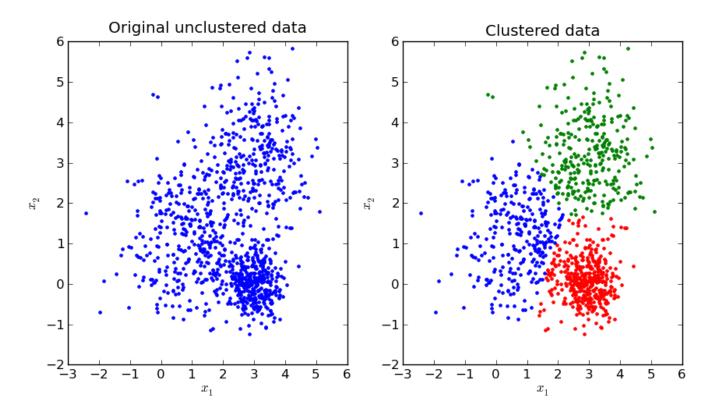
DSC291: Machine Learning with Few Labels

Unsupervised Learning

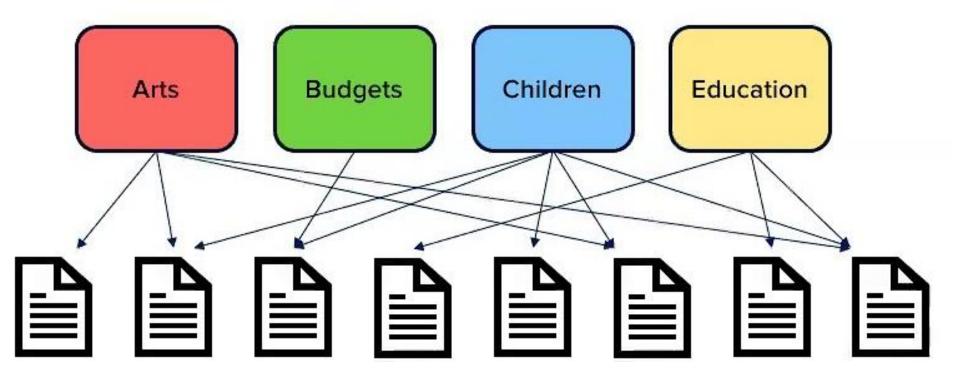
Zhiting Hu Lecture 4, April 10, 2025

HALICIOĞLU DATA SCIENCE INSTITUTE

- Each data instance is partitioned into two parts:
 - \circ observed variables x
 - \circ latent (unobserved) variables z
- Want to learn a model $p_{\theta}(\mathbf{x}, \mathbf{z})$



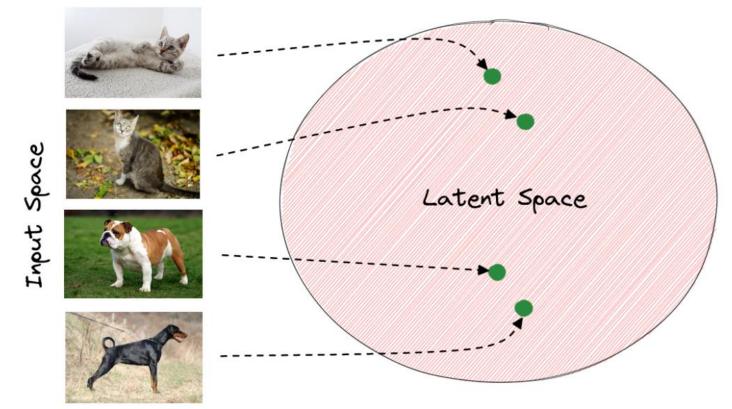
- Each data instance is partitioned into two parts:
 - \circ observed variables \pmb{x}
 - latent (unobserved) variables Z
- Want to learn a model $p_{\theta}(\mathbf{x}, \mathbf{z})$



- Each data instance is partitioned into two parts:
 - \circ observed variables x
 - \circ latent (unobserved) variables z
- Want to learn a model $p_{\theta}(\mathbf{x}, \mathbf{z})$

Δ

- Each data instance is partitioned into two parts:
 - \circ observed variables x
 - \circ latent (unobserved) variables z
- Want to learn a model $p_{\theta}(\mathbf{x}, \mathbf{z})$



Why is Unsupervised Learning Harder?

• Complete log likelihood: if both x and z can be observed, then

 $\ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z}|\theta) = \log p(\mathbf{z}|\theta_z) + \log p(\mathbf{x}|\mathbf{z}, \theta_x)$

• Decomposes into a sum of factors, the parameter for each factor can be estimated separately

Now z is not observed:

• Incomplete (or marginal) log likelihood: with z unobserved, our objective becomes the log of a marginal probability:

 $\ell(\theta; \boldsymbol{x}) = \log p(\boldsymbol{x}|\theta)$

Why is Unsupervised Learning Harder?

• Complete log likelihood: if both x and z can be observed, then

 $\ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z} | \theta) = \log p(\mathbf{z} | \theta_z) + \log p(\mathbf{x} | \mathbf{z}, \theta_x)$

 Decomposes into a sum of factors, the parameter for each factor can be estimated separately

Now z is not observed:

 Incomplete (or marginal) log likelihood: with z unobserved, our objective becomes the log of a marginal probability:

$$\ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{z} p(\mathbf{x}, \mathbf{z}|\theta)$$

- All parameters become coupled together
- \circ In other models when z is complex (continuous) variables (as we'll see later), marginalization over z is intractable.

PATTERN RECOGNITION AND MACHINE LEARNING CHRISTOPHER M. BISHOP

Expectation Maximization (EM)

This class

9	Mixture Models and EM			
	9.1	K -means Clustering \ldots \ldots \ldots \ldots \ldots \ldots \ldots		
		9.1.1	Image segmentation and compression	8
	9.2	Mixtu	res of Gaussians	0
		9.2.1	Maximum likelihood	2
		9.2.2	EM for Gaussian mixtures	5
	9.3	An A	Iternative View of EM	9
		9.3.1	Gaussian mixtures revisited	1
		9.3.2	Relation to K -means	3
		9.3.3	Mixtures of Bernoulli distributions	4
		9.3.4	EM for Bayesian linear regression	8
→ 9.4 T		The E	EM Algorithm in General	0
	Exer	cises		5

- Supervised MLE is easy:
 - Observe both x and z
- Unsupervised MLE is hard:
 Observe only *x*
- EM, intuitively:

E-step: $q(\mathbf{z}|\mathbf{x}) = p(\mathbf{z}|\mathbf{x}, \theta)$

M-step: $\max_{\theta} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})}[\log p(\boldsymbol{x}, \boldsymbol{z}|\theta)]$

$$\max_{\theta} \ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{z} p(\mathbf{x}, \mathbf{z}|\theta)$$

 $\max \ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z}|\theta)$

We don't actually observe q, let's estimate it

Let's "pretend" we also observe Z (its distribution)

- Supervised MLE is easy:
 - Observe both x and z
- Unsupervised MLE is hard:
 Observe only *x*

$$\max_{\theta} \ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{z} p(\mathbf{x}, \mathbf{z}|\theta)$$

 $\max_{\boldsymbol{\alpha}} \ell_c(\boldsymbol{\theta}; \boldsymbol{x}, \boldsymbol{z}) = \log p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta})$

• EM, intuitively:

E-step:
$$q^{t+1}(\mathbf{z}|\mathbf{x}) = p(\mathbf{z}|\mathbf{x}, \theta^{t})$$

M-step: $\max_{\theta} \mathbb{E}_{q^{t+1}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}, \mathbf{z}|\theta)]$
This is an iterative

We don't actually observe q, let's estimate it

Let's "pretend" we also observe *z* (its distribution)

11

process

- Supervised MLE is easy:
 - Observe both x and z
- Unsupervised MLE is hard:
 - Observe only \boldsymbol{x}
- EM, intuitively:

$$\max_{\theta} \ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z}|\theta)$$

$$\max_{\theta} \ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{z} p(\mathbf{x}, \mathbf{z}|\theta)$$

$$\blacktriangleright \text{E-step:} \quad q^{\tau+1}(z|x) = p(z|x,\theta^{\tau})$$
$$\bigtriangleup \text{M-step:} \quad \max_{\theta} \mathbb{E}_{q(z|x)} [\log p(x, z|\theta)]$$

We don't actually observe q, let's estimate it

Let's "pretend" we also observe Z (its distribution)

This is an iterative

process

- Supervised MLE is easy:
 - Observe both x and z

• Observe only \boldsymbol{x}

$$\max_{\theta} \ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{z} p(\mathbf{x}, \mathbf{z}|\theta)$$

• EM, intuiti

$$\ell(\theta; \mathbf{x}) \geq \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}, \mathbf{z}|\theta)] + H(q)$$
we observe q , let's estimate n
M-step: $\max_{\theta} \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}, \mathbf{z}|\theta)]$
Let's "pretend" we also observe \mathbf{z} (indistribution)

 $\max_{\theta} \ell_{c}(\theta; \boldsymbol{x}, \boldsymbol{z}) = \log p(\boldsymbol{x}, \boldsymbol{z} | \theta)$

This is an iterative

process

• Question: show that $\ell(\theta; \mathbf{x}) \ge \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}, \mathbf{z}|\theta)] + H(q)$

• Question: show that ℓ

$$\mathbb{P}(\theta; \mathbf{x}) \ge \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}, \mathbf{z}|\theta)] + H(q)$$
$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}\left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}\right]$$

)

- Question: show that $\ell(\theta; \mathbf{x}) \ge \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}, \mathbf{z}|\theta)] + H(q)$ = $\mathbb{E}_{q(\mathbf{z}|\mathbf{x})}\left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}\right]$
- Hint: first show that

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \mathrm{KL} \left(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta) \right)$$

• Since KL divergence is non-negative, we arrive at the conclusion

- Question: show that $\ell(\theta; \mathbf{x}) \ge \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}, \mathbf{z}|\theta)] + H(q)$ $= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}\left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}\right]$
- Hint: first show that

 $\ell(\theta; \boldsymbol{x}) = \begin{bmatrix} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z}|\theta)}{q(\boldsymbol{z}|\boldsymbol{x})} \right] + \text{KL}(q(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}|\boldsymbol{x}, \theta)) \\ = -\frac{F(q, \theta)}{F(q, \theta)} + \text{KL}(q(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}|\boldsymbol{x}, \theta)) \end{bmatrix}$ Variational free energy

$$F(q,\theta) = -\mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})}[\log p(\boldsymbol{x},\boldsymbol{z}|\theta)] - H(q)$$

17

Lower Bound and Free Energy

• Variational free energy:

$$F(q,\theta) = -\mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})}[\log p(\boldsymbol{x},\boldsymbol{z}|\theta)] - H(q)$$

- The EM algorithm is coordinate-decent on F
 - At each step t:

• E-step:
$$q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right) \implies q^{t+1}(\boldsymbol{z}|\boldsymbol{x}) = p(\boldsymbol{z}|\boldsymbol{x}, \theta^{t})$$

• M-step: $\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^{t}\right) \implies \max_{\theta} \mathbb{E}_{q^{t+1}(\boldsymbol{z}|\boldsymbol{x})}[\log p(\boldsymbol{x}, \boldsymbol{z}|\theta)]$

Lower Bound and Free Energy

• Variational free energy:

$$F(q,\theta) = -\mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})}[\log p(\boldsymbol{x},\boldsymbol{z}|\theta)] - H(q)$$

- The EM algorithm is coordinate-decent on F
 - At each step t:

• E-step:
$$q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right)$$
 $\Rightarrow q^{t+1}(\mathbf{z}|\mathbf{x}) = p(\mathbf{z}|\mathbf{x}, \theta^{t})$
• M-step: $\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^{t}\right) \Rightarrow \max_{\theta} \mathbb{E}_{q^{t+1}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}, \mathbf{z}|\theta)]$

E-step: minimization of $F(q, \theta)$ w.r.t q

• Question: show that that optimal solution of E-step is

$$q^{t+1} = \operatorname{argmin}_{q} F(q, \theta^{t}) = p(\mathbf{z} | \mathbf{x}, \theta^{t})$$

- I.e., the posterior distribution over the latent variables given the data and the current parameters.
- Hint: use the fact

• $F(q, \theta^t)$ is minimized when $KL(q(z|x) || p(z|x, \theta^t)) = 0$, which is achieved only when $q(z|x) = p(z|x, \theta^t)$

Lower Bound and Free Energy

• Variational free energy:

$$F(q,\theta) = -\mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})}[\log p(\boldsymbol{x},\boldsymbol{z}|\theta)] - H(q)$$

• The EM algorithm is coordinate-decent on F

• At each step t:
• E-step:
$$q^{t+1} = \arg \min_{q} F(q, \theta^{t})$$

• M-step: $\theta^{t+1} = \arg \min_{\theta} F(q^{t+1}, \theta^{t})$
 $\Rightarrow \max_{\theta} \mathbb{E}_{q^{t+1}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}, \mathbf{z}|\theta)]$

EM Algorithm: Quick Summary

- Observed variables x, latent variables z
- To learn a model $p(\mathbf{x}, \mathbf{z} | \theta)$, we want to maximize the marginal log-likelihood

$$\ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{z} p(\mathbf{x}, \mathbf{z}|\theta)$$

But it's too difficult

• EM algorithm:

Ο

- maximize a lower bound of $\ell(\theta; x)$
- Or equivalently, minimize an upper bound of $-\ell(\theta; x)$
- Key equation:

$$\ell(\theta; \mathbf{x}) = \begin{bmatrix} \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \mathrm{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta)) \\ = -\frac{F(q, \theta)}{F(q, \theta)} + \mathrm{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta)) \\ = -\frac{F(q, \theta)}{F(q, \theta)} + \mathrm{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational free energy

EM Algorithm: Quick Summary

• The EM algorithm is coordinate-decent on $F(q, \theta)$

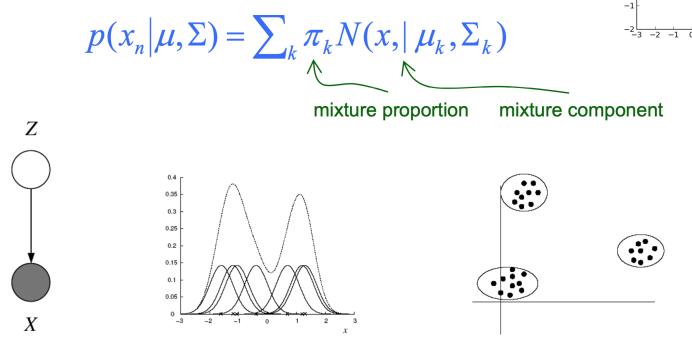
• E-step:
$$q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right) = p(\mathbf{z}|\mathbf{x}, \theta^{t})$$

 the posterior distribution over the latent variables given the data and the current parameters

• M-step:
$$\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^t\right) = \operatorname{argmax}_{\theta} \sum_{z} q^{t+1}(z|x) \log p(x, z|\theta)$$

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \mathrm{KL} \left(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta) \right)$$
$$= -F(q, \theta) + \mathrm{KL} \left(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta) \right)$$

• Consider a mixture of K Gaussian components:



- This model can be used for unsupervised clustering.
 - This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

Original unclustered data

Clustered data

- Consider a mixture of K Gaussian components:
 - Z is a latent class indicator vector:

$$p(z_n) = \operatorname{multi}(z_n : \pi) = \prod_k (\pi_k)^{z_n^k}$$

 \square X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(x_n \mid z_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2}(x_n - \mu_k)^T \Sigma_k^{-1}(x_n - \mu_k)\right\}$$

Parameters to be learned:

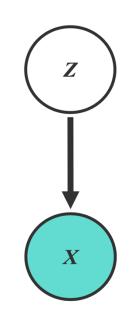
• The likelihood of a sample:

mixture component

$$p(x_n|\mu, \Sigma) = \sum_k p(z^k = 1 | \pi) p(x, | z^k = 1, \mu, \Sigma)$$

$$= \sum_{z_n} \prod_k \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_k \pi_k N(x, | \mu_k, \Sigma_k)$$

mixture proportion



- Consider a mixture of K Gaussian components
- The expected complete log likelihood

$$\mathbb{E}_{q}\left[\ell_{c}(\boldsymbol{\theta}; x, z)\right] = \sum_{n} \mathbb{E}_{q}\left[\log p\left(z_{n} \mid \pi\right)\right] + \sum_{n} \mathbb{E}_{q}\left[\log p\left(x_{n} \mid z_{n}, \mu, \Sigma\right)\right]$$
$$= \sum_{n} \sum_{k} \mathbb{E}_{q}\left[z_{n}^{k}\right] \log \pi_{k} - \frac{1}{2} \sum_{n} \sum_{k} \mathbb{E}_{q}\left[z_{n}^{k}\right] \left(\left(x_{n} - \mu_{k}\right)^{T} \Sigma_{k}^{-1} \left(x_{n} - \mu_{k}\right) + \log |\Sigma_{k}| + C\right)$$

• E-step: computing the posterior of Z_n given the current estimate of the parameters (i.e., π , μ , Σ)

$$p(z_n^k = 1 | x, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_k^{(t)} N(x_n, | \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_i \pi_i^{(t)} N(x_n, | \mu_i^{(t)}, \Sigma_i^{(t)})} \sum_{p(x, \mu^{(t)}, \Sigma^{(t)})} p(x, \mu^{(t)}, \Sigma^{(t)})$$

• M-step: computing the parameters given the current estimate of Z_n

$$\pi_{k}^{*} = \arg \max \langle l_{c}(\boldsymbol{\theta}) \rangle, \qquad \Rightarrow \ \frac{\partial}{\partial \pi_{k}} \langle l_{c}(\boldsymbol{\theta}) \rangle = 0, \forall k, \quad \text{s.t.} \sum_{k} \pi_{k} = 1$$
$$\Rightarrow \ \pi_{k}^{*} = \frac{\sum_{n} \langle z_{n}^{k} \rangle_{q^{(t)}}}{N} = \frac{\sum_{n} \tau_{n}^{k(t)}}{N} = \frac{\langle n_{k} \rangle}{N}$$

$$\mu_k^* = \arg \max \langle l(\mathbf{\theta}) \rangle, \quad \Rightarrow \quad \mu_k^{(t+1)} = \frac{\sum_n \tau_n^{k(t)} x_n}{\sum_n \tau_n^{k(t)}}$$

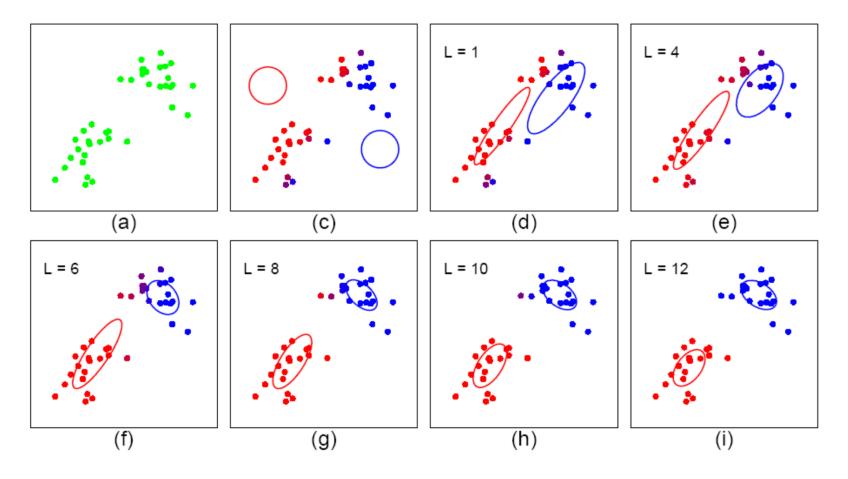
$$\Sigma_k^* = \arg \max \langle l(\boldsymbol{\theta}) \rangle, \quad \Rightarrow \quad \Sigma_k^{(t+1)} = \frac{\sum_n \tau_n^{k(t)} (x_n - \mu_k^{(t+1)}) (x_n - \mu_k^{(t+1)})^T}{\sum_n \tau_n^{k(t)}}$$

Fact:

$$\frac{\partial \log |A^{-1}|}{\partial A^{-1}} = A^{T}$$

$$\frac{\partial \mathbf{x}^{T} A \mathbf{x}}{\partial A} = \mathbf{x} \mathbf{x}^{T}$$

- Start: "guess" the centroid μ_k and covariance Σ_k of each of the K clusters
- Loop:



Summary: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces
 - Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
 - E-step:

• M-step:
$$q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right)$$

 $\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^{t}\right)$

Questions?