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Outline

● World Model

● Paper presentation:

◯ Sijin Lyu, Tianhao Zhou: "Improving noisy student training for low-resource languages in End-to-
End ASR using CycleGAN and inter-domain losses”
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Reinforcement Learning
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• Deployed in the real world

• Expensive, slow to get feedback



Reinforcement Learning
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• Deployed in the real world

• Expensive, slow to get feedback

Human data collection farm



Reinforcement Learning
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• Deployed in the real world

• Expensive, slow to get feedback

World Model

• Deployed in infinitely diverse simulated 

worlds

• Cheap, fast to get feedback



World model

● State transition probabilities

● Next “world” prediction
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World model

● Next “world” prediction

● Prior research built domain-specific world models

◯ Primarily in robotics and embodied AI
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(i) Computer vision: model-based 
physical scene understanding

Wu et al. (2017)



World model

● Next “world” prediction

● Prior research built domain-specific world models

◯ Primarily in robotics and embodied AI
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(ii) Physics engines / embodied simulatorsMuJoCo

AI2-THOR

Habitat 2.0

Szot et al. (2021)

Todorov et al. (2012)

Kolve et al. (2017)



World model

● Next “world” prediction

● Prior research built domain-specific world models

◯ Primarily in robotics and embodied AI
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(iii) Learned neural physics engines

Allen et al. (2023) Sanchez-Gonzalez et al. (2020)



World model

● Next “world” prediction

● Prior research built domain-specific world models

◯ Primarily in robotics and embodied AI
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(iv) Video prediction models

Ha & Schmidhuber (2018)

Ground-truth Synthesis



World model

● Next “world” prediction

● Prior research built domain-specific world models

◯ Primarily in robotics and embodied AI
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(iv) Video prediction models

GAIA-1



World model

● Next “world” prediction

● Prior research built domain-specific world models

◯ Primarily in robotics and embodied AI
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(iv) Video prediction models

[Yang et al., 2023]



World model

● Next “world” prediction

● Prior research built domain-specific world models

◯ Primarily in robotics and embodied AI

● The scope of simulation defines the capability of reasoning

◯ “More simulation, more intelligence“

Would the value of a 

function increase if I 

changed this variable?

What would happen on 

the street if I turned the 

vehicle left

How might a business 

grow if a specific 

policy were applied

What biological effects 

would arise from a 

specific genetic mutation
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PAN World Model
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PAN World Model
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PAN World Model: Simulation Results
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Robot: Complex manipulation
         Locomotion



PAN World Model: Simulation Results
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Input actions:

> Wave arms and jump

> Dance dance dance!

> Grasp a rose behind 
and show to the audience

> …

> Make a heart shape 
with hands

Robot: Complex manipulation
         Locomotion



PAN World Model: Simulation Results
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Driving: Dangerous situations



PAN World Model: Simulation Results
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Complex environments in various styles



PAN World Model: Simulation Results
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Complex environments in various styles



PAN World Model: Simulation Results
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Complex environments in various styles



Summary so far
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“Dream”-time learning

• Deployed in infinitely diverse simulated 

worlds

• Cheap, fast to get feedback
Traditional Reinforcement Learning

• Deployed in the real world

• Expensive, slow to get feedback

World Model



World Model for Inference-Time Planning
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World Model for Inference-Time Planning
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Goal

Current state

• Simulate plans with world model

• Choose the best plan



World Model for Inference-Time Planning
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How to move the blocks to the goal state? Human: strategic planning
• Internal world model to predict states

• Simulation of alternative plans

• Assess outcomes to refine/pick the best

Stack on blue

Pick up orange

……

Better than

Pick up blue

Stack on orange……

GPT-4

LLMs: Autoregressive plan generation



How Nature Works
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Simulates possibilities recursively; complexity emerges



How Nature Works

Example 1: Human reasoning

◯ Humans “reason by thinking about what’s possible”
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Simulates possibilities recursively; complexity emerges
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◯ Humans “reason by thinking about what’s possible”
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Simulates possibilities recursively; complexity emerges



How Nature Works

Example 1: Human reasoning

◯ Humans “reason by thinking about what’s possible”
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Simulates possibilities recursively; complexity emerges

• Simulate alternative hypothetical worlds with mental 

models

• Rule out possibilities that do not fit context, knowledge, 

or goals

• Complex reasoning behaviors emerge:



How Nature Works

Example 1: Human reasoning

◯ Humans “reason by thinking about what’s possible”
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Simulates possibilities recursively; complexity emerges

• Simulate alternative hypothetical worlds with mental 

models

• Rule out possibilities that do not fit context, knowledge, 

or goals

• Complex reasoning behaviors emerge:



How Nature Works

Example 1: Human reasoning

◯ Humans “reason by thinking about what’s possible”
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Simulates possibilities recursively; complexity emerges

• Simulate alternative hypothetical worlds with mental 

models

• Rule out possibilities that do not fit context, knowledge, 

or goals

• Complex reasoning behaviors emerge

• deduction, induction, abduction, …



How Nature Works

Example 1: Human reasoning

◯ Humans “reason by thinking about what’s possible”
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Simulates possibilities recursively; complexity emerges

• Simulate alternative hypothetical worlds with mental 

models

• Rule out possibilities that do not fit context, knowledge, 

or goals

• Complex reasoning behaviors emerge

• deduction, induction, abduction, …

Determining whether a conclusion holds 

in all plausible worlds



How Nature Works

Example 2: Natural evolution

44

Simulates possibilities recursively; complexity emerges

• Generate mutations with molecular genetic mechanisms 

(genotype -> phenotype)

• Rule out possibilities that do not fit the environment

• Diverse and intricate forms of life emerge



How Nature Works

Example 2: Natural evolution
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Simulates possibilities recursively; complexity emerges

• Generate mutations with molecular genetic mechanisms 

(genotype -> phenotype)

• Rule out possibilities that do not fit the environment

• Diverse and intricate forms of life emerge



How Nature Works
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Simulates possibilities recursively; complexity emerges

• Generate mutations with molecular genetic mechanisms 

(genotype -> phenotype)

• Rule out possibilities that do not fit the environment

• Diverse and intricate forms of life emerge

Example 2: Natural evolution



How Nature Works

Human reasoning               Natural evolution

  Mental models                     Molecular genetic mechanisms 
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Simulates possibilities recursively; complexity emerges

Simulating possible consequences of an action “World Model”
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Era of Symbolic Simulation Era of World Model Simulation



Questions?
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