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Outline

e World Model

e Paper presentation:

o Sijin Lyu, Tianhao Zhou: "Improving noisy student training for low-resource languages in End-to-
End ASR using CycleGAN and inter-domain losses”
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World model

e State transition probabilities

e Next “world” prediction

P(s'|s,a)

hext state current state

action



World model

e Next “world” prediction ~ P(s'|s, a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

physical world

(i) Computer vision: model-based

% > - physical scene understanding
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Wu et al. (2017)

visual data



World model

e Next “world” prediction P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

MulJoCo

(ii) Physics engines / embodied simulators

Kolve et al. (2017) o ~ Szotetal. (2021) o



World model

e Next “world” prediction P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

(iii) Learned neural physics engines

Grounq truth Predicr'gion

—— N =

Allen et al. (2023) Sanchez-Gonzalez et al. (2020)



World model

o Next “world” prediction P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

(iv) Video prediction models
Ground-Tl‘UTh Synfhesis

Ha & Schmidhuber (2018)
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World model

e Next “world” prediction  P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

(iv) Video prediction models

4X SPEED

Genera ted by GAIA-1 Genera ted by GAIA-1

GAIA-1
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World model

e Next “world” prediction  P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

(iv) Video prediction models

Simulating long sequence of human activities.

Step 1:

[Yang et al., 2023]
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World model

e Next “world” prediction  P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

e The scope of simulation defines the capability of reasoning
o “More simulation, more intelligence®

x|t fx
>
Would the value of a What would happen on How might a business What biological effects
function increase if | the street if | turned the grow if a specific would arise from a
changed this variable? vehicle left

policy were applied specific genetic mutation



The scope of WM simulation
= the capability of reasoning

Scientific reasoning
(drug discovery)

Social/business
reasoning

multi-agency
(e.g., social collaboration)

space/time
(e.g., embodied control)

Language
(e.g., math, code,
logic)

Physical reasoning
(auto-driving, robot) i

X fix)
Symbolic reasoning /
Computer use /
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Video generation
v S'models

PAN World Model
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PAN World Model

Video representation of world states
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PAN World Model

(2) Long-term consistency
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Video generation
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PAN World Model: Simulation Results

Robot: Complex manipulation
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PAN World Model: Simulation Results

Robot: Complex manipulation
Locomotion

Input actions:

> Wave arms and jump
> Dance dance dance!

> Grasp a rose behind
and show to the audience

> ...

> Make a heart shape
with hands




PAN World Model: Simulation Results

Driving: Dangerous situations

2016/08/11 19:52:15
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PAN World Model: Simulation Results

Complex environments in various styles
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PAN World Model: Simulation Results

Complex environments in various styles
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PAN World Model: Simulation Results

Complex environments in various styles
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Summary so far
“Dream”-time learning

* Deployed in infinitely diverse simulated
worlds

Traditional Reinforcement Learning e Cheap, fast to get feedback
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* Deployed in the real world
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World Model for Inference-Time Planning

| Belief |

model | Goal |




P(s'|s, a)

World Model for Inference-Time Planning

| Belief |

| Goal |

® Godl

Current state
* Simulate plans with world model

* Choose the best plan
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P(s'|s, a)
World Model for Inference-Time Planning

How to move the blocks to the goal state? Human: strategic planning
Internal world model to predict states

Goal:
* Simulation of alternative plans

| | | — | ! | * Assess outcomes to refine /pick the best

I

Pick up orange I \Pic_kug blue
© cers == -
L1

1. Pick up the orange| |block. [ |

Invalid Action! 2. Stack it on the blue| | block.
The yellow| | block is still | 3. Pick up the yellow| |block| » Stackonblue | N\ Stack on orange

under the redD one. 4., Stack it on the orange D block.
5. Pick up the red | |block. —
6. Put it on the table. Better than

LLMs: Autoregressive plan generation
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How Nature Works

Simulates possibilities recursively; complexity emerges
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© Humans “reason by thinking about what’s possible”
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P.N.JOHNSON-LAIRD

Memnial
Models

How Nature Works

© Humans “reason by thinking about what’s possible”

* Simulate alternative hypothetical worlds with mental
models
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P.N.JOHNSON-LAIRD

Memnial
Models

How Nature Works

© Humans “reason by thinking about what’s possible”

* Rule out possibilities that do not fit context, knowledge,
or goals
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How Nature Works

© Humans “reason by ’rhlnklng qbou’r what’s possible”

Complex reasoning behaviors emerge
* deduction, induction, abduction,
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How Nature Works

© Humans “reason by thinking about what’s possible”
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How Nature Works

* Generate mutations with molecular genetic mechanisms
(genotype -> phenotype)

Gomphothere
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How Nature Works

* Rule out possibilities that do not fit the environment
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How Nature Works

Simulates possibilities recursively; complexity emerges

Example 2: Natural evolution
e
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* Generate mutations with molecular genetic mechanisms
(genotype -> phenotype)
4 * Rule out possibilities that do not fit the environment

-« * Diverse and intricate forms of life emerge
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How Nature Works

Mental models Mole)cula;neﬁc mechanisms
Simulating possible consequences of an action “World Model”

P(s']s,a)
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Welcome to the Era of Experience

David Silver, Richard S. Sutton*

Era of Simulation

>

AlphaZero
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Attention on Reinforcement Learning

Era of Human Data
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Computer Use

AlphaProof
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Attention on Reinforcement Learning

>

Era of Symbolic Simulation

*

Era of Simulation

AlphaZero

Atari

Era of Human Data

GPT3

ChatGPT

Era of World Model Simulation

L
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Computer Use
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Questions?
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