) Zt+3 Rt+4
genc genc genc genc

Tt4+1 Tt42 Tt+3 Tt4+4

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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INfONCE loss

e Define scoring function f;, > 0
e The InfoNCE loss:

o Given X = { one positive sample from p(x;,x| ¢;), N — 1 negative samples from the
negative sampling distribution p(x;,1) }

fk(il?t-ucact)

ijEX fk(fE], ct)_

Ln=—E |log

*J
X

e InfoNCE is interesting because it’s effectively maximizing the mutual information
between ¢; and X;

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”] 15



Mutual Information (Ml)

e How much is our uncertainty about x reduced by knowing ¢ 2

I(;c) =} p(x,c)log pp(m’ C)) = p(z,c)log plalc)

(z)p(c p(z)
=H(x)+ H(c) — H(x,c)
= H(x) — H(x|c)

= KL(p(x,¢c) || p(x)p(c))

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]

16



Minimizing InfoNCE <=> Maximzing Ml

fe(Titr,ct)
Za:j eX fk(w.ﬂ Ct)

e [nfoNCE loss

Ly =—EK

]
X |08

I(Ttyk,ct) > log(N) — Ln

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]

17



Minimizing InfoNCE <=> Maximzing Ml

e InfoNCE loss
Ln = —F |log fr(Tqr,c)
X za;jeX fk(wjv ct)
e The loss is optimized when p(xt—i—klct)
fr(T oy, cp)
(Tt 4k)
O Proof: ( | )H ( )
p\Z;|C i P\
p(sample i is positive|X, c;) = N ALl
Zj:l p(x;]ct) Hl;éj p(z1)
p(zilct)
— p(x;)
N p(zjlce)
2i5=1 pla;)

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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¢ How does this loss maximize the mutual information?

_ fe(@t+k,ct)
N = @ [108 ijeX fk(mjvct)]

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]

19



¢ How does this loss maximize the mutual information?

C fulzean,ce)

B -

Use proportionality
condition

p(zjlct)

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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e How does this loss maximize the mutual information?

_ fe(Tiix,Ct)
En = @ llog ijeX fk(xjact)]

p(ﬂét+k|c)t)
Ly = —Elog Bfreh
X p(xiyrlce) p(zjlct)
P(Tttk) + za’jexneg P(;:j)
_ Elog |14 P®tk) 3 p(zj]ct) .
X p(Zt+klct) p(z;) Take -ve inside log

25 € Xneg

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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e How does this loss maximize the mutual information?

xr C
Lx=—E |log fe(Ttyr,ct)
X ijeX fk(wjvct)
p(ﬂzt+k|c)t)
LY = —Elog ro
X p(zirlct) p(zjlet)
p(Tt4k) + Z:373"5-’{neg P(;j)
—Elog |1+ P(-’Et+k) P(33j|ct)
X P(@iykle) &5 ple;)
J neg

~ @log

This approximation becomes more
accurate as N increases, so it is
preferable to use large negative

samples

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



[van den Oord et al.,

e How does this loss maximize the mutual information?

opt
Ly =

Ly =

E log [p($t+kct) + z

= %log

—E

E log

fk(xt-l—knct)
2o ex Ju(Tjct)

p(zjlct)
Tj€Xneg p(T;)

P(zetklct)
P(ﬂ?t+k)

P(ﬂ?H—k)

" P(Zt+k) 3 P(%|Ct)

_ P(Tisrlct) vy PAZIL |

14 PEek) =1
p(ztiklct) A\ \&

14 P@en) 1)}
P(Tetxlce)

“Representation Learning with Contrastive Predictive Coding”]

23



e How does this loss maximize the mutual information?

Ly =—

|
<=
o

]

'V
<=

log

fk(mt-i—k‘act)
E |1
X o8 EmjeX fk(mjvct)]

P($t+k |Ct)
p(i‘t+k)

p(xeqkc) p(zjlct)
p(Tegr) +Z$J€Xneg p(z;)

|, P p(z;cr)
i P(Tetklce) 25 € Xneg p(z;)
P(Teyklct) Tj P(%‘)

|y P@) (N—l)]

P($t+k|ct)

i P($t+k)

_p(wt+k|6t)N]

= —I(x41, ) + log(N),
[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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e How does this loss maximize the mutual information?

fk($t+k-act)

ij .6 fr(zj,ct)

L‘,N: —% log

I($t+k, Ct) > log(N) — L‘,N.

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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Key Takeaways: Contrastive learning

e Contrastive learning is a way of doing self-supervised learning
e Positive samples, negative samples

e Mutual information

Zp:cclog p(z[c)

p(c p(z)

I(z;c) = Zp(a:,c) log P
= H(x)+ H(c) —H(x,c)
= H(x) + H(x|c)
= KL(p(x,c) || p(x)p(c))

O InfoNCE <~ MI

26



Data Manipulation



Data manipulation

e Data augmentation

o  Applies label-preserving transformations on original data points to expand the data
size
e Data reweighting

O Assigns an importance weight to each instance to adapt its effect on learning

e Data synthesis
o0 Generates entire artificial examples

e Curriculum learning
O Makes use of data instances in an order based on “difficulty”

28



Data augmentation

e Applies label-preserving transformations on original data points to expand the

data size
Load image
and label
~~ ',. Compute
J loss

/“
I ol

¥ B
| ,\'%h:’“
&2

L I

Figure credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf 29



Data augmentation

e Applies label-preserving transformations on original data points to expand the
data size

Load image
and label

Compute

loss
v

CNN

Transform image

Figure credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf 30



Data augmentation for image

e Change the pixels without changing
the label

e Train on transformed data
e VERY widely used

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf 31



Data augmentation for image

1. Horizontal flips

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf

32



Data augmentation for image

2. Random crops/scales

Training: sample random crops / scales

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf

33



Data augmentation for image

2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf

34



Data augmentation for image

2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
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Data augmentation for image

2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf

36



Data augmentation for image

3. Color jitter

Randomly jitter contrast

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf 37



Data augmentation for image

4. Mixup

e Training: Train on random
blends of images

e Testing: Use original images
9 9 9 Target label:

CNN | cat:0.4
dog: 0.6

[Zhang et al., “mixup: Beyond Empirical Risk Minimization”, ICLR 2018]

Credit: http://cs231n.stanford.edu/slides/2019/cs231n_2019 lecture08.pdf 38



Data augmentation for image

5. Get creative!

Random mix /combinations of :
e translation

e rotation

e stretching

e shearing

e lens distortions, ...

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf

39



Data augmentation for text

Methods Level Diversity Tasks Related Work
. . Kolomiyets et al. (2011), Zhang et al. (2015a),
rf’{:;’;f;l . Token Low ge"flgisgllgcbﬁﬁ“ Yang (2015), Miao et al. (2020),
P eq € Wei and Zou (2019)
Word renlacement Text classification Kolomiyets et al. (2011), Gao et al. (2019)

P via LM Token Medium  Sequence labeling Kobayashi (2018), Wu et al. (2019a)
Machine translation  Fadaee et al. (2017)
Text classification .

. . . Iyyer et al. (2015), Xie et al. (2017)
Random insertion, .\ Low  >cquencelabeling it 1 ot al. (2018), Lample et al. (2018)
deletion, swapping Machine translation Xie et al. (2020), Wei and Zou (2019)

Dialogue generation ' ’
Semantic Parsing . .
.. . Jia and Liang (2016) , Andreas (2020)
i‘:‘g‘g‘;ﬁg‘;‘g‘; Token High Eﬁgﬁ‘;ﬂ; lé‘fzfdlé‘l’i ¢ Nyeetal (2020), Feng etal. (2020)
. Furrer et al. (2020) , Guo et al. (2020)
Text generation
Text classification
Machine translation  Yu et al. (2018), Xie et al. (2020)
Paraphrasing  Sentence High Question answering  Chen et al. (2019), He et al. (2020)
Dialogue generation  Chen et al. (2020c), Cai et al. (2020)
Text summarization
Conditional Sent Hich Text classification Anaby-Tavor et al. (2020), Kumar et al. (2020)
generation ~ Donence g Question answering  Zhang and Bansal (2019), Yang et al. (2020)

Chen et al., “An Empirical Survey of Data Augmentation for Limited Data Learning in NLP”



Data augmentation for text

Text classification

Miyato et al. (2017), Ebrahimi et al. (2018b)

Wh“:t'tzzﬁ ggﬁf;g; Medium  Sequence labeling  Ebrahimi et al. (2018a), Cheng et al. (2019),
Machine translation  Chen et al. (2020d)
Text classification
Sequence labeling Jia and Liang (2017)
Black-box Token or Medium Machine translation  Belinkov and Bisk (2017), Zhao et al. (2017)
attack  Sentence u Textual entailment Ribeiro et al. (2018), McCoy et al. (2019)
Dialogue generation  Min et al. (2020), Tan et al. (2020)
Text Summarization
Hidden-space  Token or Text classification Hsu et al. (2017), Hsu et al. (2018)
o rturb::lljti 0 Sentence High Sequence labeling Wau et al. (2019b), Chen et al. (2021)
P 0 Speech recognition =~ Malandrakis et al. (2019), Shen et al. (2020)
Text classification Miao et al. (2020), Chen et al. (2020c)
Interpolation Token High Sequence labeling Cheng et al. (2020b), Chen et al. (2020a)

Machine translation

Guo et al. (2020)

Chen et al., “An Empirical Survey of Data Augmentation for Limited Data Learning in NLP”
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Data reweighting

e Assigns an importance weight to each instance to adapt its effect on learning
0  Weighting by inverse class frequency
0 Weighting by the magnitude of loss

mgn — Ex,~p | $; log pg (x;) |

42



Automatically learn the data weights

e Can we learn ¢; automatically?

min — E, . ¢ [ ¢; log pg (x;) |
6 Ex;~p, [ 10g Do, (x;) |

e Training set D, a held-out “validation” set D,

e |Intuition: after training the model 6 on the weighted data, the model gets better
performance on the validation set

0" = arg;nin —Ey;~p [ ¢ logpe(x;) |

o @' is a function of ¢, i.e., 8' = 0'(¢)

¢' = argming — Ey . p [log Por(g)(X;) ]

Ren et al., “Learning to reweight examples for robust deep learning”
Hu et al., “Learning Data Manipulation for Augmentation and Weighting” 43



Automatically learn the data weights

L(®, 4?) L(6'(9))

Model ll
0----->0'(¢)

Manipulation

¢-—> ¢’

[ Train Data D ][ Val Data DY J

Hu et al., “Learning Data Manipulation for Augmentation and Weighting”




Apply the same algorithm to learn data augmentation

e Augmentation function x" = g, (x). Can we learn ¢ automatically?
min — By~ p [ 10g po (95 () |

e Training set D, a held-out “validation” set D,

e Intuition: after training the model 6 on the augmented data, the model gets better
performance on the validation set

' = argmin — Ey, p [ log pg(g¢(x) |

o 0'is a function of ¢, i.e., 8’ = 6'(¢)

¢' = argming — Ey . p [log Por(g)(X;) ]

Hu et al., “Learning Data Manipulation for Augmentation and Weighting” 45



Curriculum learning

NOT MY FIRST JIGSAW PUZZLE

Credit: Weinshall, “ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS4¢



Curriculum learning

MY FIRST JIGSAW PUZZLE

Credit: Weinshall, “ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS47



Curriculum learning

LEARNING COGNITIVE TASKS (CURRICULUM):

L
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Credit: Weinshall, “ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS4s



Curriculum learning

e Standard supervised learning:

O Data is sampled randomly

e Curriculum learning:

O Instead of randomly selecting training points, select easier examples first, slowly
exposing the more difficult examples from easiest to the most difficult

o Key: definition of “difficulty”

Credit: Weinshall, “ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS49



Curriculum learning

o (Bengio et al, 2009): setup of paradigm, object recognition of
geometric shapes using a perceptron; difficulty is determined
by user from geometric shape

«"Ee

o (Zaremba 2014): LSTMs used to evaluate short computer
programs; difficulty is automatically evaluated from data —
nesting level of program.

o (Amodei et al, 2016): End-to-end speech recognition in
english and mandarin; difficulity is automatically evaluated
from utterance length.

o (Jesson et al, 2017): deep learning segmentation and

detection; human teacher (user/programmer) determins

difficulty.
Credit: We f / Y "WORKS50



Key Takeaways

e Data manipulation

O O O O

Augmentation
Reweighting
Curriculum learning
Synthesis (later)

51



Questions?
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