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Logistics

e Office Hour this week:
0 Thursday 2pm PT

e Office Hour in future weeks:
o Tuesday 2pm PT

Office: HDSI 442
ice 442

o TA’s Office Hour TBA

e Will announce on Piazza later today



Overview



Machine learning solutions given few data (labels)

e (1) How can we make more efficient use of data?

o0 Clean but small-size, Noisy, Out-of-domain

e (2) Can we incorporate other types of experience in learning?
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Machine learning solutions given few data (labels)

e (1) How can we make more efficient use of data?

o Clean but small-size, Noisy, Out-of-domain, ...

e Algorithms (%
Supervised learning: MLE, maximum entropy principle

t Unsupervised learning: EM, variational inference, VAEs / 4/4 y,,él

o Self-supervised learning: successful instances, e.g., BERT, GPTs, contrastive le
Iy

applications to downstream tasks

oﬁisiant/weakly supeuds\ed learning: successful instances ‘S)
s &
% %

o \Data manipulation: augmentation, re-weighting, curriculum learning, ...

0( o__Meta-learning
&&*frﬁr;}?p% = Q[fd‘ﬁﬁ{ﬂg/ Mostly first half of the course s
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Machine learning solutions given few data (labels) J

e (2) Can we incorporate other types of experience in tleo?ing?

4 ’ ‘ deteainook| Bt !
O Learning from auxiliary models, e.g., adversarial models:

=  Generative adversarial learning (GA_Nj and variants), co-training, ...

\-—-h-
O Learning from structured knowledge )f&?‘zﬂgﬁ,
e

= Posterior regularization, constraint-driven learning, ...

O Learning from rewards
e e —

® Reinforcement !eqrning: model-free vs model-based, policy-based vs value-
based, on-policy vs off-policy, extrinsic reward vs intrinsic rewakd, /é

O Learning in dynamic environment (not covered) /DE

" Online learning, lifelong/continual learning, ...

Second half of the course



Algorithm marketplace

Designs driven by: experience, task, loss function, training procedure ...

maximum likelihood estimation reinforcement learning as inference
, —_—\— —

data re-weighting inverse RL ve learni
gnting volicy optimizat A active learning
data augmentation  reward-augmented maximum likelihood
— . )
label smoothing imitation learning SOﬁTEX policy gradient
actor-critic = adversarial domain adaptation
GANSs posterior regularization
knowledge distillation _ _ _
———— Intrinsic reward constraint-driven learning

prediction minimization generalized expectation

regularized Bayes |
learning from measurements

energy-based GANs
weak/distant supervision

— i




Where we are now? Where we want to be?

e Alchemy vs chemistry

maximum likelihood estimation  reinforcement learning as inference
ghting inverse RL active learning
B " policy optimization -
data augmentation  reward-augmented maximum likelihood

data re-w

label smoothing imitation learning sof
actor-critic

GANs J
knowledge distillation .
ntrinsic re constraint-driven learning

ediction minimiz generalized expectation
regularized Bayes

‘L‘,u‘\‘\f\g from measurements
energy-based GANs

weaNd\stam supervision

Genera(or Network D)scnmlnator Network

Notwork
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Quest for more standardized, unified ML principles
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Physics in the 1800’s

e Electricity & magnetism:
o Coulomb’s law, Ampére, Faraday, ...

e Theory of light beams:
2 Particle theory: Isaac Newton, Laplace, Plank
—e~ Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell

e Law of gravity
o Aristotle, Galileo, Newton, ...
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“Standard equations” in Physics

Maxwell’'s Eqns  Maxwell’s Eqns

Diverse
electro-
magnetic
theories
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Maxwell’s EqQns:

.. simplified w/
original form ”
rotational
df  dg  dh ,
e+L 42420 (1) Gauss’ Law ~
b & symmetry
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Ohm’s Law

The electric elasticity

P=l Q=kg R=ki equation (E = D/e)
de +£ +d_q +d_r 0 Continuity of charge
dt dx dy dz

¢

1861
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Standard Model Unification of
w/ Yang-Mills
theory and US(3)

symmetry

further simplified
w/ symmetry of
special relativity

fundamental
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A “standard model” of ML
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Type-2 diabetes
1S 90% more
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Uncertainty

Divergence
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Experience

oy e — —

e Panoramically learn from all types of experience

e Subsumes many existing algorithms as special cases

Will discuss in later in the class 12



Lecture Schedule (tentative)
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Supervised Learning



KL Divergence

and g(x)

/é Vets Co

e Kullback-Leibler (KL) divergence: measureyw?oseness of two distributions m’”@
. s

KL(q() || p(1)) =

o a.k.a. Relative entropy [ -/
o KL >= 0 (Jensen’s inequality) -> homework X
o Questions: (:;
= |f q is high and p is high in a region, then KL divergence is in this region.
= If_q_i_s-high and p is low in a region, then KL divergence is rﬂé{ is region.

= If g is low in a region, then KL divergence is jﬂhis regio
]




KL Divergen?ej S rca.

e Kullback-Leibler (KL) divergence
and g(x)

O a.k.a. Relative entropy

o KL >= 0 (Jensen’s inequality)
O Intuitively:

" If g is high and p is high, then we are happy (i.e. low KL divergence) X &)) J f@

e
= |f g ishigh and p _is low then we pay a price (i.e. high KL divergence).

ZQg :a If g is low then we don'’t care (i.e. also low KL divergence, regardless of p)
0 nof atrue “distance”: N

" not commu’rd’rivg (symmetric) KL(pllg) | = KL(Q'!E) / B
"  doesn’t satisfy triangle inequality - / 6 \\
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Supervised Learning | ( X)
——— (9 f@ @
e Model to be learned pg(x) — J
e Observe full data D = ! X; }{-V:!

O e.d., X; includes both input (e.g., image) and output (e.g., image label)

o D defines an emgiriccl data distribution Per) X -

= x~D © x~plx

A
e Maximum Likelihood Estimation (MLEL _ min — E. log pg ( ]
- o (x)
0 The most classical learning algorithm __2,, )




by L r
Supervised Learning C;/ b Zw /p ﬁ
e Model to be learned pg(x) &/
e Observe full data D = { x; }_,

O e.d., X; includes both input (e.g., image) and outplt (e.g., image label) —%C?}Z‘ﬂi
o D defines an empirical data distribution p(x

= x~D © x~px)

e Maximum Likelihood Estimation (M

min — [Ex~ﬁ(x) log pg (x) ]

© The most classical learning algorithm 6
o Show that MLE j& minimizing the KL divergence betweenjthe empirical
data distribution and the’model distribution 2,

— # K (P
);g,z )UOf'@—f’fV%O‘i] — 2} /31;[/ v&i //%@))



Supervised Learning

e Model to be learned pg(x)
e Observe full data D = { x; }_,
"

O e.d., X; includes both input (e.g., image) and output (e.g., image label)
o D defines an empirical data distribution p(x)
= x~D © x~px)

e Maximum Likelihood Estimation (MLE)
© The most classical learning algorithm

mein — [Ex~ﬁ(x) [ log pg (x) ]

o Show that MLE is minimizing the KL diver
data distribution and the model distribution

ce between the empirical

%Gy,

KL(B () || po(x)) = —IEE(x)[log po(x) ]+ HP(x)) -

Cross entropy

19



Unsupervised Learning



Unsupervised Learning

e Each data instance is partitioned into two parts:

O observed variables X

o latent {unobserved) variables z

— —
e Want to learn a model pg(x, z)
/-

Original unclustered data
6 T T T T T T T

5K

x 21



Unsupervised Learning

e Each data instance is partitioned into two parts:
O observed variables x )\_

O latent (unobserved) variables z

e Want to learn a model pg(x, z)

Original unclustered data

x 22



Unsupervised Learning

e Each data instance is partitioned into two parts:
O observed variables x
O latent (unobserved) variables z

e Want to learn a model pg(x, z)

RRRRRRER



Unsupervised Learning 2% 7 % §L/}

e Each data instance is partitioned into two parts: @ —&9 ,tS
O observed variables x
O latent (unobserved) variables z X-’ [/éc . C]:

e Woant to learn a model py(x, z) g '—é:?/ ! Q&”f‘f&/k
- 7 ?




Unsupervised Learning

e Each data instance is partitioned into two parts:
O observed variables x

O latent (unobserved) variables z

e Want to learn a model pg(x, z)

Inpu‘t Space
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Unsupervised Learning

e Each data instance is partitioned into two parts:
O observed variables x

O latent (unobserved) variables z

e Want to learn a model pg(x, z)

Inpu‘t Space,
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Why is Unsupervised Learning Harder?

e Complete log likelihood: if both X and zZ can be observed, then

£.(0;x,z) =logp(x,z|0) = logp(z|0,) + logp(x|z,6,)

0 Decomposes into a sum of factors, the parameter for each factor can be estimated
separately

Now Z is not observed:

e Incomplete (or marginal) log likelihood: with Z unobserved, our objective
becomes the log of a marginal probability:

£(0; x) = log p(x|0)

27



Why is Unsupervised Learning Harder?

e Complete log likelihood: if both X and zZ can be observed, then

£.(0;x,z) =logp(x,z|0) = logp(z|0,) + logp(x|z,6,)

0 Decomposes into a sum of factors, the parameter for each factor can be estimated
separately

Now Z is not observed:

e Incomplete (or marginal) log likelihood: with Z unobserved, our objective
becomes the log of a marginal probability:

£(0;x) =logp(x|0) = logz p(x,z|0)

o All parameters become coupled together

O In other models when Z is complex (continuous) variables (as we’ll see later),

marginalization over Z is intractable.
28



Expectation Maximization (EM): Intuition

29



Expectation Maximization (EM): Intuition

e Supervised MLE is easy: max £.(0;x,z) =logp(x,z|0)
7]
O QObserve both x and z

e Unsupervised MLE is hard: max £(0; x) = logp(x]0) = 1082 p(x,z|0)
Z

0 Observe only x

e EM, intuitively:
We don’t actually observe q, let’s

E-step: qg(z|x) = p(z|x,0)

estimate it

M-step: max Eq(z|x)[ log p(x,2|6) ] Le.fs. pr?fend we also observe Z (its
0 distribution)

30



Expectation Maximization (EM): Intuition

e Supervised MLE is easy: max £.(0;x,z) =logp(x,z|0)
7]
O QObserve both x and z

e Unsupervised MLE is hard: max £(0; x) = logp(x]0) = 1082 p(x,z|0)
Z

0 Observe only x

e EM, intuitively:
We don’t actually observe q, let’s
> : t+1 _ t ’
E-step:  ¢7" (z]x) = p(z]x,6") estimate it
Let’s “pretend” we also observe Z (its

distribution)

____ M-step: max ]eq+1(zlx)[log p(x,z|60) ]

This is an iterative
process

31



Questions?
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