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Outline

e World Model

e Paper presentation:

o Sijin Lyu, Tianhao Zhou: "Improving noisy student training for low-resource languages in End-to-
End ASR using CycleGAN and inter-domain losses”
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World model
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World model

e Next “world” prediction ~ P(s'|s, a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

(5

physical world 6;

(i) Computer vision: model-based
physical scene understanding

Wu et al. (2017)
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e Next “world” prediction P(s'|s,a) Z_
e Prior research built domain-specific world models reo

o Primarily in robotics and embodied Al
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Kolve et al. (2017) o ~ Szotetal. (2021) o



World model

e Next “world” prediction P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

(iii) Learned neural physics engines

Grounq truth Predicr'gion

—— N =

Allen et al. (2023) Sanchez-Gonzalez et al. (2020)



World model

o Next “world” prediction P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

(iv) Video prediction models
Ground-Tl‘UTh Synfhesis

Ha & Schmidhuber (2018)
h




World model

e Next “world” prediction  P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

(iv) Video prediction models

4X SPEED

Genera ted by GAIA-1 Genera ted by GAIA-1

GAIA-1
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World model

e Next “world” prediction  P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

(iv) Video prediction models

Simulating long sequence of human activities.

Step 1:

[Yang et al., 2023]
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World model

e Next “world” prediction  P(s'|s,a)

e Prior research built domain-specific world models
o Primarily in robotics and embodied Al

e The scope of simulation defines the capability of reasoning
o “More simulation, more intelligence®

x|t fx
>
Would the value of a What would happen on How might a business What biological effects
function increase if | the street if | turned the grow if a specific would arise from a
changed this variable? vehicle left

policy were applied specific genetic mutation



The scope of WM simulation
= the capability of reasoning

Scientific reasoning
(drug discovery)

Social/business
reasoning

multi-agency
(e.g., social collaboration)

space/time
(e.g., embodied control)

Language
(e.g., math, code,
logic)

Physical reasoning
(auto-driving, robot) i

X fix)
Symbolic reasoning /
Computer use /
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PAN World Model: Simulation Results

Robot: Complex manipulation

26



PAN World Model: Simulation Results

Robot: Commptes~manipulation

Input actions:

> Wave arms and jump
> Dance dance dance!

> Grasp a rose behind
and show to the audience

> ...

> Make a heart shape
with hands



PAN World Model: Simulation Results

Driving: Dangerous situations

2016/08/11 19:52:15
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PAN World Model: Simulation Results

Complex environments in various styles
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PAN World Model: Simulation Results

Complex environments in various styles
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PAN World Model: Simulation Results

Complex environments in various styles
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Summary so far
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World Model for Inference-Time Planning

34



P(s'|s, a)

World Model for Inference-Time Planning

® Godl

Current state
* Simulate plans with world model

* Choose the best plan

35



P(s'|s, a)

World Model for Inference-Time Planning

How to move the blocks to the goal state?

Goal:

_>H||

———

LLMs: Autoregressive plan generation

GPT-4

Invalid Action!
The yellow| | block is still
under the redD one.

1. Pick up the orange| |block.
2. Stack it on the blue| | block.

3. Pick up the yellow|  block| »

4. Stack it on the orange| |block.
5. Pick up the red | |block.
6. Put it on the table.

Human: strategic planning

* Internal world model to predict states
* Simulation of alternative plans

* Assess outcomes to refine/pick the best

1
Pick up orange I /\P‘ck up blue -_—-—/'A
— ~ ]

— 4

Stack \ Stack on orange

Better than

(L Ny .




How Nature Works

Simulates possibilities recursively; complexity emerges
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How Nature Works

© Humans “reason by thinking about what’s possible”
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P.N.JOHNSON-LAIRD

Memnial
Models

How Nature Works

© Humans “reason by thinking about what’s possible”

* Simulate alternative hypothetical worlds with mental
models
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P.N.JOHNSON-LAIRD

Memnial
Models

How Nature Works

© Humans “reason by thinking about what’s possible”

* Rule out possibilities that do not fit context, knowledge,
or goals
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How Nature Works

© Humans “reason by ’rhlnklng qbou’r what’s possible”

Complex reasoning behaviors emerge
* deduction, induction, abduction,
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How Nature Works

© Humans “reason by thinking about what’s possible”
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How Nature Works

* Generate mutations with molecular genetic mechanisms
(genotype -> phenotype)

Gomphothere
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How Nature Works

* Rule out possibilities that do not fit the environment
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How Nature Works

Simulates possibilities recursively; conlplexity emerdes

S

Example 2: Natural evolution
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* Generate mutations with molecular genetic mechanisms
(genotype -> phenotype)
4 * Rule out possibilities that do not fit the environment

-« * Diverse and intricate forms of life emerge
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How Nature Works

Mental models Molecular genetic mechanisms

S

Simulating possible ¢

sequences ofan action “World Model”

47



Welcome to the Era of Experience

David Silver, Richard S. Sutton*

ra of Simulation
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Attention on Reinforcement Learning
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Attention on Reinforcement Learning

>

Era of Symbolic Simulation

*

Era of Simulation

AlphaZero
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Era of World Model Simulation
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Questions?
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