
DSC291: Machine Learning with Few Labels

Supervised / Unsupervised Learning

Zhiting Hu

Lecture 3, April 8, 2025



Logistics

● Office Hour this week:

◯ Thursday 2pm PT

● Office Hour in future weeks:

◯ Tuesday 2pm PT

Office: HDSI 442 

● TA’s Office Hour TBA

● Will announce on Piazza later today
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Overview



Machine learning solutions given few data (labels)

● (1) How can we make more efficient use of data?

◯ Clean but small-size, Noisy, Out-of-domain

● (2) Can we incorporate other types of experience in learning?
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Machine learning solutions given few data (labels)

● (1) How can we make more efficient use of data?

◯ Clean but small-size, Noisy, Out-of-domain, …

● Algorithms

◯ Supervised learning: MLE, maximum entropy principle

◯ Unsupervised learning: EM, variational inference, VAEs

◯ Self-supervised learning: successful instances, e.g., BERT, GPTs, contrastive learning, 

applications to downstream tasks 

◯ Distant/weakly supervised learning: successful instances

◯ Data manipulation: augmentation, re-weighting, curriculum learning, …

◯ Meta-learning
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Machine learning solutions given few data (labels)

● (2) Can we incorporate other types of experience in learning?

◯ Learning from auxiliary models, e.g., adversarial models: 

▪ Generative adversarial learning (GANs and variants), co-training, …

◯ Learning from structured knowledge

▪ Posterior regularization, constraint-driven learning, …

◯ Learning from rewards

▪ Reinforcement learning: model-free vs model-based, policy-based vs value-

based, on-policy vs off-policy, extrinsic reward vs intrinsic reward, …

◯ Learning in dynamic environment (not covered)

▪ Online learning, lifelong/continual learning, …
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Algorithm marketplace

actor-critic

imitation learning
softmax policy gradient

policy optimization

posterior regularization

constraint-driven learning

regularized Bayes 

GANs

active learning

intrinsic reward

inverse RL

knowledge distillation

energy-based GANs 

maximum likelihood estimation

prediction minimization generalized expectation

learning from measurements 

adversarial domain adaptation

reinforcement learning as inference

data augmentation

data re-weighting

label smoothing

weak/distant supervision

reward-augmented maximum likelihood

Designs driven by: experience, task, loss function, training procedure …
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Where we are now? Where we want to be?

● Alchemy vs chemistry

≈

≠

≠≠
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Quest for more standardized, unified ML principles
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[P. Langley, 1989]



Physics in the 1800’s

● Electricity & magnetism: 

◯ Coulomb’s law, Ampère, Faraday, ...

● Theory of light beams:

◯ Particle theory: Isaac Newton, Laplace, Plank

◯ Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell

● Law of gravity

◯ Aristotle, Galileo, Newton, …
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“Standard equations” in Physics

Diverse 

electro-

magnetic 

theories

Maxwell’s Eqns: 

original form

Maxwell’s Eqns 

simplified w/ 

rotational 

symmetry

Maxwell’s Eqns 

further simplified 

w/ symmetry of 

special relativity

Standard Model 

w/ Yang-Mills 

theory and US(3) 

symmetry

1861 1910s 1970s

Unification of 

fundamental 

forces? 
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A “standard model” of ML

● Panoramically learn from all types of experience

● Subsumes many existing algorithms as special cases
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𝒎𝒊𝒏
𝒒, 𝜽

− ℍ + 𝔻 − 𝔼

ExperienceDivergenceUncertainty

Data examples Rewards Auxiliary agentsConstraints

Type-2 diabetes 

is 90% more 

common than 

type-1 

…

Adversaries Imitation 

Will discuss in later in the class



Lecture Schedule (tentative)
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Supervised Learning



KL Divergence

● Kullback-Leibler (KL) divergence: measures the closeness of two distributions 𝑝(𝒙) 
and 𝑞(𝒙)

◯ a.k.a. Relative entropy

◯ KL >= 0  (Jensen’s inequality)  -> homework

◯ Questions:
▪ If 𝑞 is high and 𝑝 is high in a region, then KL divergence is ______ in this region.

▪ If 𝑞 is high and 𝑝 is low in a region, then KL divergence is ______ in this region.

▪ If 𝑞 is low in a region, then KL divergence is ______ in this region.
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KL Divergence

● Kullback-Leibler (KL) divergence: measures the closeness of two distributions 𝑝(𝒙) 
and 𝑞(𝒙)

◯ a.k.a. Relative entropy

◯ KL >= 0  (Jensen’s inequality)

◯ Intuitively:

▪ If 𝑞 is high and 𝑝 is high, then we are happy (i.e. low KL divergence) 

▪ If 𝑞 is high and 𝑝 is low then we pay a price (i.e. high KL divergence).

▪ If 𝑞 is low then we don’t care (i.e. also low KL divergence, regardless of 𝑝) 

◯ not a true “distance”: 

▪ not commutative (symmetric) KL p||q  ! = KL(q||p)

▪ doesn’t satisfy triangle inequality
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Supervised Learning

● Model to be learned 𝑝𝜃 𝒙

● Observe full data 𝒟 =  𝒙𝑖  𝑖=1
𝑁

◯ e.g., 𝒙𝑖  includes both input (e.g., image) and output (e.g., image label)

◯ 𝒟 defines an empirical data distribution ෤𝑝 𝒙

▪ 𝒙 ∼ 𝒟 ⇔  𝒙 ∼ ෤𝑝 𝒙

● Maximum Likelihood Estimation (MLE)

◯ The most classical learning algorithm 
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Supervised Learning

● Model to be learned 𝑝𝜃 𝒙

● Observe full data 𝒟 =  𝒙𝑖  𝑖=1
𝑁

◯ e.g., 𝒙𝑖  includes both input (e.g., image) and output (e.g., image label)

◯ 𝒟 defines an empirical data distribution ෤𝑝 𝒙

▪ 𝒙 ∼ 𝒟 ⇔  𝒙 ∼ ෤𝑝 𝒙

● Maximum Likelihood Estimation (MLE)

◯ The most classical learning algorithm 

● Question: Show that MLE is minimizing the KL divergence between the empirical 
data distribution and the model distribution
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Supervised Learning

● Model to be learned 𝑝𝜃 𝒙

● Observe full data 𝒟 =  𝒙𝑖  𝑖=1
𝑁

◯ e.g., 𝒙𝑖  includes both input (e.g., image) and output (e.g., image label)

◯ 𝒟 defines an empirical data distribution ෤𝑝 𝒙

▪ 𝒙 ∼ 𝒟 ⇔  𝒙 ∼ ෤𝑝 𝒙

● Maximum Likelihood Estimation (MLE)

◯ The most classical learning algorithm 

● Question: Show that MLE is minimizing the KL divergence between the empirical 
data distribution and the model distribution
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min
𝜃

− 𝔼𝑥∼ ෤𝑝 𝒙

1
log 𝑝𝜃(𝒙)

KL ෤𝑝(𝒙) || 𝑝𝜃(𝒙) = −𝔼 ෤𝑝 𝒙  log 𝑝𝜃 𝒙  + 𝐻( ෤𝑝(𝒙)) 

Cross entropy
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Unsupervised Learning



Unsupervised Learning

● Each data instance is partitioned into two parts:

◯ observed variables 𝒙

◯ latent (unobserved) variables 𝒛

● Want to learn a model 𝑝𝜃 𝒙, 𝒛
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Unsupervised Learning
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◯ observed variables 𝒙
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Unsupervised Learning

● Each data instance is partitioned into two parts:

◯ observed variables 𝒙
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● Want to learn a model 𝑝𝜃 𝒙, 𝒛
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Unsupervised Learning

● Each data instance is partitioned into two parts:

◯ observed variables 𝒙

◯ latent (unobserved) variables 𝒛

● Want to learn a model 𝑝𝜃 𝒙, 𝒛
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Unsupervised Learning

● Each data instance is partitioned into two parts:

◯ observed variables 𝒙

◯ latent (unobserved) variables 𝒛
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Unsupervised Learning

● Each data instance is partitioned into two parts:

◯ observed variables 𝒙

◯ latent (unobserved) variables 𝒛

● Want to learn a model 𝑝𝜃 𝒙, 𝒛
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Why is Unsupervised Learning Harder? 

● Complete log likelihood: if both 𝒙 and 𝒛 can be observed, then

◯ Decomposes into a sum of factors, the parameter for each factor can be estimated 

separately

Now 𝒛 is not observed:

● Incomplete (or marginal) log likelihood: with 𝒛 unobserved, our objective 
becomes the log of a marginal probability: 
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Why is Unsupervised Learning Harder? 

● Complete log likelihood: if both 𝒙 and 𝒛 can be observed, then

◯ Decomposes into a sum of factors, the parameter for each factor can be estimated 

separately

Now 𝒛 is not observed:

● Incomplete (or marginal) log likelihood: with 𝒛 unobserved, our objective 
becomes the log of a marginal probability: 

◯ All parameters become coupled together

◯ In other models when 𝒛 is complex (continuous) variables (as we’ll see later), 

marginalization over 𝒛 is intractable.
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ℓ𝑐 𝜃; 𝒙, 𝒛 = log 𝑝 𝒙, 𝒛 𝜃 =  log 𝑝 𝒛 𝜃𝑧 + log 𝑝(𝒙|𝒛, 𝜃𝑥)

ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = log ෍
𝑧

𝑝(𝒙, 𝒛|𝜃)



Expectation Maximization (EM): Intuition
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Expectation Maximization (EM): Intuition

● Supervised MLE is easy:

◯ Observe both 𝒙 and 𝒛 

● Unsupervised MLE is hard:

◯ Observe only 𝒙 

● EM, intuitively:
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max 
𝜃

ℓ𝑐 𝜃; 𝒙, 𝒛 = log 𝑝 𝒙, 𝒛 𝜃

max
𝜃

ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = log ෍
𝑧

𝑝(𝒙, 𝒛|𝜃)

M-step:  max
𝜃

 𝔼𝑞(𝒛|𝒙)  log 𝑝 𝒙, 𝒛 𝜃  Let’s “pretend” we also observe 𝒛 (its 

distribution)

E-step: 𝑞(𝒛|𝒙) = 𝑝(𝒛|𝒙, 𝜃)
We don’t actually observe q, let’s 

estimate it



Expectation Maximization (EM): Intuition

● Supervised MLE is easy:

◯ Observe both 𝒙 and 𝒛 

● Unsupervised MLE is hard:

◯ Observe only 𝒙 

● EM, intuitively:
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max 
𝜃

ℓ𝑐 𝜃; 𝒙, 𝒛 = log 𝑝 𝒙, 𝒛 𝜃

max
𝜃

ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = log ෍
𝑧

𝑝(𝒙, 𝒛|𝜃)

M-step:  max
𝜃

 𝔼𝑞𝑡+1(𝒛|𝒙)  log 𝑝 𝒙, 𝒛 𝜃  Let’s “pretend” we also observe 𝒛 (its 

distribution)

E-step: 𝑞𝑡+1(𝒛|𝒙) = 𝑝(𝒛|𝒙, 𝜃𝑡)
We don’t actually observe q, let’s 

estimate it

This is an iterative 

process



Questions?
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