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Overview



Components of a ML solution (roughly)

° This course does not discuss model architecture

° Model of certain architecture whose parameters are the
subject to be learned, pg(x,y) or pg (Y|x)

. o Neuvural networks
e Model architecture o Graphical models

o Compositional architectures
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Components of a ML solution (roughly)

o This course discusses a lot of loss & experience
e Experience

° Core of most learning algorithms

ming L(0, E)
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Optimization Model Experience
solver architecture



Machine learning solutions given few data (labels)

e (1) How can we make more efficient use of data?

o0 Clean but small-size, Noisy, Out-of-domain

e (2) Can we incorporate other types of experience in learning?
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Machine learning solutions given few data (labels)

e (1) How can we make more efficient use of data?

o Clean but small-size, Noisy, Out-of-domain, ...

e Algorithms

O Supervised learning: MLE, maximum entropy principle
o Unsupervised learning: EM, variational inference, VAEs

o Self-supervised learning: successful instances, e.g., BERT, GPTs, contrastive learning,

applications to downstream tasks
o Distant/weakly supervised learning: successful instances
0 Data manipulation: augmentation, re-weighting, curriculum learning, ...

o0 Meta-learning
Mostly first half of the course



Machine learning solutions given few data (labels)

e (2) Can we incorporate other types of experience in learning?

O Learning from auxiliary models, e.g., adversarial models:

=  Generative adversarial learning (GANs and variants), co-training, ...

O Learning from structured knowledge

= Posterior regularization, constraint-driven learning, ...

O Learning from rewards

= Reinforcement learning: model-free vs model-based, policy-based vs value-
based, on-policy vs off-policy, extrinsic reward vs intrinsic reward, ...

O Learning in dynamic environment (not covered)

" Online learning, lifelong/continual learning, ...

Second half of the course

Rewards Auxiliary agents

“" And all combinations thereof




Algorithm marketplace

Designs driven by: experience, task, loss function, training procedure ...

maximum likelihood estimation reinforcement learning as inference
data re-weighting . ~ InverseRL - tive learning
policy optimization
data augmentation reward-augmented maximum likelihood

label smoothing softmax policy gradient

imitation learning

actor-critic adversarial domain adaptation
GANSs posterior regularization
knowledge distillation _ _ _
intrinsic reward constraint-driven learning

prediction minimization generalized expectation

regularized Bayes |
learning from measurements

energy-based GANs
weak/distant supervision




Where we are now? Where we want to be?

e Alchemy vs chemistry

maximum likelihood estimation  reinforcement learning as inference
ghting inverse RL active learning
B " policy optimization -
data augmentation  reward-augmented maximum likelihood

data re-w

label smoothing imitation learning sof
actor-critic

GANs J
knowledge distillation .
ntrinsic re constraint-driven learning

ediction minimiz generalized expectation
regularized Bayes

‘L‘,u‘\‘\f\g from measurements
energy-based GANs

weaNd\stam supervision

Genera(or Network D)scnmlnator Network
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Quest for more standardized, unified ML principles
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REVIEW m——C ommunicated by Steven Nowlan

A Unifying Review of Linear Gaussian Models

Sam Roweis*
Computation and Neural Systems, California Institute of Technology, Pasadena, CA
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Physics in the 1800’s

e Electricity & magnetism:
o Coulomb’s law, Ampére, Faraday, ...

e Theory of light beams: - 9
O Particle theory: Isaac Newton, Laplace, Plank J
© Woave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell
\VAVAVAVAV S
\N\N\N\NS
\N\N\N\N\N.

e Law of gravity
o Aristotle, Galileo, Newton, ...
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“Standard equations” in Physics

Diverse
electro-
magnetic
theories
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Maxwell’s EqQns:
original form

e+2—£+%+%=0 (1) Gauss’ Law
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A “standard model” of ML
R
EESHSTEERY  Type-o diabetes
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e Panoramically learn from all types of experience
e Subsumes many existing algorithms as special cases

Will discuss in later in the class 13



Lecture Schedule (tentative)
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Supervised Learning



KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two distributions p(x)
and g(x)

q(x)
p(x)

KL(q(0) [|p(x)) = ) q(x) log

O a.k.a. Relative entropy
o KL >= 0 (Jensen’s inequality) -> homework

O
= |f q is high and p is high in a region, then KL divergence is in this region.
= If q is high and p is low in a region, then KL divergence is in this region.
= |f g is low in a region, then KL divergence is in this region.
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KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two distributions p(x)
and g(x)

q(x)
p(x)

KL(q(0) [|p(x)) = ) q(x) log

O a.k.a. Relative entropy
o KL >= 0 (Jensen’s inequality)
O Intuitively:
= |f q is high and p is high, then we are happy (i.e. low KL divergence)
= If q is high and p is low then we pay a price (i.e. high KL divergence).
= |f q is low then we don’t care (i.e. also low KL divergence, regardless of p)
© not a true “distance’:
= not commutative (symmetric) KL(p||q) ! = KL(q||p)

= doesn’t satisfy triangle inequality

17



Supervised Learning

e Model to be learned pg(x)
e Observe full data D = { x; }_,

O e.d., X; includes both input (e.g., image) and output (e.g., image label)
o D defines an empirical data distribution p(x)
= x~D © x~px)

e Maximum Likelihood Estimation (MLE) min — E, 50 [ log pg(x) ]

© The most classical learning algorithm 6

18



Supervised Learning

e Model to be learned pg(x)
e Observe full data D = { x; }_,

O e.d., X; includes both input (e.g., image) and output (e.g., image label)
o D defines an empirical data distribution p(x)
= x~D © x~px)

e Maximum Likelihood Estimation (MLE) min — E, 50 [ log pg(x) ]

© The most classical learning algorithm 6

o Show that MLE is minimizing the KL divergence between the empirical
data distribution and the model distribution

19



Supervised Learning

e Model to be learned pg(x)
e Observe full data D = { x; }_,

O e.d., X; includes both input (e.g., image) and output (e.g., image label)
o D defines an empirical data distribution p(x)
= x~D © x~px)

e Maximum Likelihood Estimation (MLE)
© The most classical learning algorithm

mein _ [Ex~15(x) [ log pg (.X') ]

o Show that MLE is minimizing the KL divergence between the empirical
data distribution and the model distribution

KL@X) || po(x)) = —Ejn [ logpe(x) | + HB(x))

Cross entropy 20



Unsupervised Learning



Unsupervised Learning

e Each data instance is partitioned into two parts:
O observed variables x
O latent (unobserved) variables z

e Want to learn a model pg(x, z)

Original unclustered data

x 22



Unsupervised Learning

e Each data instance is partitioned into two parts:
O observed variables x
O latent (unobserved) variables z

e Want to learn a model pg(x, z)

Original unclustered data

Clustered data

23



Unsupervised Learning

e Each data instance is partitioned into two parts:
O observed variables x
O latent (unobserved) variables z

e Want to learn a model pg(x, z)

RRERRRRER



Unsupervised Learning

e Each data instance is partitioned into two parts:
O observed variables x
O latent (unobserved) variables z

e Want to learn a model pg(x, z)

Children

Education

~\




Unsupervised Learning

e Each data instance is partitioned into two parts:
O observed variables x

O latent (unobserved) variables z

e Want to learn a model pg(x, z)

Inpu‘t Space
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Unsupervised Learning

e Each data instance is partitioned into two parts:
O observed variables x

O latent (unobserved) variables z

e Want to learn a model pg(x, z)

Inpu‘t Space,

27



Why is Unsupervised Learning Harder?

e Complete log likelihood: if both X and zZ can be observed, then

£.(0;x,z) =logp(x,z|0) = logp(z|0,) + logp(x|z,6,)

0 Decomposes into a sum of factors, the parameter for each factor can be estimated
separately

Now Z is not observed:

e Incomplete (or marginal) log likelihood: with Z unobserved, our objective
becomes the log of a marginal probability:

£(0; x) = log p(x|0)

28



Why is Unsupervised Learning Harder?

e Complete log likelihood: if both X and zZ can be observed, then

£.(0;x,z) =logp(x,z|0) = logp(z|0,) + logp(x|z,6,)

0 Decomposes into a sum of factors, the parameter for each factor can be estimated
separately

Now Z is not observed:

e Incomplete (or marginal) log likelihood: with Z unobserved, our objective
becomes the log of a marginal probability:

£(0;x) =logp(x|0) = logz p(x,z|0)

o All parameters become coupled together

O In other models when Z is complex (continuous) variables (as we’ll see later),

marginalization over Z is intractable.
29



Expectation Maximization (EM): Intuition

30



Expectation Maximization (EM): Intuition

e Supervised MLE is easy: max £.(0;x,z) =logp(x,z|0)
7]
O QObserve both x and z

e Unsupervised MLE is hard: max £(0; x) = logp(x]0) = 1082 p(x,z|0)
Z

0 Observe only x

e EM, intuitively:
We don’t actually observe q, let’s

E-step: qg(z|x) = p(z|x,0)

estimate it

M-step: max Eq(z|x)[ log p(x,2|6) ] Le.fs. pr?fend we also observe Z (its
0 distribution)

31



Expectation Maximization (EM): Intuition

e Supervised MLE is easy: max £.(0;x,z) =logp(x,z|0)
7]
O QObserve both x and z

e Unsupervised MLE is hard: max £(0; x) = logp(x]0) = 1082 p(x,z|0)
Z

0 Observe only x

e EM, intuitively:
We don’t actually observe q, let’s
> : t+1 _ t ’
E-step:  ¢7" (z]x) = p(z]x,6") estimate it
Let’s “pretend” we also observe Z (its

distribution)

____ M-step: max ]eq+1(zlx)[log p(x,z|60) ]

This is an iterative
process

32



Questions?
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