DSC291: Machine Learning with Few Labels

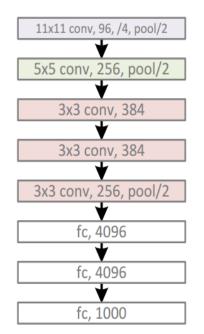
Supervised / Unsupervised Learning

Zhiting Hu Lecture 3, April 8, 2025

Overview

Components of a ML solution (roughly)

- Loss
- Experience
- Optimization solver
- Model architecture

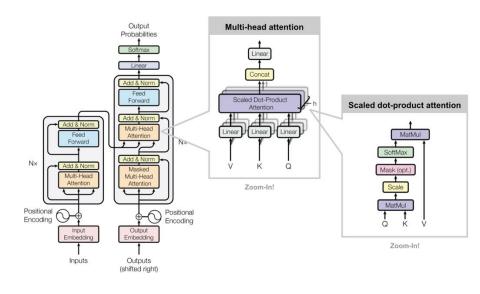


Convolutional networks

This course does *not* discuss model architecture

Model of certain architecture whose parameters are the subject to be learned, $p_{\theta}(x, y)$ or $p_{\theta}(y|x)$

- Neural networks
- Graphical models
- Compositional architectures



Transformers

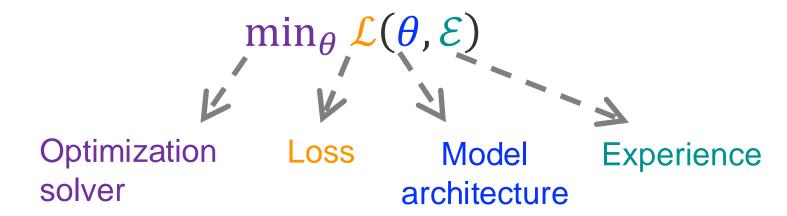
Components of a ML solution (roughly)

Loss

This course discusses a lot of loss & experience

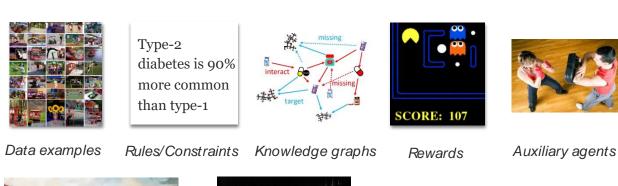
- Experience
- Optimization solver
- Model architecture

Core of most learning algorithms



Machine learning solutions given few data (labels)

- (1) How can we make more efficient use of data?
 - Clean but small-size, Noisy, Out-of-domain
- (2) Can we incorporate other types of experience in learning?



Adversaries

Master classes

And all combinations thereof

Machine learning solutions given few data (labels)

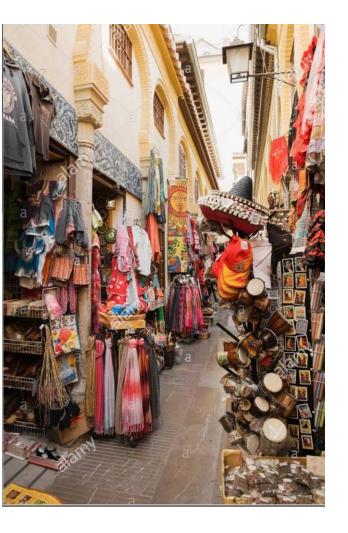
- (1) How can we make more efficient use of data?
 - Clean but small-size, Noisy, Out-of-domain, ...
- Algorithms
 - Supervised learning: MLE, maximum entropy principle
 - Unsupervised learning: EM, variational inference, VAEs
 - Self-supervised learning: successful instances, e.g., BERT, GPTs, contrastive learning,
 applications to downstream tasks
 - Distant/weakly supervised learning: successful instances
 - Data manipulation: augmentation, re-weighting, curriculum learning, ...
 - Meta-learning

Machine learning solutions given few data (labels)

- (2) Can we incorporate other types of experience in learning?
 - Learning from auxiliary models, e.g., adversarial models:
 - Generative adversarial learning (GANs and variants), co-training, ...
 - Learning from structured knowledge
 - Posterior regularization, constraint-driven learning, ...
 - Learning from rewards
 - Reinforcement learning: model-free vs model-based, policy-based vs value-based, on-policy vs off-policy, extrinsic reward vs intrinsic reward, ...
 - Learning in dynamic environment (not covered)
 - Online learning, lifelong/continual learning, ...

Algorithm marketplace

Designs driven by: experience, task, loss function, training procedure ...

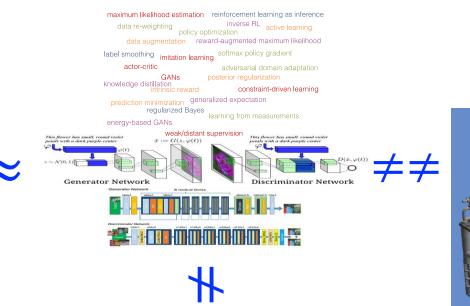


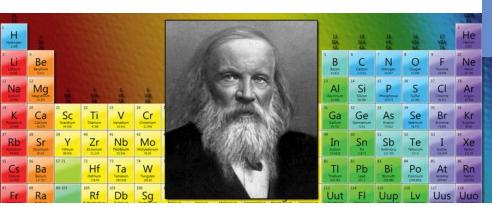
maximum likelihood estimation reinforcement learning as inference inverse RL data re-weighting active learning policy optimization reward-augmented maximum likelihood data augmentation softmax policy gradient label smoothing imitation learning actor-critic adversarial domain adaptation posterior regularization GANS knowledge distillation intrinsic reward constraint-driven learning generalized expectation prediction minimization regularized Bayes learning from measurements energy-based GANs

weak/distant supervision

Where we are now? Where we want to be?

Alchemy vs chemistry





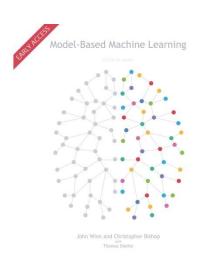
Quest for more standardized, unified ML principles

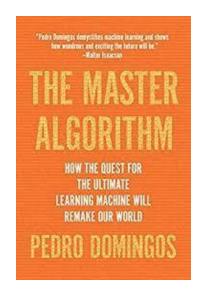
Machine Learning 3: 253-259, 1989 (c) 1989 Kluwer Academic Publishers - Manufactured in The Netherlands

EDITORIAL

Toward a Unified Science of Machine Learning

[P. Langley, 1989]





REVIEW _____ Communicated by Steven Nowlan

A Unifying Review of Linear Gaussian Models

Sam Roweis*

Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, U.S.A.

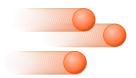
Zoubin Ghahramani*

Department of Computer Science, University of Toronto, Toronto, Canada

Physics in the 1800's

- Electricity & magnetism:
 - Coulomb's law, Ampère, Faraday, ...

- Theory of light beams:
 - Particle theory: Isaac Newton, Laplace, Plank
 - Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell
- Law of gravity
 - Aristotle, Galileo, Newton, ...



"Standard equations" in Physics

(1) Gauss' Law

Maxwell's Eqns: original form

 $e + \frac{df}{dx} + \frac{dg}{dy} + \frac{dh}{dz} = 0$ Equivalent to Gauss' Law for magnetism Diverse electro-Faraday's Law (with the Lorentz Force magnetic

theories

and Poisson's Law)

Ohm's Law

(4) Ampère-Maxwell Law

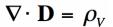
The electric elasticity P = kf Q = kg R = khequation ($\mathbf{E} = \mathbf{D}/\epsilon$)

 $\frac{de}{dt} + \frac{dp}{dx} + \frac{dq}{dy} + \frac{dr}{dz} = 0$ Continuity of charge Maxwell's Eqns simplified w/ rotational symmetry

Maxwell's Egns further simplified w/ symmetry of special relativity

Standard Model w/ Yang-Mills theory and US(3) symmetry

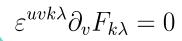
Unification of fundamental forces?



$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

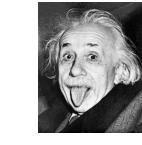
$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$



$$\partial_v F^{uV} = \frac{4\pi}{c} j^u$$

$$egin{align} \mathcal{L}_{\mathrm{gf}} &= -rac{1}{2} \operatorname{Tr}(F^2) \ &= -rac{1}{4} F^{a \mu
u} F^a_{\mu
u} \end{array}$$





1861 1910s 1970s

A "standard model" of ML

Type-2 diabetes is 90% more common than type-1

Data examples

Constraints

Rewards

Auxiliary agents

Adversaries

Imitation

$$min_{q,\theta} - \mathbb{H} + \mathbb{D} - \mathbb{E}$$
 $Uncertainty$ Divergence Experience

- Panoramically learn from all types of experience
- Subsumes many existing algorithms as special cases

Lecture Schedule (tentative)

KL Divergence

• Kullback-Leibler (KL) divergence: measures the closeness of two distributions p(x) and q(x)

$$KL(q(\mathbf{x}) \mid\mid p(\mathbf{x})) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})}$$

- a.k.a. Relative entropy
- KL >= 0 (Jensen's inequality) -> homework
- Questions:
 - lacktriangle If q is high and p is high in a region, then KL divergence is _____ in this region.
 - If q is high and p is low in a region, then KL divergence is _____ in this region.
 - If q is low in a region, then KL divergence is _____ in this region.

KL Divergence

• Kullback-Leibler (KL) divergence: measures the closeness of two distributions $p(\pmb{x})$ and $q(\pmb{x})$

$$KL(q(\mathbf{x}) \mid\mid p(\mathbf{x})) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})}$$

- a.k.a. Relative entropy
- KL >= 0 (Jensen's inequality)
- O Intuitively:
 - If q is high and p is high, then we are happy (i.e. low KL divergence)
 - If q is high and p is low then we pay a price (i.e. high KL divergence).
 - If q is low then we don't care (i.e. also low KL divergence, regardless of p)
- o not a true "distance":
 - not commutative (symmetric) KL(p||q)! = KL(q||p)
 - doesn't satisfy triangle inequality

- Model to be learned $p_{\theta}(x)$
- Observe **full** data $\mathcal{D} = \{ x_i \}_{i=1}^N$
 - \circ e.g., x_i includes both input (e.g., image) and output (e.g., image label)
 - \circ \mathcal{D} defines an empirical data distribution $\tilde{p}(x)$
 - $x \sim \mathcal{D} \Leftrightarrow x \sim \tilde{p}(x)$
- Maximum Likelihood Estimation (MLE)
 - The most classical learning algorithm

$$\min_{\theta} - \mathbb{E}_{x \sim \tilde{p}(x)} \left[\log p_{\theta}(x) \right]$$

- Model to be learned $p_{\theta}(x)$
- Observe **full** data $\mathcal{D} = \{ x_i \}_{i=1}^N$
 - \circ e.g., x_i includes both input (e.g., image) and output (e.g., image label)
 - \circ \mathcal{D} defines an empirical data distribution $\widetilde{p}(x)$
 - $x \sim \mathcal{D} \Leftrightarrow x \sim \tilde{p}(x)$
- Maximum Likelihood Estimation (MLE)
 - The most classical learning algorithm

$$\min_{\theta} - \mathbb{E}_{x \sim \tilde{p}(x)} \left[\log p_{\theta}(x) \right]$$

• Question: Show that MLE is minimizing the KL divergence between the empirical data distribution and the model distribution

- Model to be learned $p_{\theta}(x)$
- Observe **full** data $\mathcal{D} = \{ x_i \}_{i=1}^N$
 - \circ e.g., x_i includes both input (e.g., image) and output (e.g., image label)
 - \circ \mathcal{D} defines an empirical data distribution $\tilde{p}(x)$
 - $x \sim \mathcal{D} \Leftrightarrow x \sim \tilde{p}(x)$
- Maximum Likelihood Estimation (MLE)
 - The most classical learning algorithm

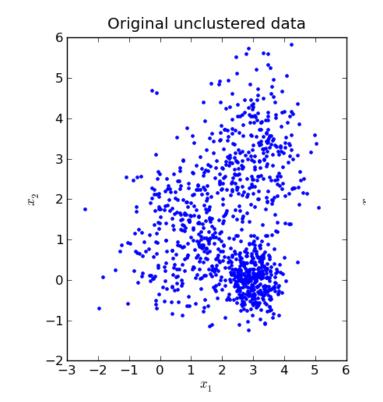
$$\min_{\theta} - \mathbb{E}_{x \sim \tilde{p}(x)} \left[\log p_{\theta}(x) \right]$$

 Question: Show that MLE is minimizing the KL divergence between the empirical data distribution and the model distribution

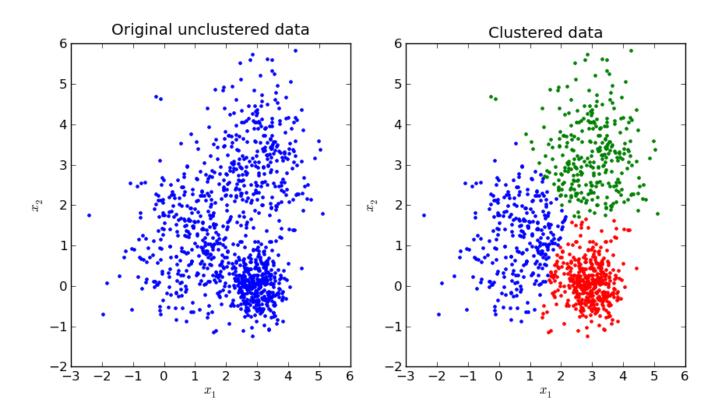
$$KL(\tilde{p}(x) || p_{\theta}(x)) = -\mathbb{E}_{\tilde{p}(x)} [\log p_{\theta}(x)] + H(\tilde{p}(x))$$

$$Cross entropy$$

- Each data instance is partitioned into two parts:
 - \circ observed variables x
 - latent (unobserved) variables z
- Want to learn a model $p_{\theta}(\mathbf{x}, \mathbf{z})$

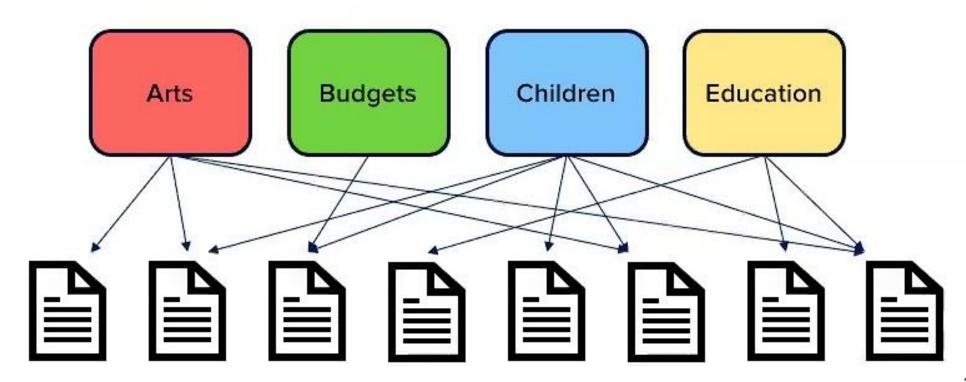


- Each data instance is partitioned into two parts:
 - \circ observed variables x
 - latent (unobserved) variables z
- Want to learn a model $p_{\theta}(x, z)$



- Each data instance is partitioned into two parts:
 - \circ observed variables x
 - latent (unobserved) variables z
- Want to learn a model $p_{\theta}(x, z)$

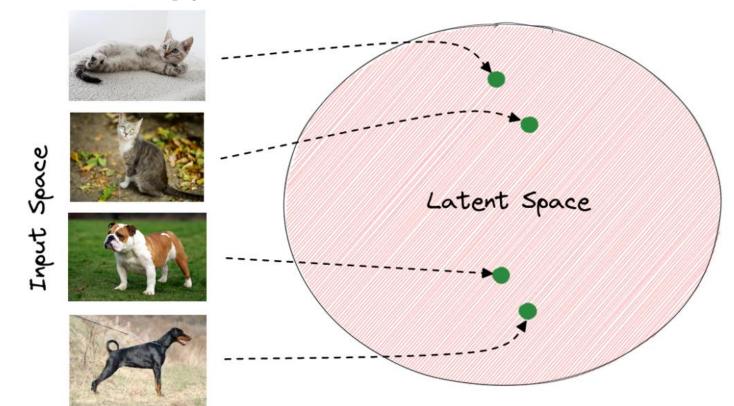
- Each data instance is partitioned into two parts:
 - \circ observed variables x
 - latent (unobserved) variables z
- Want to learn a model $p_{\theta}(x, z)$



- Each data instance is partitioned into two parts:
 - observed variables x
 - latent (unobserved) variables z
- Want to learn a model $p_{\theta}(\mathbf{x}, \mathbf{z})$

Input Space

- Each data instance is partitioned into two parts:
 - observed variables x
 - latent (unobserved) variables z
- Want to learn a model $p_{\theta}(\mathbf{x}, \mathbf{z})$



Why is Unsupervised Learning Harder?

ullet Complete log likelihood: if both $oldsymbol{x}$ and $oldsymbol{z}$ can be observed, then

$$\ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z}|\theta) = \log p(\mathbf{z}|\theta_z) + \log p(\mathbf{x}|\mathbf{z}, \theta_x)$$

 Decomposes into a sum of factors, the parameter for each factor can be estimated separately

Now z is not observed:

 Incomplete (or marginal) log likelihood: with Z unobserved, our objective becomes the log of a marginal probability:

$$\ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta)$$

Why is Unsupervised Learning Harder?

ullet Complete log likelihood: if both $oldsymbol{x}$ and $oldsymbol{z}$ can be observed, then

$$\ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z}|\theta) = \log p(\mathbf{z}|\theta_z) + \log p(\mathbf{x}|\mathbf{z}, \theta_x)$$

 Decomposes into a sum of factors, the parameter for each factor can be estimated separately

Now **z** is not observed:

• Incomplete (or marginal) log likelihood: with z unobserved, our objective becomes the log of a marginal probability:

$$\ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{z} p(\mathbf{x}, \mathbf{z}|\theta)$$

- All parameters become coupled together
- In other models when z is complex (continuous) variables (as we'll see later), marginalization over z is intractable.

Expectation Maximization (EM): Intuition

Expectation Maximization (EM): Intuition

Supervised MLE is easy:

$$\max_{\theta} \ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z} | \theta)$$

- Observe both x and z
- Unsupervised MLE is hard:

 $\max_{\theta} \ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}|\theta)$

- Observe only x
- EM, intuitively:

E-step: $q(\mathbf{z}|\mathbf{x}) = p(\mathbf{z}|\mathbf{x}, \theta)$

We don't actually observe q, let's estimate it

M-step: $\max_{\theta} \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} [\log p(\mathbf{x}, \mathbf{z}|\theta)]$

Let's "pretend" we also observe **Z** (its distribution)

Expectation Maximization (EM): Intuition

Supervised MLE is easy:

 $\max_{\alpha} \ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z}|\theta)$

- Observe both x and z
- Unsupervised MLE is hard:
 - Observe only x

 $\max_{\theta} \ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}|\theta)$

- EM, intuitively:

We don't actually observe q, let's estimate it

→ E-step: $q^{t+1}(\mathbf{z}|\mathbf{x}) = p(\mathbf{z}|\mathbf{x}, \theta^t)$ — M-step: $\max_{\theta} \mathbb{E}_{q^{t+1}(\mathbf{z}|\mathbf{x})} [\log p(\mathbf{x}, \mathbf{z}|\theta)]$

Let's "pretend" we also observe Z (its distribution)

This is an iterative process

Questions?