DSC291: Machine Learning with Few Labels

World Model

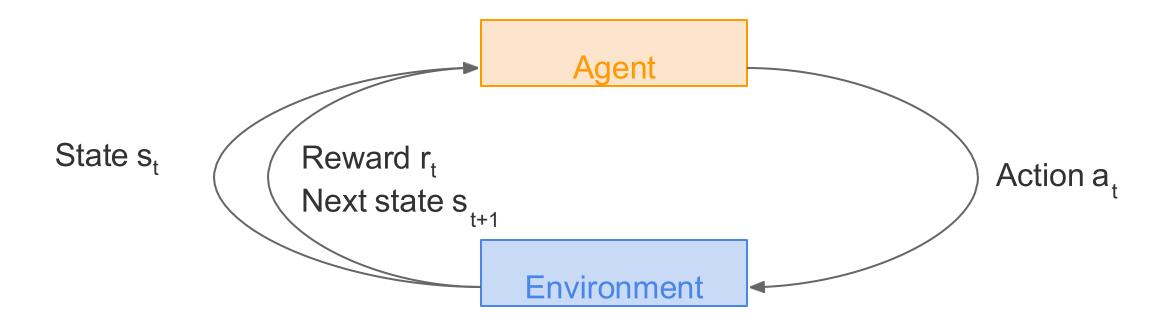
Zhiting Hu Lecture 17, May 27, 2025

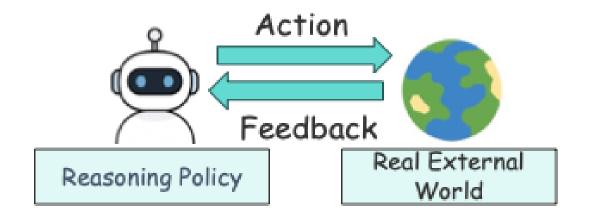
HALICIOĞLU DATA SCIENCE INSTITUTE

Outline

• World Model

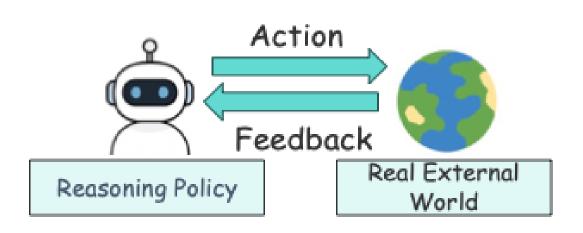
- Paper presentation:
 - Sijin Lyu, Tianhao Zhou: "Improving noisy student training for low-resource languages in End-to-End ASR using CycleGAN and inter-domain losses"





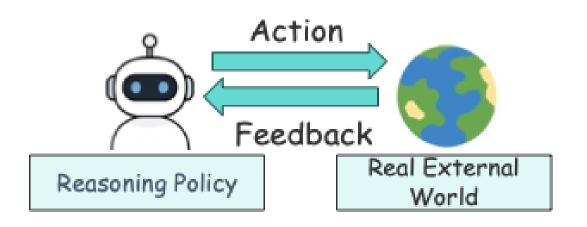
- Deployed in the real world
- Expensive, slow to get feedback

Human data collection farm



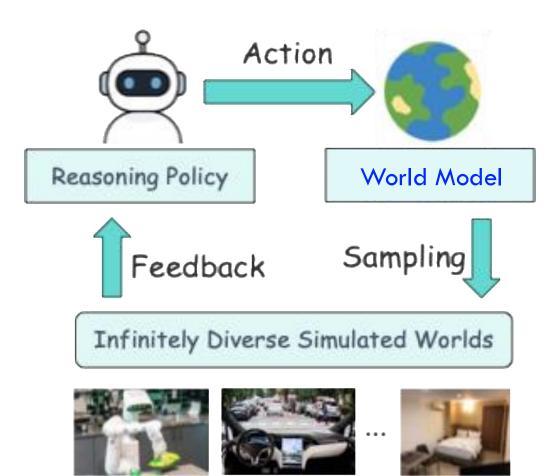
- Deployed in the real world
- Expensive, slow to get feedback



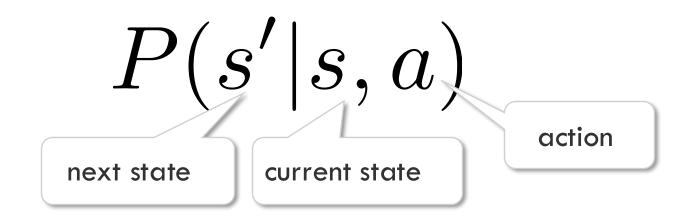


- Deployed in the real world
- Expensive, slow to get feedback

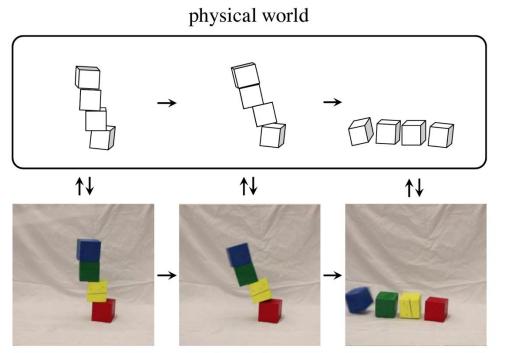
- Deployed in infinitely diverse simulated worlds
- Cheap, fast to get feedback



- State transition probabilities
- Next "world" prediction



- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - $\circ~$ Primarily in robotics and embodied Al



(i) Computer vision: model-based physical scene understanding

Wu et al. (2017)

visual data

- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied AI

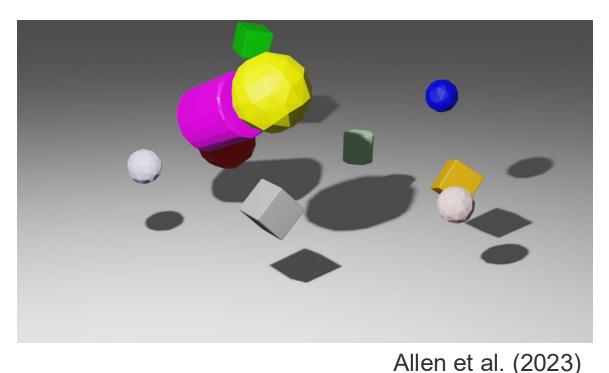
Todorov et al. (2012)

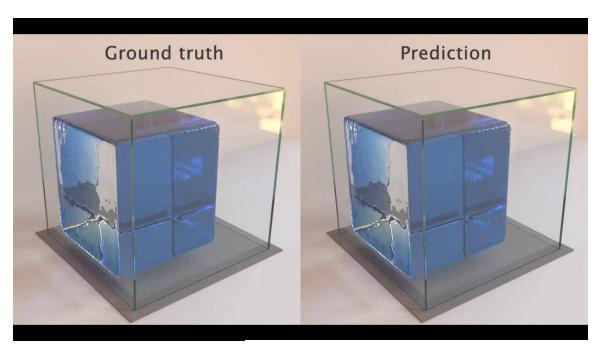
Kolve et al. (2017)

(ii) Physics engines / embodied simulators

- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - $\circ~$ Primarily in robotics and embodied Al

(iii) Learned neural physics engines





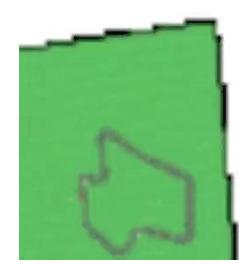
Sanchez-Gonzalez et al. (2020)

- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied AI

(iv) Video prediction models

Ground-truth

Synthesis



Ha & Schmidhuber (2018)

- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied AI

(iv) Video prediction models



GAIA-1

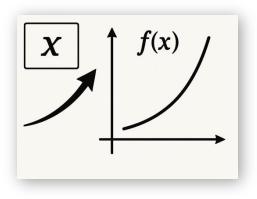
- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied AI

(iv) Video prediction models

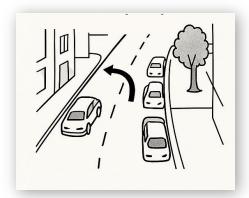
Simulating long sequence of human activities.

Step 1:

- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied AI
- The scope of simulation defines the capability of reasoning
 - "More simulation, more intelligence"



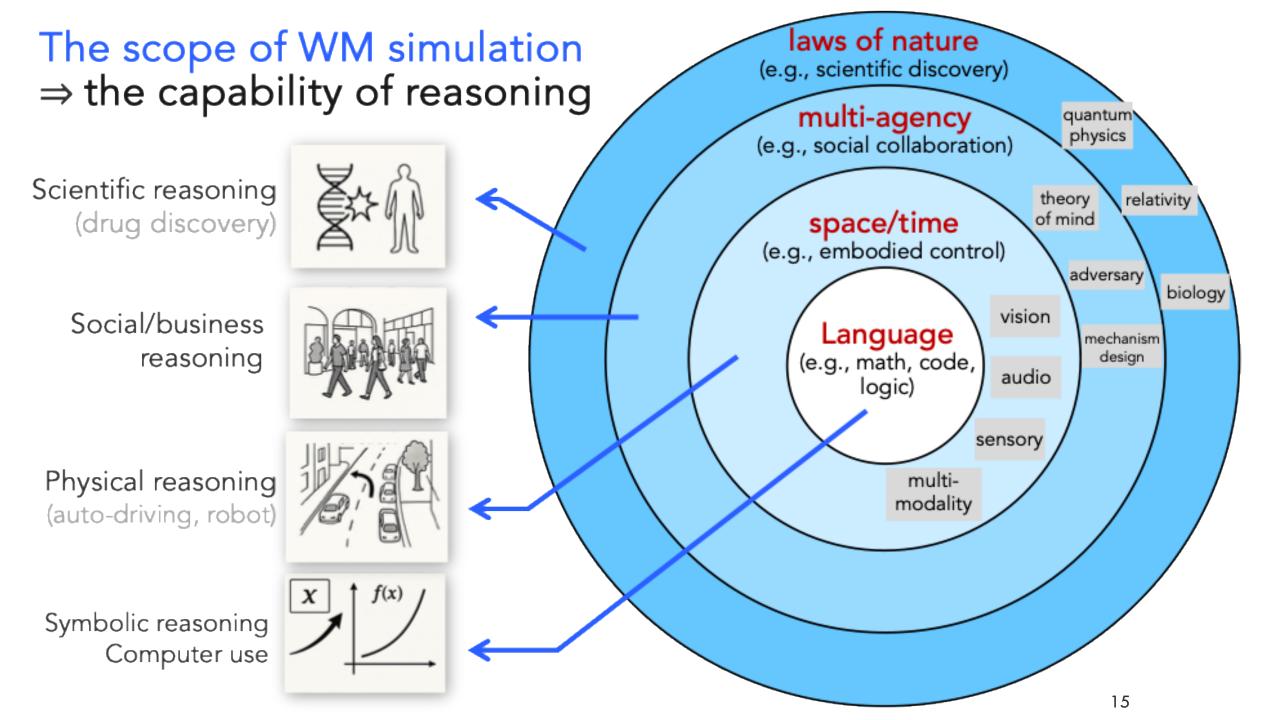
Would the value of a function increase if I changed this variable?



What would happen on the street if I turned the vehicle left

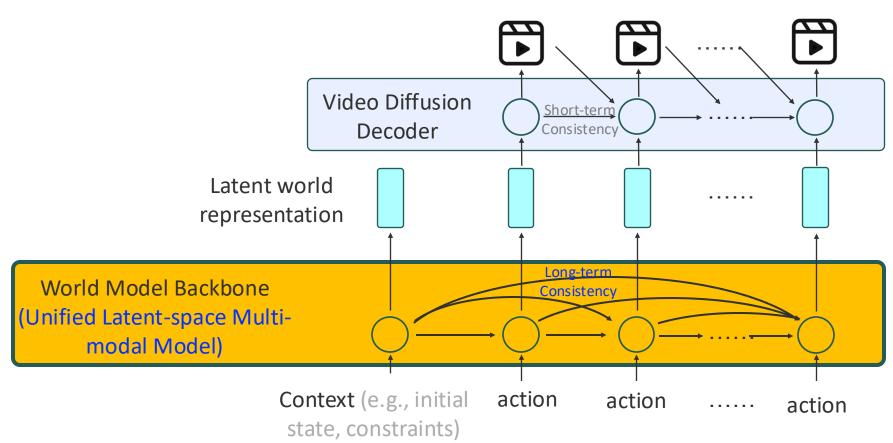
How might a business grow if a specific policy were applied

What biological effects would arise from a specific genetic mutation

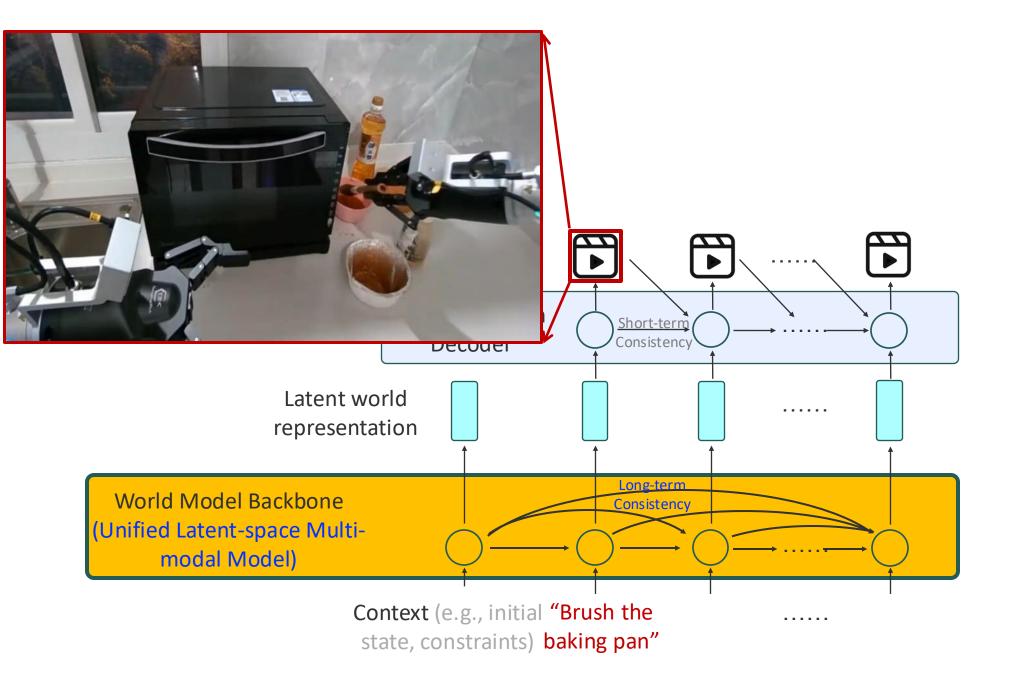


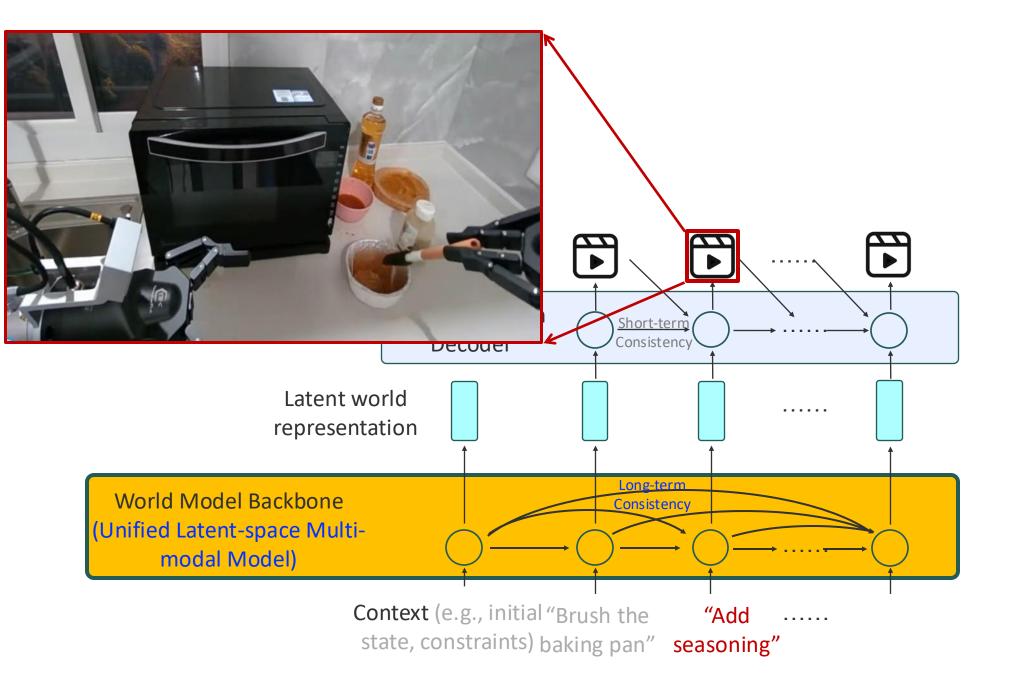
PAN World Model

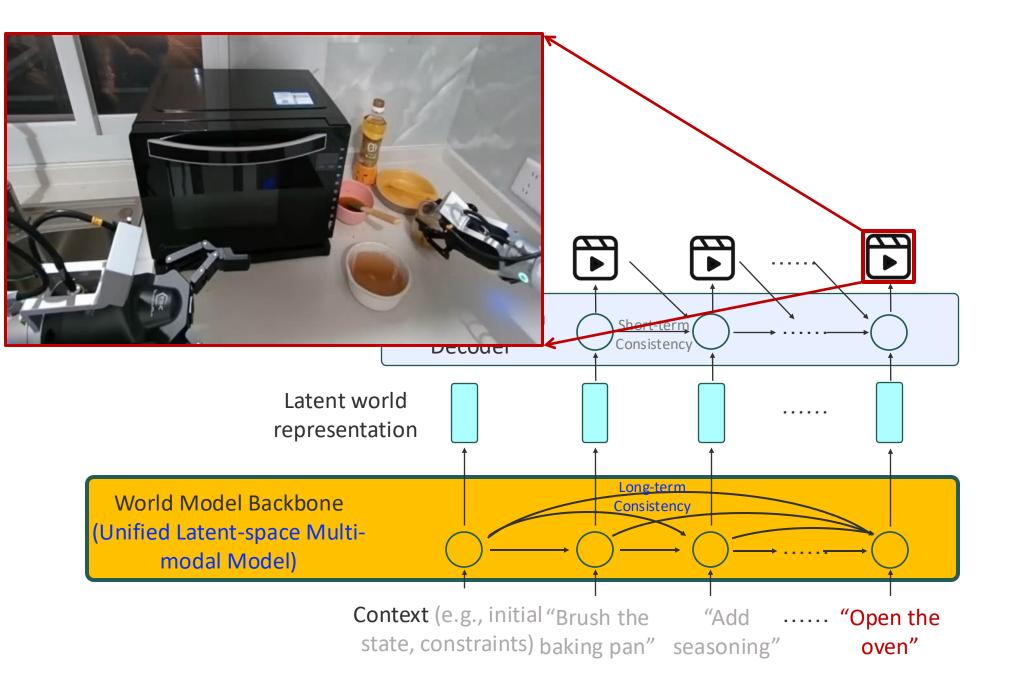
(Physical, Agentic, Nested)



Video representation of world states



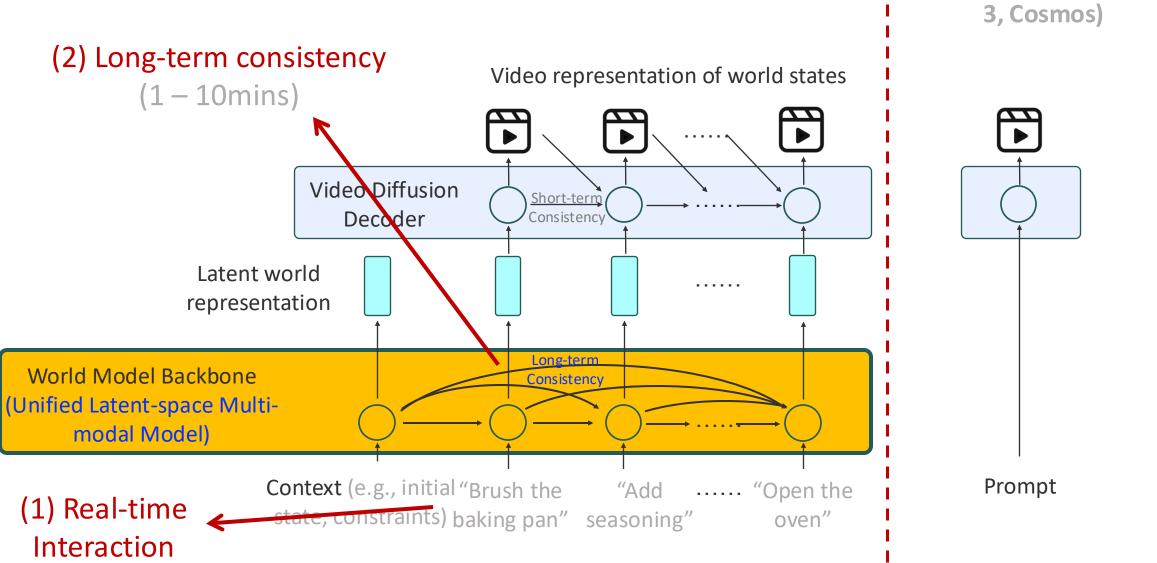




Video generation V.S **PAN World Model** models (e.g., Sora, Veo-3, Cosmos) Video representation of world states Video Diffusion Short-term Decoder Consistency Latent world representation Long-term World Model Backbone Consistency (Unified Latent-space Multimodal Model) Context (e.g., initial "Brush the "Add "Open the Prompt state, constraints) baking pan "seasoning" oven"

Video generation V.S **PAN World Model** models (e.g., Sora, Veo-3, Cosmos) Video representation of world states Video Diffusion Short-term Decoder Consistency Latent world representation Long-term World Model Backbone Consistency (Unified Latent-space Multimodal Model) Context (e.g., initial "Brush the "Add "Open the Prompt (1) Real-time state, constraints) baking pan "seasoning" oven" Interaction

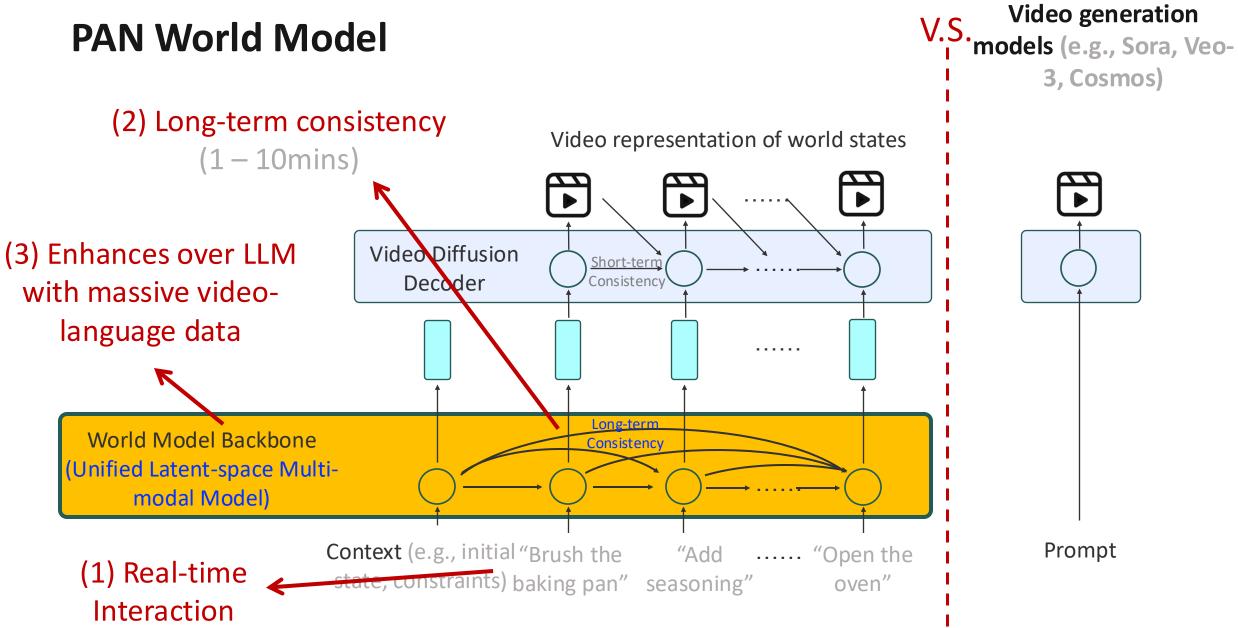
PAN World Model



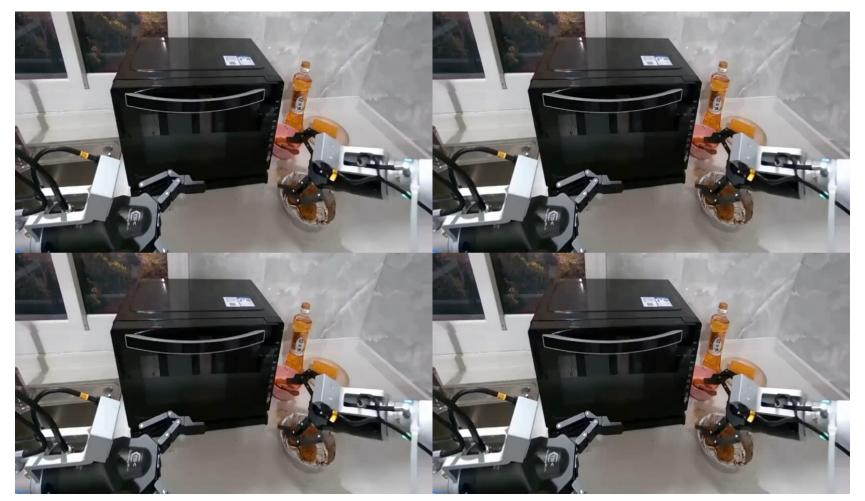
Video generation

models (e.g., Sora, Veo-

V.S



Robot: Complex manipulation Locomotion



Robot: Complex manipulation Locomotion

Input actions:

> ...

- > Wave arms and jump
- > Dance dance dance!
- > Grasp a rose behind and show to the audience

> Make a heart shape with hands

Driving: Dangerous situations

Complex environments in various styles

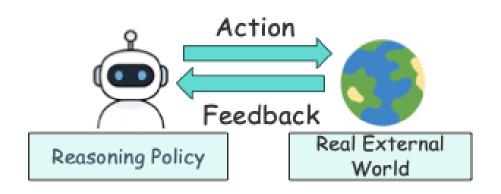
Complex environments in various styles

Complex environments in various styles

Summary so far

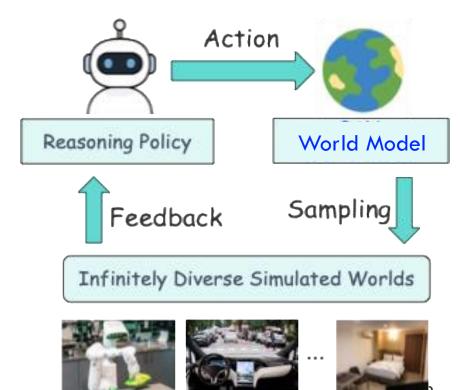
Traditional Reinforcement Learning

- Deployed in the real world
- Expensive, slow to get feedback

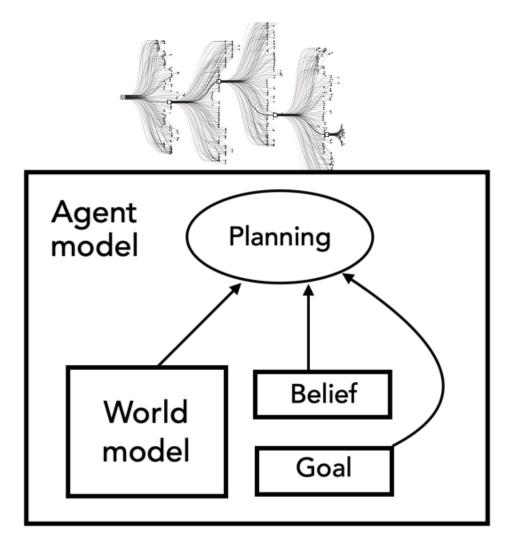


"Dream"-time learning

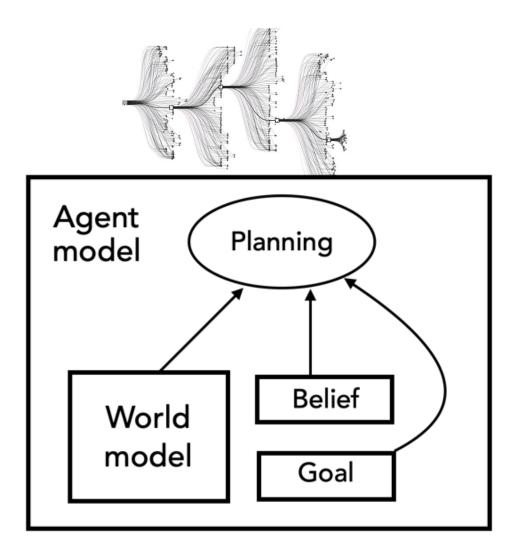
- Deployed in infinitely diverse simulated worlds
- Cheap, fast to get feedback

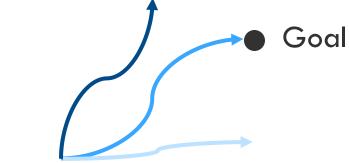


World Model for Inference-Time Planning



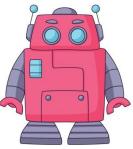
World Model for Inference-Time Planning





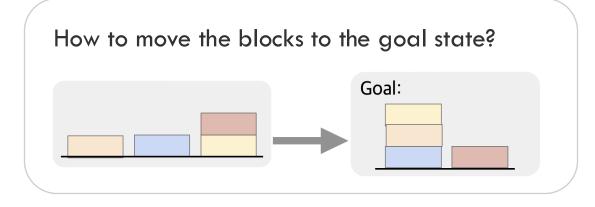
Current state

- Simulate plans with world model
- Choose the best plan

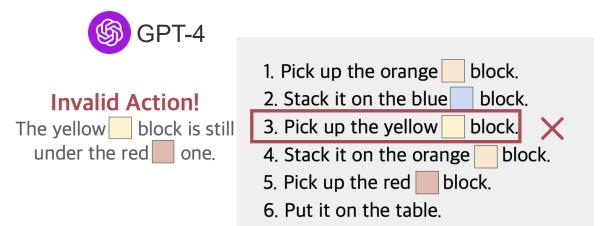


P(s'|s,a)

World Model for Inference-Time Planning

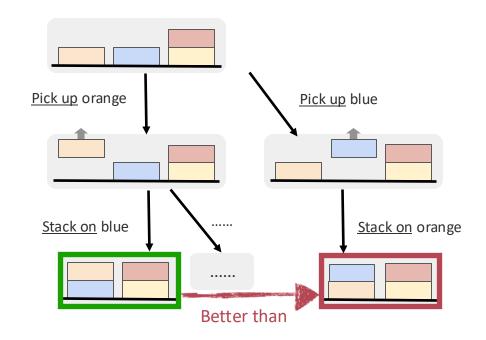


LLMs: Autoregressive plan generation



Human: strategic planning

- Internal world model to predict states
- Simulation of alternative plans
- Assess outcomes to refine/pick the best



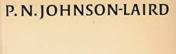
P(s'|s,a)

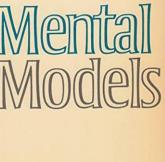
Simulates possibilities recursively; complexity emerges

Simulates possibilities recursively; complexity emerges

Example 1: Human reasoning

• Humans "reason by thinking about what's possible"

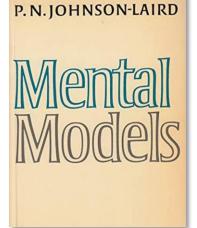




Simulates possibilities recursively; complexity emerges

Example 1: Human reasoning

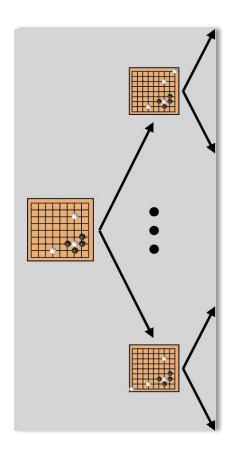
• Humans "reason by thinking about what's possible"



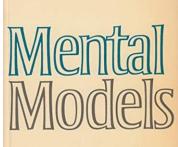
Simulates possibilities recursively; complexity emerges

Example 1: Human reasoning

• Humans "reason by thinking about what's possible"



Simulate alternative hypothetical worlds with mental models

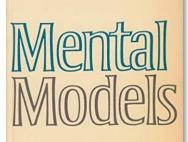


P.N.JOHNSON-LAIRD

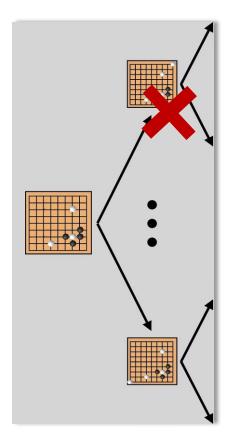
Simulates possibilities recursively; complexity emerges

Example 1: Human reasoning

• Humans "reason by thinking about what's possible"



P.N.JOHNSON-LAIRD

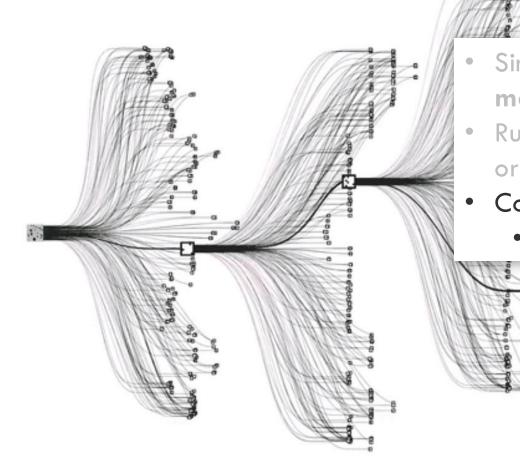


- Simulate alternative hypothetical worlds with **mental models**
- Rule out possibilities that do not fit context, knowledge, or goals

Simulates possibilities recursively; complexity emerges

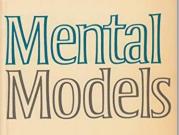
Example 1: Human reasoning

Humans "reason by thinking about what's possible"



- Simulate alternative hypothetical worlds with mental models
- Rule out possibilities that do not fit context, knowledge, or goals
- Complex reasoning behaviors emerge
 - deduction, induction, abduction, ...

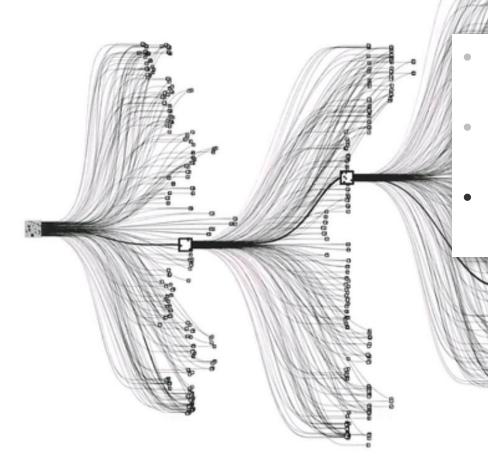
P.N.JOHNSON-LAIRD



Simulates possibilities recursively; complexity emerges

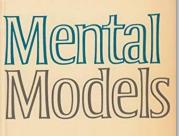
Example 1: Human reasoning

• Humans "reason by thinking about what's possible"



- Simulate alternative hypothetical worlds with mental models
- Rule out possibilities that do not fit context, knowledge, or goals
- Complex reasoning behaviors emerge
 - deduction, induction, abduction, ...

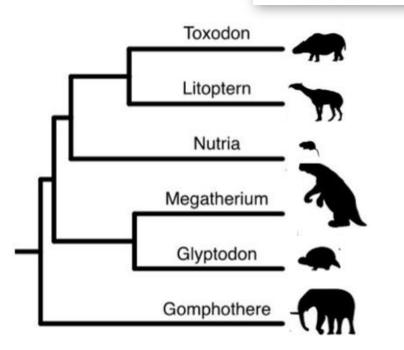
Determining whether a conclusion holds in all plausible worlds



Simulates possibilities recursively; complexity emerges

Example 2: Natural evolution

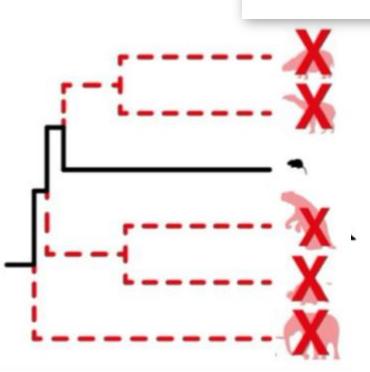
 Generate mutations with molecular genetic mechanisms (genotype -> phenotype)



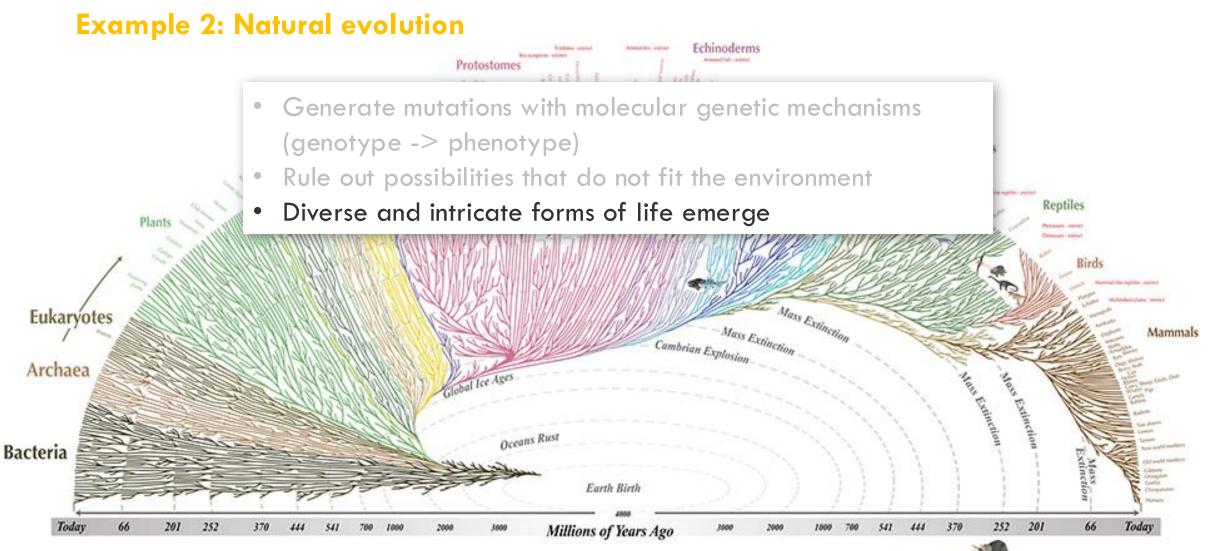
Simulates possibilities recursively; complexity emerges

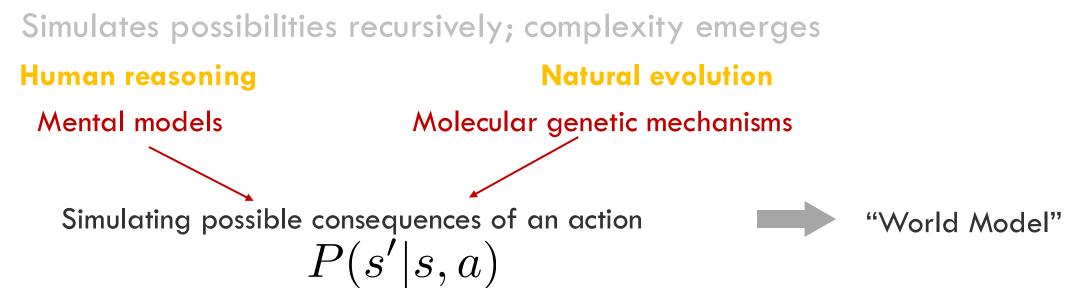
Example 2: Natural evolution

- Generate mutations with molecular genetic mechanisms (genotype -> phenotype)
- Rule out possibilities that do not fit the environment



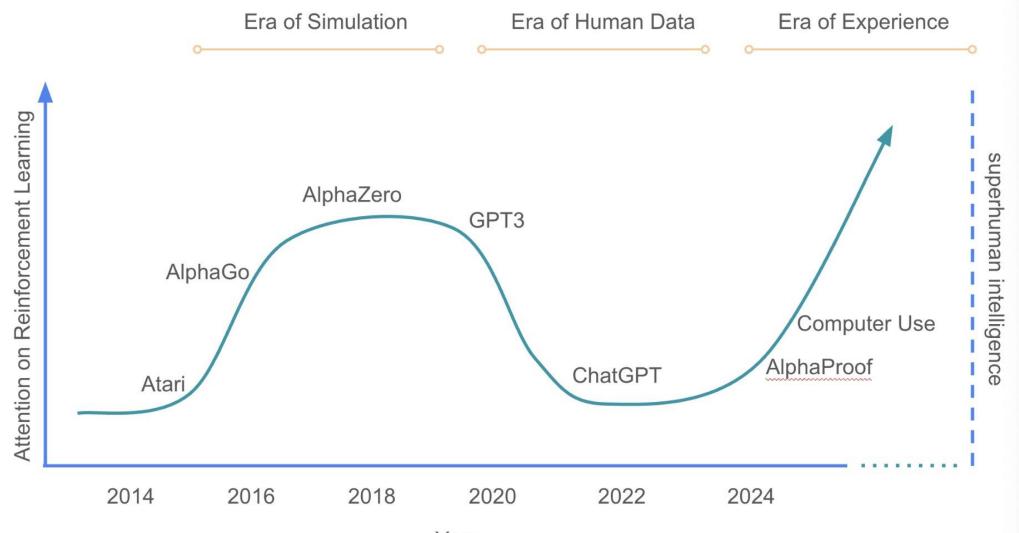
Simulates possibilities recursively; complexity emerges



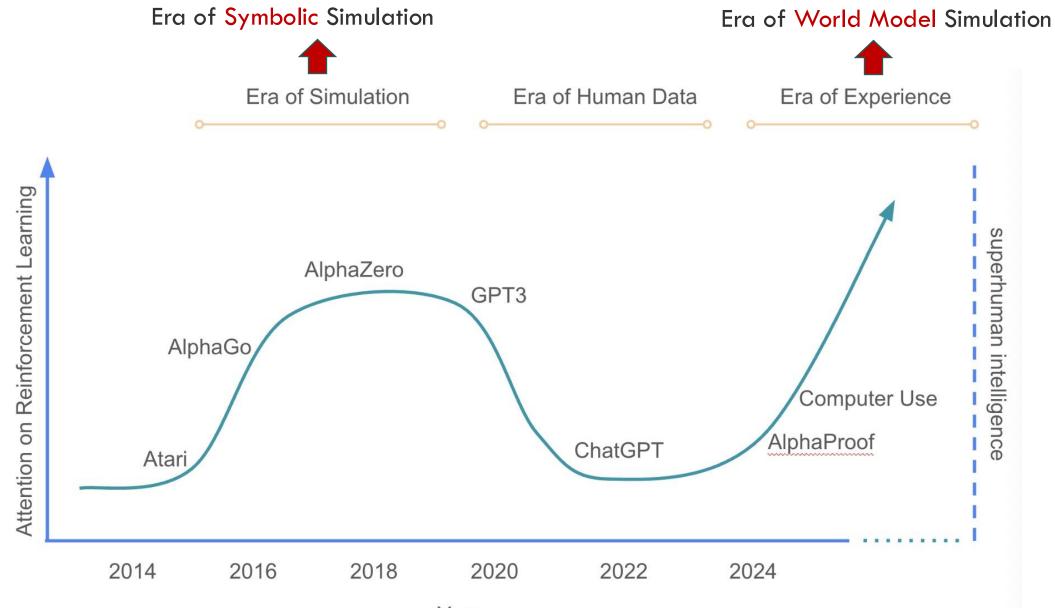


Welcome to the Era of Experience

David Silver, Richard S. Sutton*



Year



Year

Questions?