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Logistics

● Homework 1 released

◯ Due: May 23, Friday
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Outline

● Contrastive learning

● Paper presentation:

◯ Andrii Dovhaniuk, Wendi Tan: “Machine learning center-specific models”
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Recap: Self-Supervised Learning: Examples

4[Courtesy: Lecun “Self-supervised Learning”]



Contrastive learning

● Take a data example 𝑥, sample a “positive” sample 𝑥𝑝𝑜𝑠 and “negative” samples 

𝑥𝑛𝑒𝑔 in some way

● Then try fit a scoring model such that
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𝑠𝑐𝑜𝑟𝑒 𝑥, 𝑥𝑝𝑜𝑠 > 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑥𝑛𝑒𝑔)

Credit: [CVPR 2021 Tutorial] Leave Those Nets Alone: Advances in Self-Supervised Learning



Contrastive learning

● Take a data example 𝑥, sample a “positive” sample 𝑥𝑝𝑜𝑠 and “negative” samples 

𝑥𝑛𝑒𝑔 in some way
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“positive” sample:

◯ Data of the same labels

◯ Data of the same pseudo-labels

◯ Augmented/distorted version of 𝑥

◯ Data that captures the same target from 

different views 

“negative” sample:

◯ Randomly sampled data

◯ Hard negative sample mining



Contrastive learning: Ex 1

Learning a similarity metric discriminatively
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[Chopra et al., 2005; Hadsell et al., 2006]

Credit: [CVPR 2021 Tutorial] Leave Those Nets Alone: Advances in Self-Supervised Learning



Common contrastive learning functions

9[Courtesy: Weng & Kim, NeurIPS 2021 tutorial]



Contrastive learning: Ex 2

● SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021) 
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Contrastive learning: Ex 2

● SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021) 

◯ Predict a sentence from itself with only dropout noise

◯ One sentence gets two different versions of dropout augmentations
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Question 



Contrastive learning: Ex 2

● SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021) 

◯ Predict a sentence from itself with only dropout noise

◯ One sentence gets two different versions of dropout augmentations
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Contrastive learning: Ex 3 – InfoNCE (Noise-Contrastive Estimation)

14[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]

● The CPC model

◯ 𝑐𝑡 : context representation from history 

◯ 𝑥𝑡+𝑘 (or 𝑧𝑡+𝑘): future target



InfoNCE loss

● Define scoring function 𝑓𝑘 > 0

● The InfoNCE loss:

◯ Given 𝑋 = { one positive sample from 𝑝(𝑥𝑡+𝑘| 𝑐𝑡), 𝑁 − 1 negative samples from the 

negative sampling distribution 𝑝(𝑥𝑡+𝑘) }

● InfoNCE is interesting because it’s effectively maximizing the mutual information 
between 𝑐𝑡 and 𝑥𝑡+𝑘

15[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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16[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



Mutual Information (MI)

● How much is our uncertainty about 𝑥 reduced by knowing 𝑐 ?
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= 𝐻 𝑥 + 𝐻 𝑐 − 𝐻 𝑥, 𝑐

= 𝐻 𝑥 − 𝐻 𝑥|𝑐

= 𝐾𝐿 𝑝 𝑥, 𝑐 || 𝑝 𝑥 𝑝(𝑐)

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



Minimizing InfoNCE <=> Maximzing MI

● InfoNCE loss

18[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]

• How does this loss maximize the mutual information?



Minimizing InfoNCE <=> Maximzing MI

● InfoNCE loss

● The loss is optimized when

◯ Proof: 

19[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]

𝑝 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑋, 𝑐𝑡)
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• How does this loss maximize the mutual information?

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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• How does this loss maximize the mutual information?

Use proportionality 

condition

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



• How does this loss maximize the mutual information?

Take -ve inside log

22[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



• How does this loss maximize the mutual information?

This approximation becomes more 

accurate as N increases, so it is 

preferable to use large negative 

samples

23[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



• How does this loss maximize the mutual information?

= 1

24[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



• How does this loss maximize the mutual information?

25[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



• How does this loss maximize the mutual information?

26[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



Key Takeaways: Contrastive learning

● Contrastive learning is a way of doing self-supervised learning

● Positive samples, negative samples

● Mutual information

◯ InfoNCE  MI
27

= 𝐻 𝑥 + 𝐻 𝑐 − 𝐻 𝑥, 𝑐

= 𝐻 𝑥 + 𝐻 𝑥|𝑐

= 𝐾𝐿 𝑝 𝑥, 𝑐 || 𝑝 𝑥 𝑝(𝑐)
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Data Manipulation



Data manipulation

● Data augmentation

◯ Applies label-preserving transformations on original data points to expand the data 

size 

● Data reweighting

◯ Assigns an importance weight to each instance to adapt its effect on learning 

● Data synthesis

◯ Generates entire artificial examples

● Curriculum learning

◯ Makes use of data instances in an order based on “difficulty”

● …
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Questions?
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