DSC291: Machine Learning with Few Labels

World Model

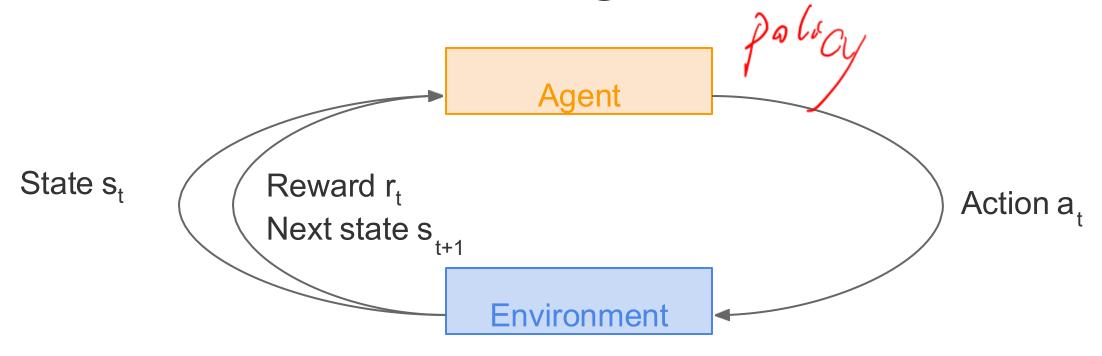
Zhiting Hu Lecture 17, May 27, 2025

Outline

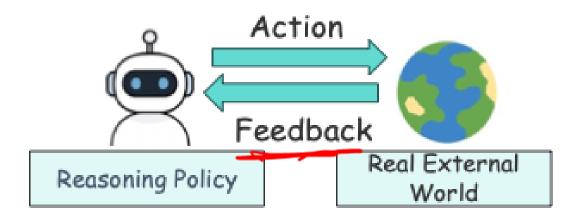
World Model

- Paper presentation:
 - O Sijin Lyu, Tianhao Zhou: "Improving noisy student training for low-resource languages in End-to-End ASR using CycleGAN and inter-domain losses"

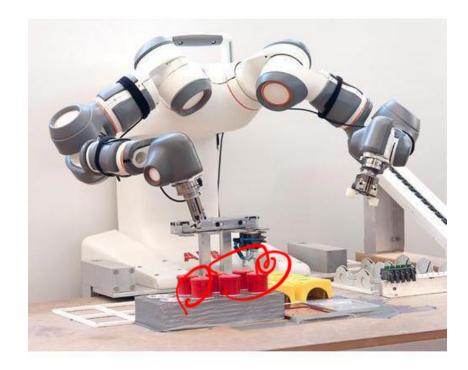
Reinforcement Learning



Reinforcement Learning

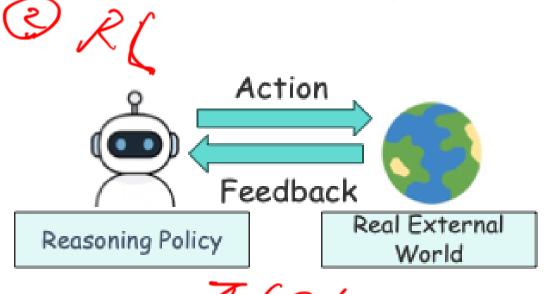


- Deployed in the real world
- Expensive, slow to get feedback



Reinforcement Learning

Human data collection farm

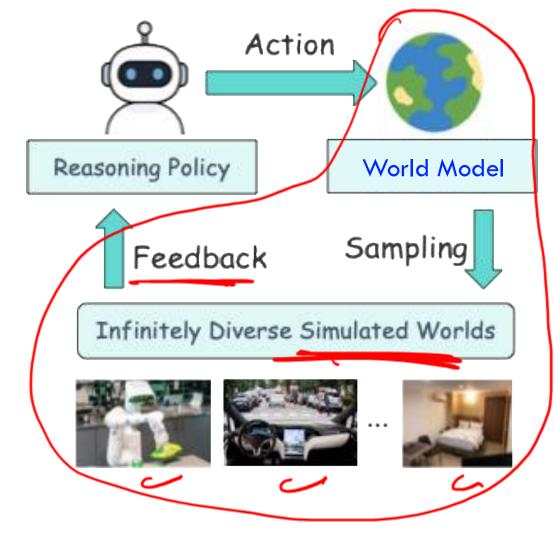


- Deployed in the real world
- Expensive, slow to get feedback

Reinforcement Learning

- Action
 Feedback
 Reasoning Policy
 Real External World
 - Deployed in the real world
 - Expensive, slow to get feedback

- Deployed in infinitely diverse simulated worlds
- Cheap, fast to get feedback



State transition probabilities

Next "world" prediction

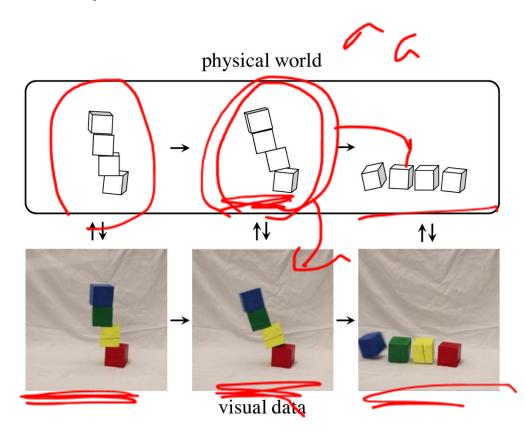
nexe-bond pred: (44) S, a)

next state

current state

action

- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied Al



(i) Computer vision: model-based physical scene understanding

Wu et al. (2017)

Jim-to

- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied Al

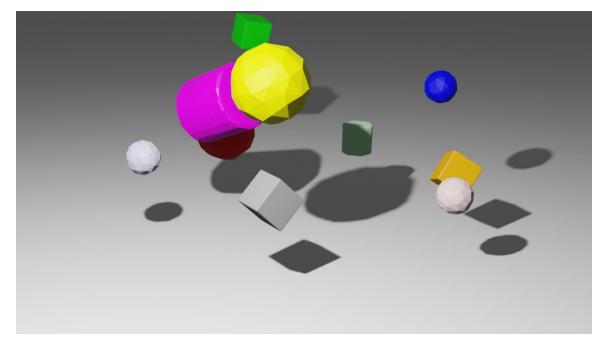
(ii) Physics engines / embodied simulators

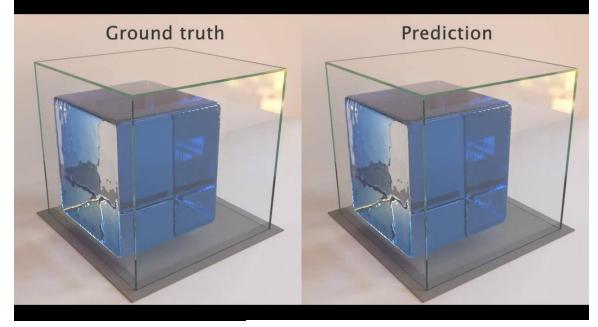
Kolve et al. (2017)

Szot et al. (2021)

- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied Al

(iii) Learned neural physics engines





Allen et al. (2023)

Sanchez-Gonzalez et al. (2020)

- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied Al

(iv) Video prediction models

Ground-truth

Synthesis

Ha & Schmidhuber (2018)

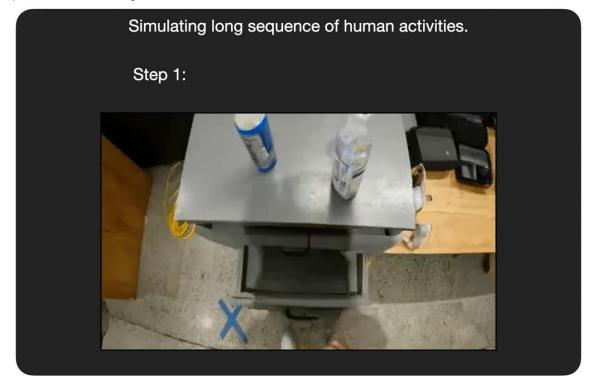
- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied Al

(iv) Video prediction models

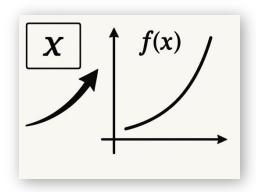
GAIA-1

- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied Al

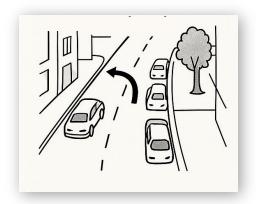
(iv) Video prediction models



- Next "world" prediction P(s'|s,a)
- Prior research built domain-specific world models
 - Primarily in robotics and embodied Al
- The scope of simulation defines the capability of reasoning
 - "More simulation, more intelligence"

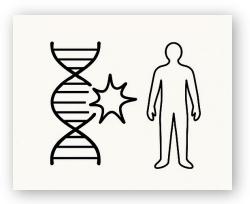


Would the value of a function increase if I changed this variable?

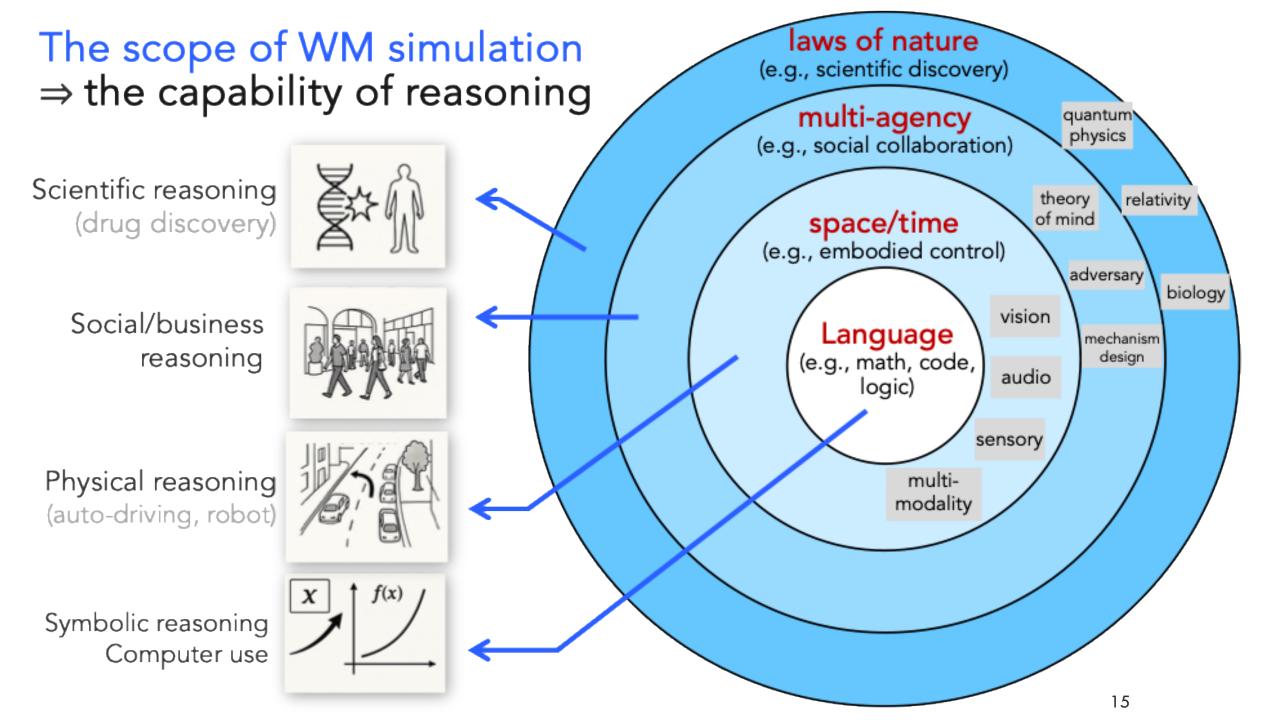


What would happen on the street if I turned the vehicle left

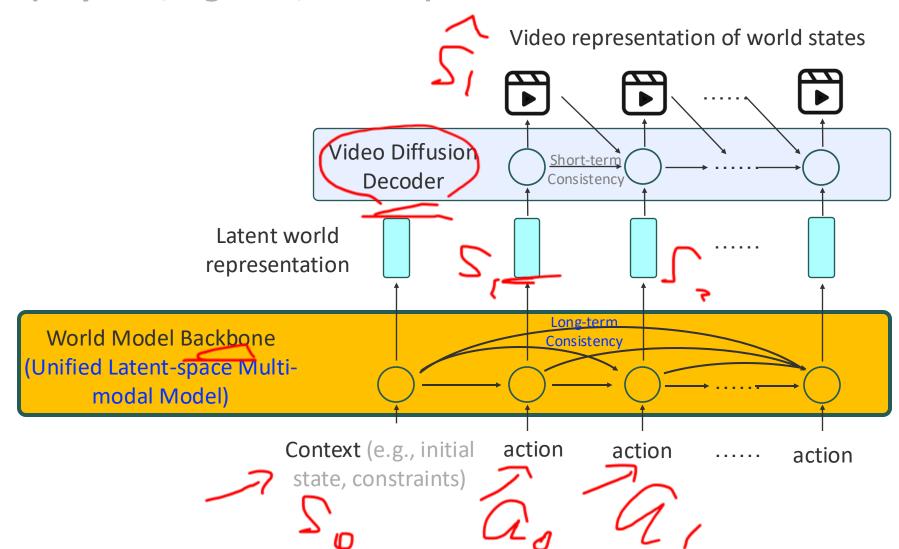
How might a business grow if a specific policy were applied

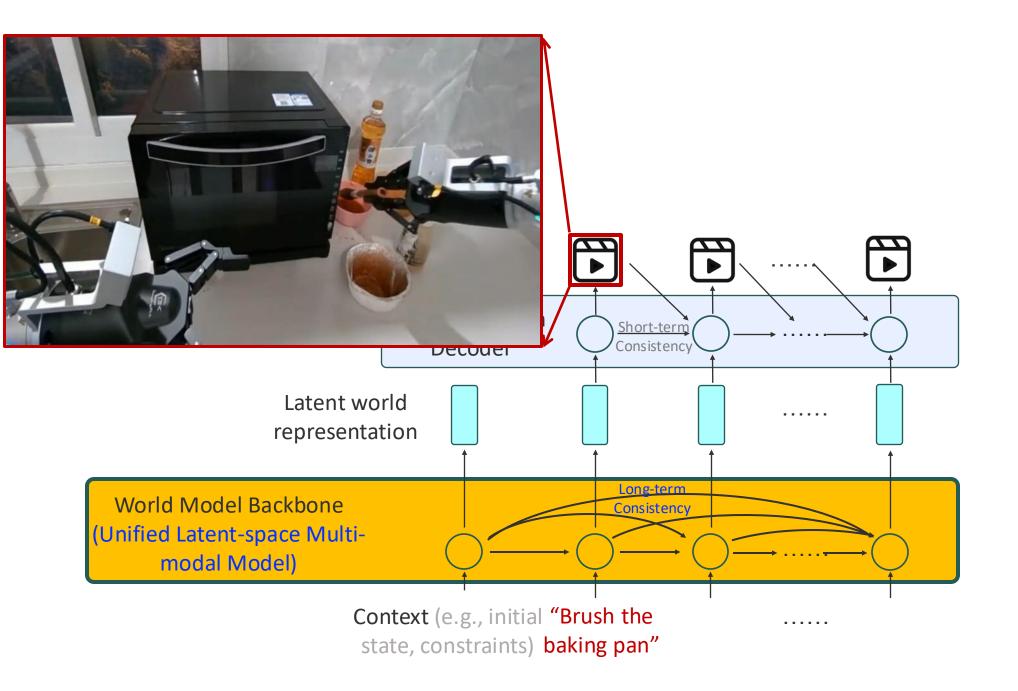


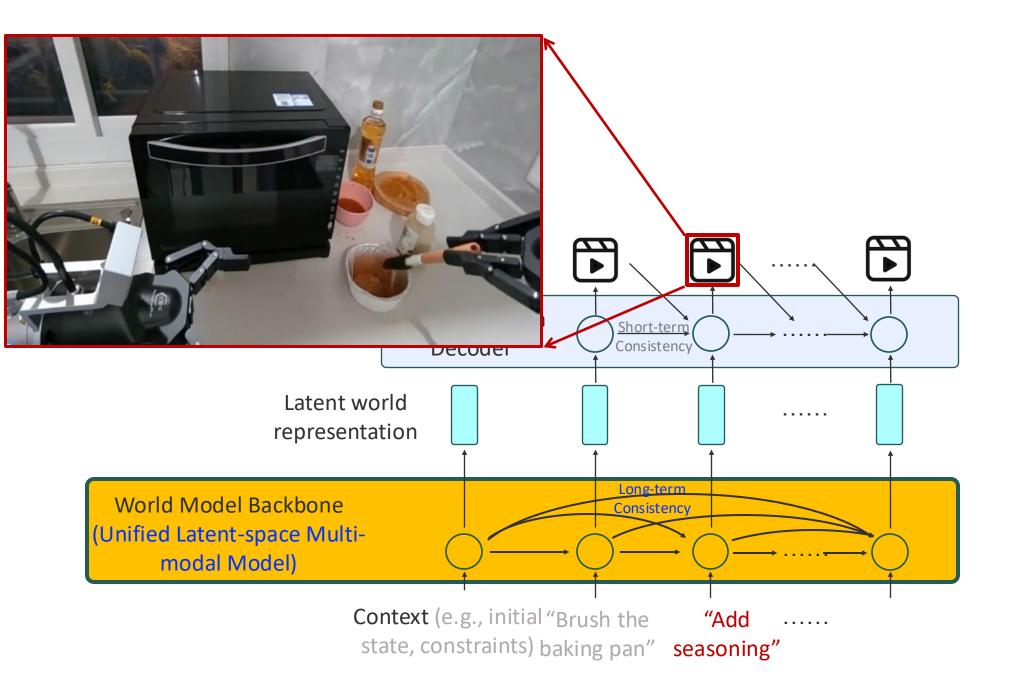
What biological effects would arise from a specific genetic mutation

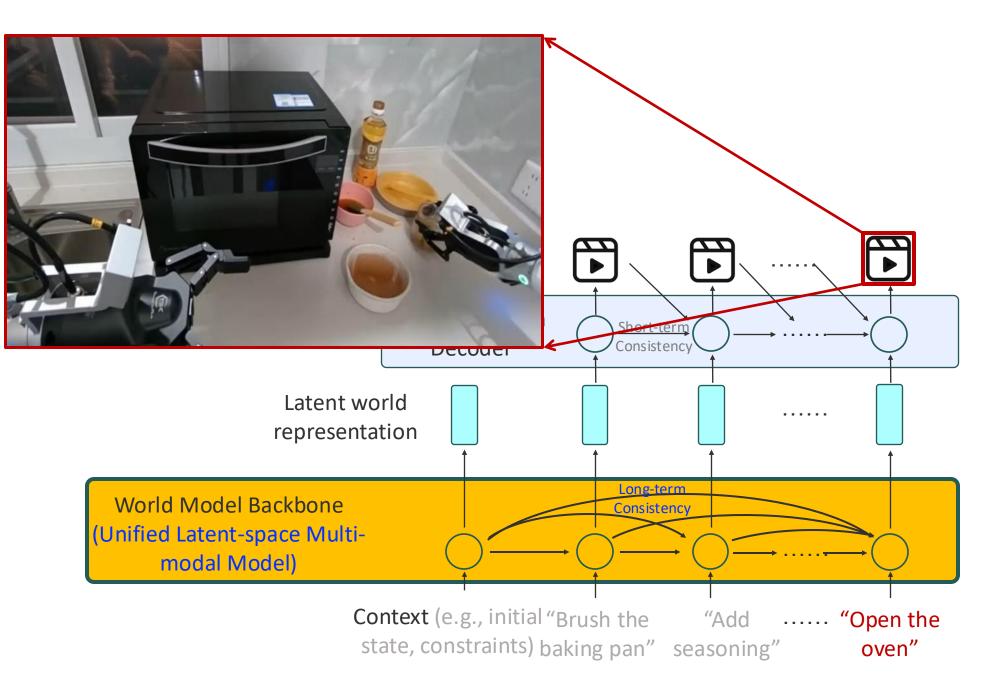


(Physical, Agentic, Nested)

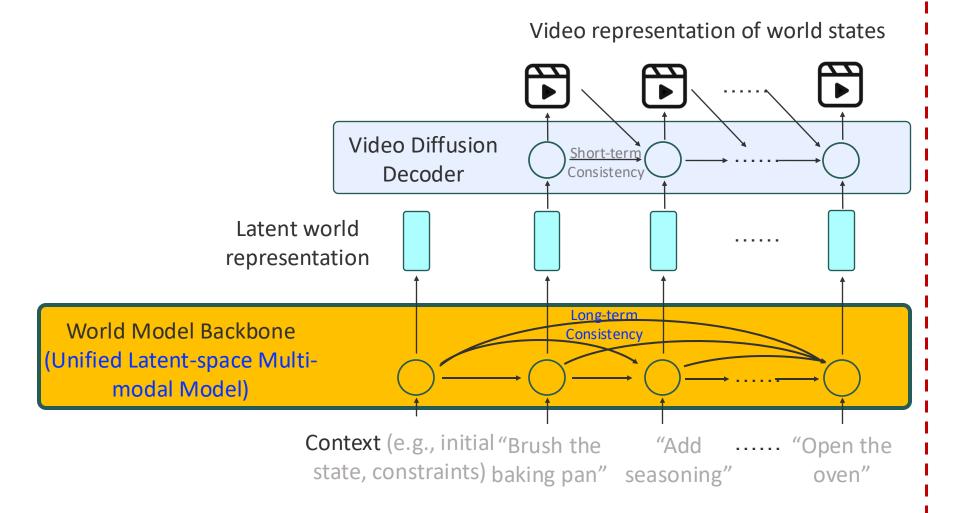


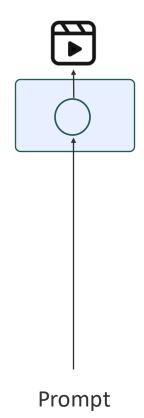






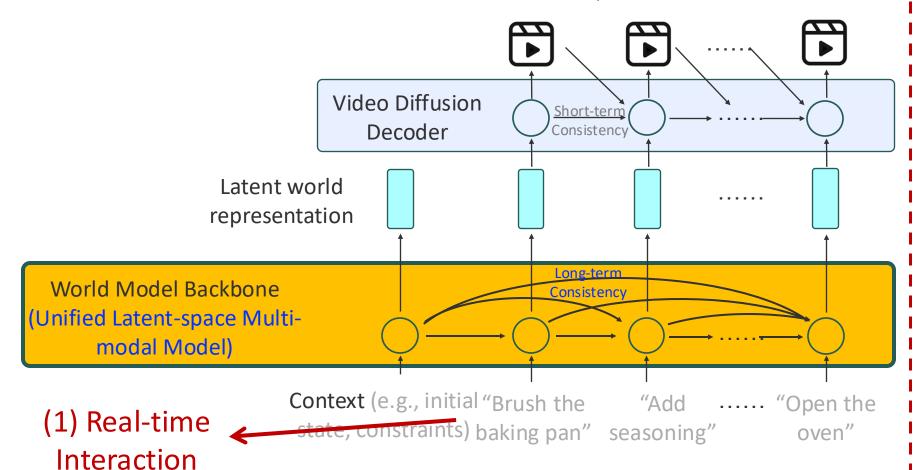
V.S. Video generation models (e.g., Sora, Veo-3, Cosmos)





V.S. Video generation/ models (e.g., Sora, Ver 3, Cosmos)

Video representation of world states

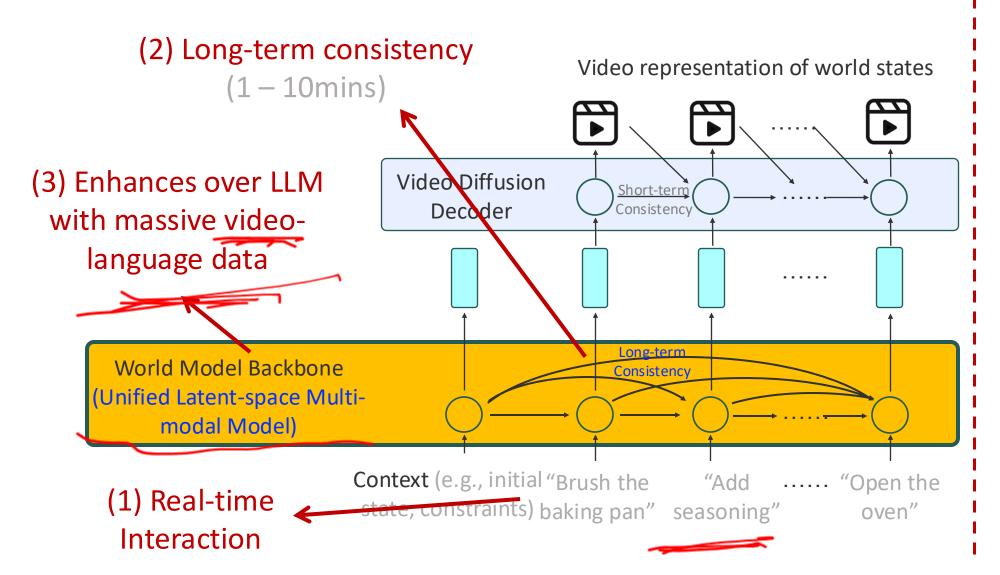


Prompt

Aux - regresize

Video generation models (e.g., Sora, Veo-3, Cosmos) Prompt

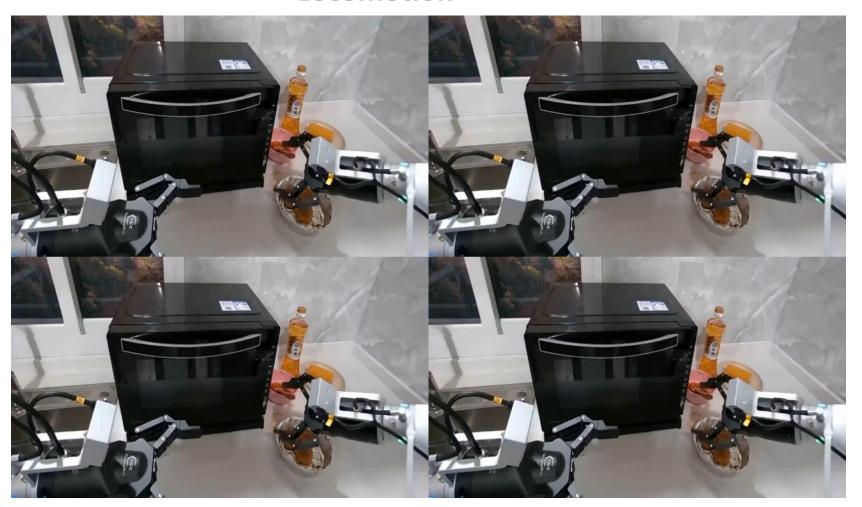
(2) Long-term consistency Video representation of world states - 10mins) Video Diffusion Short-term Decoder Consistency Latent world representation Long-term World Model Backbone Consistency (Unified Latent-space Multimodal Model) Context (e.g., initial "Brush the "Add "Open the (1) Real-time state, constraints) baking pan" seasoning" Interaction



Video generation models (e.g., Sora, Veo-3, Cosmos) Prompt

Robot: Complex manipulation

Locomotion



Input actions:

> Wave arms and jump

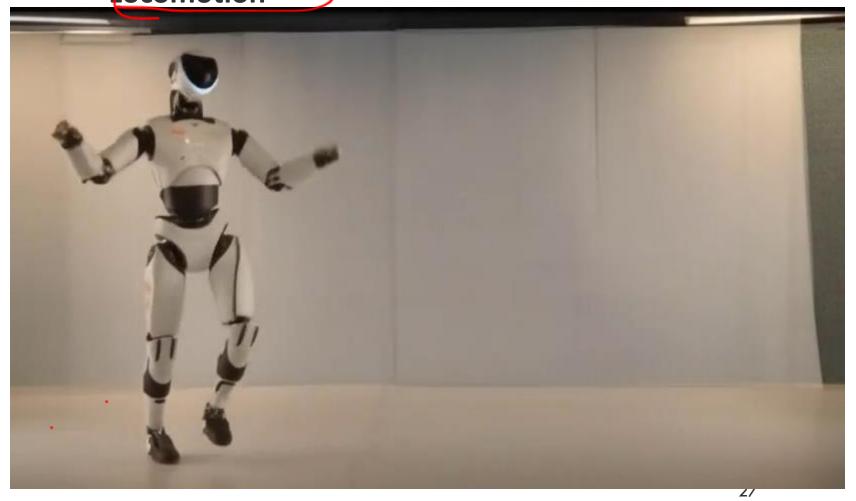
> Dance dance dance!

> Grasp a rose behind and show to the audience

> ...

> Make a heart shape with hands

Robot: Complex manipulation Locomotion

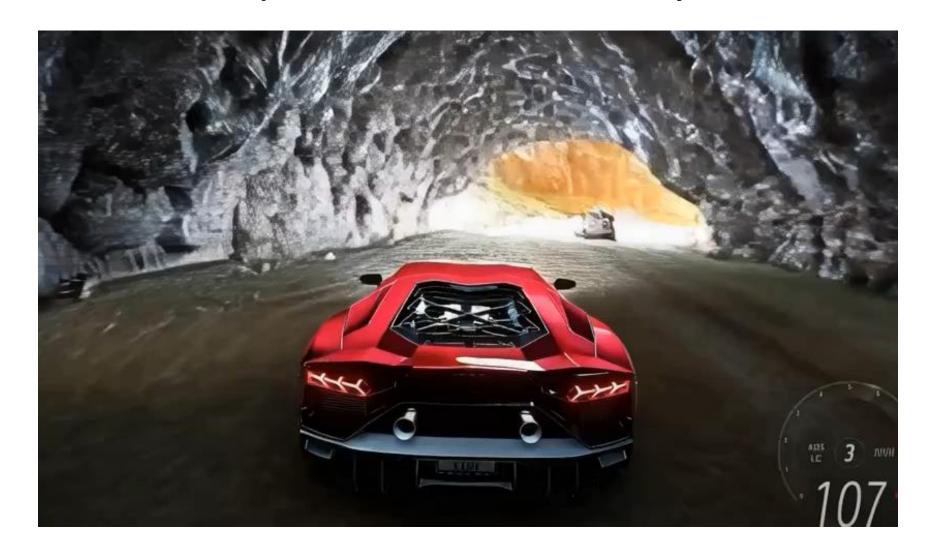


Driving: Dangerous situations

Complex environments in various styles

Complex environments in various styles

Complex environments in various styles

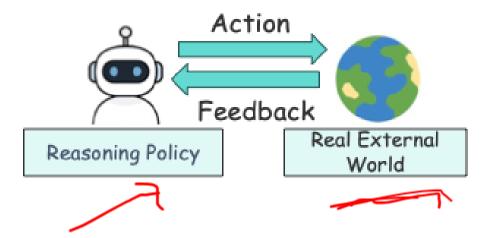


Summary so far

wake

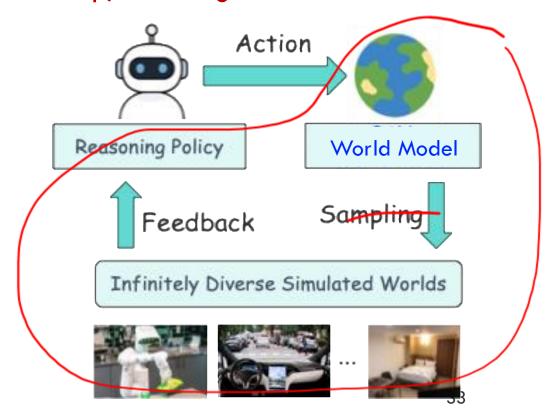
Traditional Reinforcement Learning

- Deployed in the real world
- Expensive, slow to get feedback

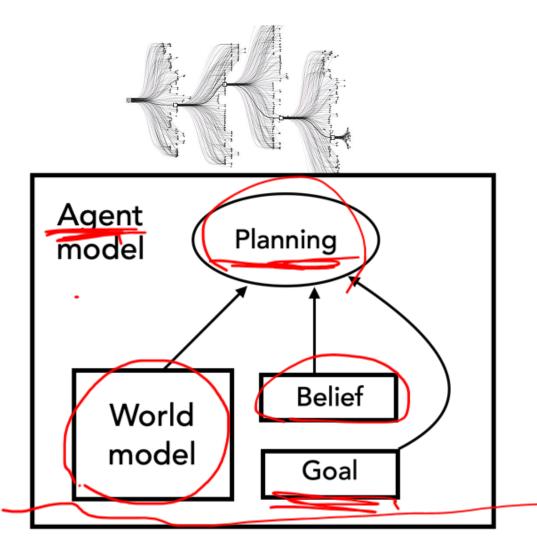


"Dream"-time learning

- Deployed in infinitely diverse simulated worlds
- Cheap, fast to get feedback

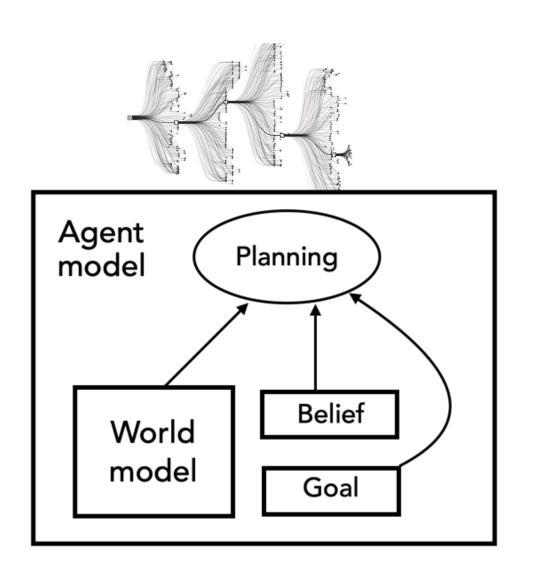


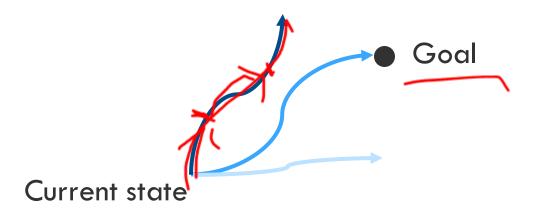
World Model for Inference-Time Planning



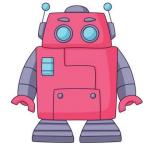
P(s'|s,a)

World Model for Inference-Time Planning

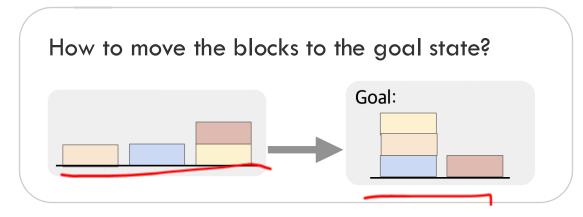




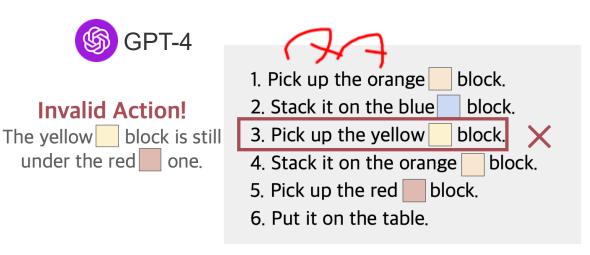
- Simulate plans with world model
 - Choose the best plan



World Model for Inference-Time Planning

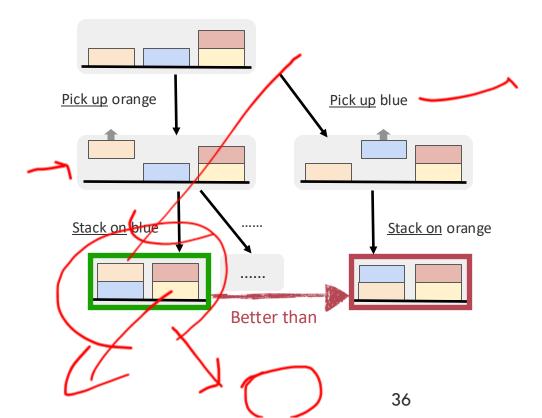


LLMs: Autoregressive plan generation



Human: strategic planning

- Internal world model to predict states
- Simulation of alternative plans
- Assess outcomes to refine/pick the best

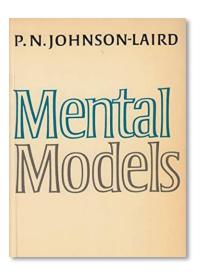


Simulates possibilities recursively; complexity emerges

Simulates possibilities recursively; complexity emerges

Example 1: Human reasoning

Humans "reason by thinking about what's possible"

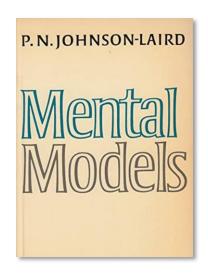


Simulates possibilities recursively; complexity emerges

Example 1: Human reasoning

Humans "reason by thinking about what's possible"

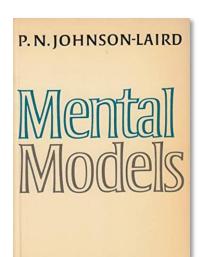


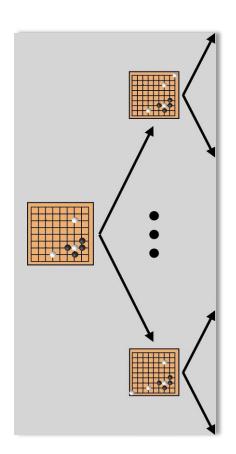


Simulates possibilities recursively; complexity emerges

Example 1: Human reasoning

Humans "reason by thinking about what's possible"



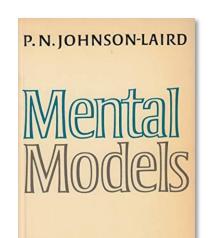


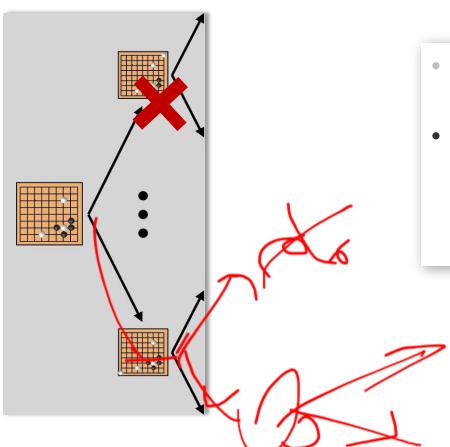
Simulate alternative hypothetical worlds with mental models

Simulates possibilities recursively; complexity emerges

Example 1: Human reasoning

Humans "reason by thinking about what's possible"



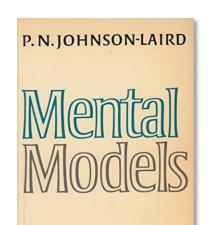


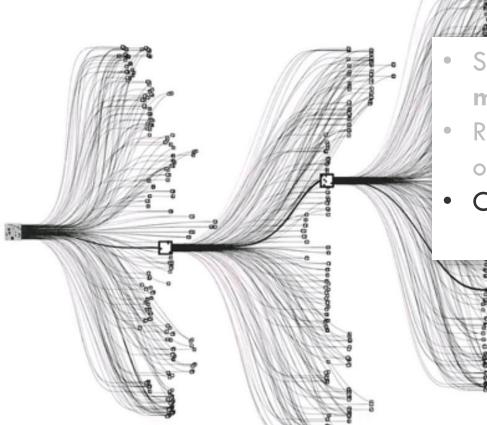
- Simulate alternative hypothetical worlds with **mental models**
- Rule out possibilities that do not fit context, knowledge, or goals

Simulates possibilities recursively; complexity emerges

Example 1: Human reasoning

Humans "reason by thinking about what's possible"



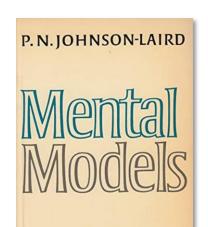


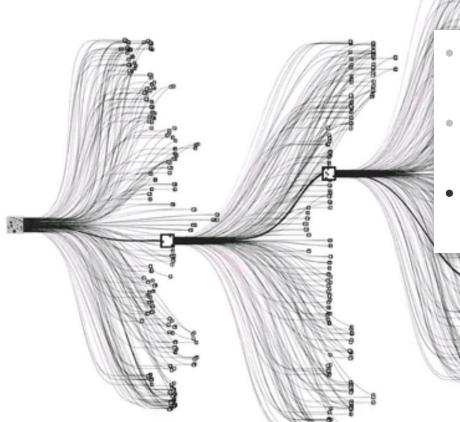
- Simulate alternative hypothetical worlds with mental models
- Rule out possibilities that do not fit context, knowledge, or goals
- Complex reasoning behaviors emerge
 - deduction, induction, abduction, ...

Simulates possibilities recursively; complexity emerges

Example 1: Human reasoning

Humans "reason by thinking about what's possible"





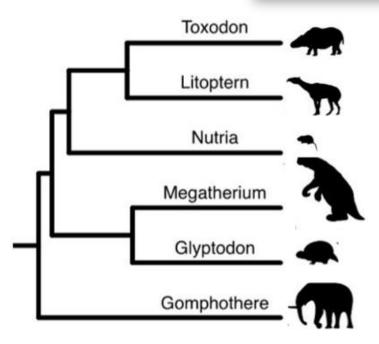
- Simulate alternative hypothetical worlds with mental models
- Rule out possibilities that do not fit context, knowledge, or goals
- Complex reasoning behaviors emerge
 - deduction, induction, abduction, ...

Determining whether a conclusion holds in all plausible worlds

Simulates possibilities recursively; complexity emerges

Example 2: Natural evolution

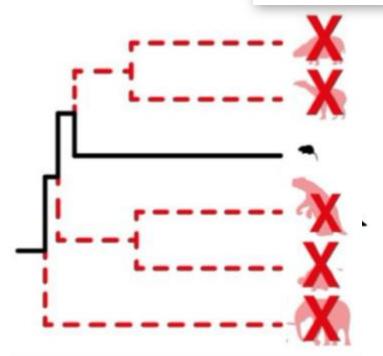
 Generate mutations with molecular genetic mechanisms (genotype -> phenotype)



Simulates possibilities recursively; complexity emerges

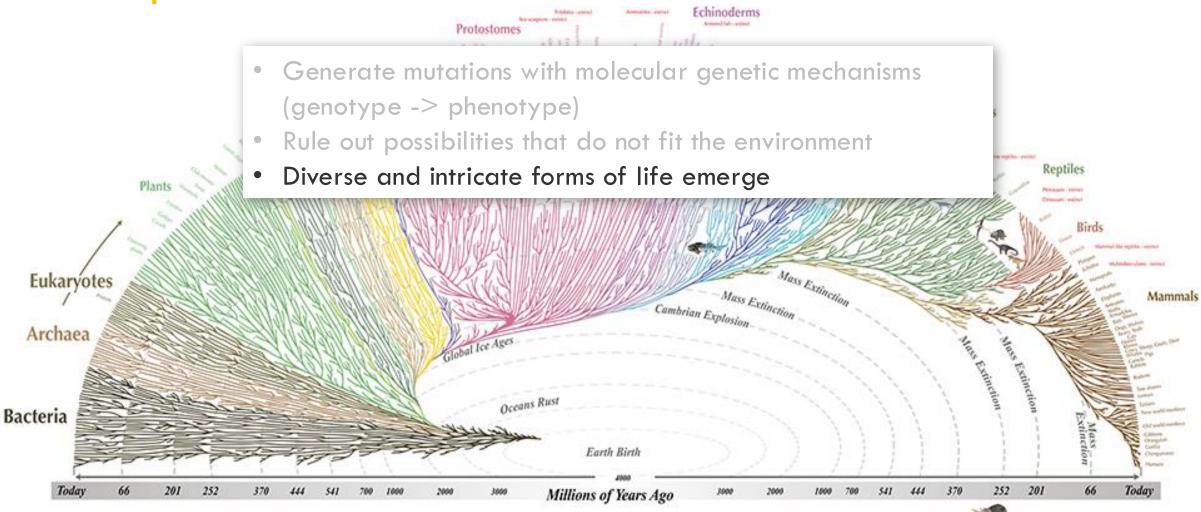
Example 2: Natural evolution

- Generate mutations with molecular genetic mechanisms (genotype -> phenotype)
- Rule out possibilities that do not fit the environment

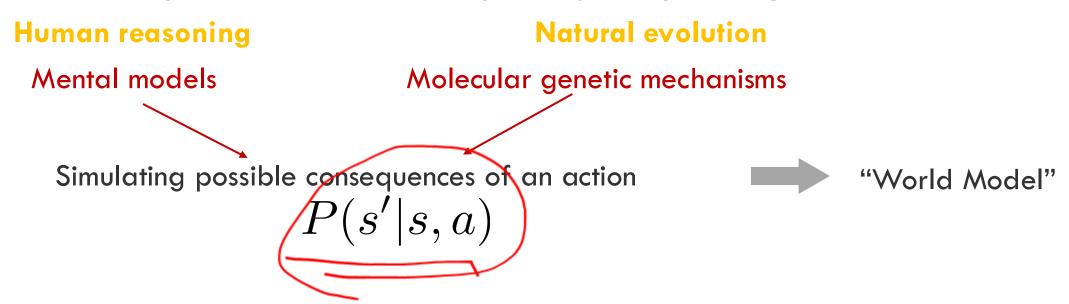


Simulates possibilities recursively; complexity emerges

Example 2: Natural evolution

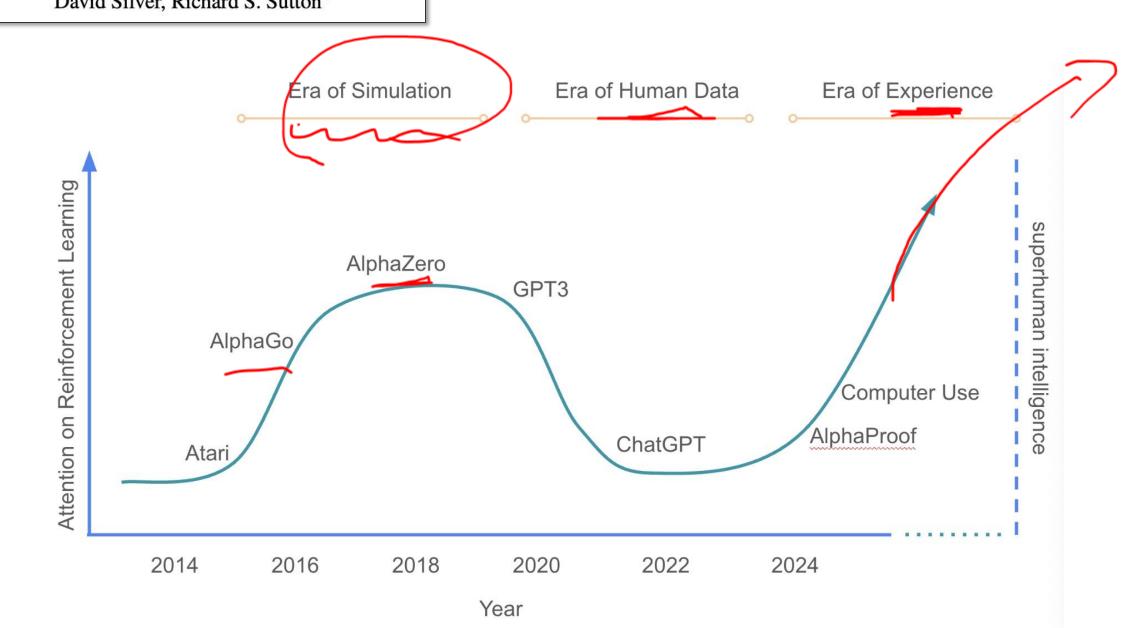


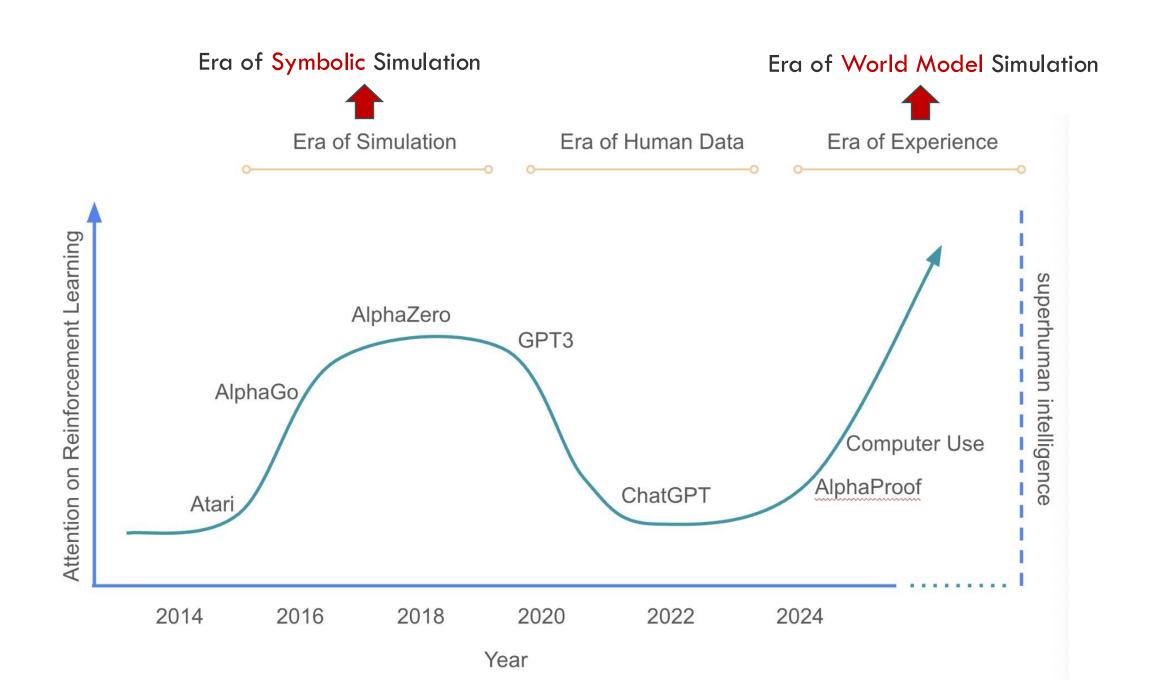
Simulates possibilities recursively; complexity emerges



Welcome to the Era of Experience

David Silver, Richard S. Sutton*





Questions?