
DSC291: Machine Learning with Few Labels

Reinforcement Learning

Zhiting Hu

Lecture 15, May 20, 2025

Logistics

● 05/22 (Thursday): Guest Lecture

● 06/03, 06/05: Course Project Presentations

◯ 06/03 – classroom is taken by an HDSI/NSF workshop

◯ 06/05 – not sure yet

◯ So, we’ll do all presentations on Zoom!

2

Outline

● Reinforcement Learning

● Paper presentation:

◯ Licheng Hu, Lance Zhu: "Inference-Time Scaling for Generalist Reward Modeling”

3

Recap: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy

from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

4

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass

Loss function:

where

Backward Pass

Gradient update (with respect to Q-function parameters θ) :

Recap: Solving for the optimal policy: Q-learning

5

Summary so far

● Q-learning:

◯ Bellman equation

◯ Value-based RL

◯ Off-policy RL

● Next: Policy gradient

◯ Policy-based RL

◯ On-policy RL

6

Loss function:

where

Policy Gradients

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard

to learn exact value of every (state, action) pair

7

Policy Gradients

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard

to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly?

8

Formally, let’s define a class of parametrized policies:

For each policy, define its value:

Policy Gradients

9

Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients

10

Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Gradient ascent on policy parameters!

Policy Gradients

11

Mathematically, we can write:

Where 𝑟(𝜏) is the reward of a trajectory

12

REINFORCE algorithm

Mathematically, we can write:

Where 𝑟(𝜏) is the reward of a trajectory

13

REINFORCE algorithm

Question: Express 𝑝(𝜏; 𝜃) with policy 𝜋𝜃 𝑎𝑡 𝑠𝑡) and transition probability 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

Mathematically, we can write:

Where 𝑟(𝜏) is the reward of a trajectory

14

REINFORCE algorithm

Question: Express 𝑝(𝜏; 𝜃) with policy 𝜋𝜃 𝑎𝑡 𝑠𝑡) and transition probability 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

15

REINFORCE algorithm
Mathematically, we can write:

REINFORCE algorithm

Now let’s differentiate this:

16

Question: How to estimate the gradient?

Mathematically, we can write:

REINFORCE algorithm

Intractable! Gradient of an
expectation is problematic when 𝑝
depends on θ

Now let’s differentiate this:

17

Question: How to estimate the gradient?

Mathematically, we can write:

REINFORCE algorithm

Intractable! Gradient of an
expectation is problematic when p
depends on θ

Now let’s differentiate this:

However, we can use a nice trick:

18

Mathematically, we can write:

REINFORCE algorithm

Intractable! Gradient of an
expectation is problematic when p
depends on θ

Now let’s differentiate this:

However, we can use a nice trick:

If we inject this back:

19

Mathematically, we can write:

Question: How to estimate the gradient?

REINFORCE algorithm

Intractable! Gradient of an
expectation is problematic when p
depends on θ

Can estimate with
Monte Carlo sampling

Now let’s differentiate this:

20

Mathematically, we can write:

Question: How to estimate the gradient?

However, we can use a nice trick:

If we inject this back:

REINFORCE algorithm

We have:

21

Question: In most RL problems, we don’t know the transition probabilities.

Can we still estimate the gradient?

REINFORCE algorithm

We have:

And when differentiating:

Therefore, when sampling a trajectory 𝜏, we can estimate 𝐽(𝜃) with

Doesn’t depend on

transition probabilities!

22

Question: In most RL problems, we don’t know the transition probabilities.

Can we still estimate the gradient?

Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

23

Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were

good. But in expectation, it averages out!

24

Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were

good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment

is really hard.

25

26

RL for LLMs

RL for Text Generation: Formulation

● (Autoregressive) text generation model:

Sentence 𝒚 = (𝑦0, … , 𝑦𝑇)

In RL terms: state, 𝒔𝑡action, 𝑎𝑡trajectory, 𝜏 policy 𝜋𝜃 𝑎𝑡 𝒔𝑡)

𝜋𝜃 𝑦𝑡 𝒚<𝑡) = softmax(𝑓𝜃 𝑦𝑡 𝒚<𝑡)
logits

RL for Text Generation: Formulation

● (Autoregressive) text generation model:

𝜋𝜃 𝑦𝑡 𝒚<𝑡) = softmax(𝑓𝜃 𝑦𝑡 𝒚<𝑡)Sentence 𝒚 = (𝑦0, … , 𝑦𝑇)

In RL terms: state, 𝒔𝑡action, 𝑎𝑡trajectory, 𝜏

• Reward 𝑟𝑡 = 𝑟(𝒔𝑡 , 𝑎𝑡)

• Often sparse: 𝑟𝑡 = 0 for 𝑡 < 𝑇

• The general RL objective: maximize cumulative reward

• 𝑄-function: expected future reward of taking action 𝑎𝑡 in state 𝒔𝑡

𝑄𝜋 𝒔𝑡 , 𝑎𝑡 = 𝔼𝜋 σ𝑡′=𝑡
𝑇 𝛾𝑡′

 𝑟𝑡′ | 𝒔𝑡 , 𝑎𝑡

policy 𝜋𝜃 𝑎𝑡 𝒔𝑡)

logits

From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and
Reinforcement Learning from Human Feedback (RLHF)

29

From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and
Reinforcement Learning from Human Feedback (RLHF)

30

A labeler gives

a reward for the

output

From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and
Reinforcement Learning from Human Feedback (RLHF)

31

Reward model

calculates a

reward for the

output

From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and
Reinforcement Learning from Human Feedback (RLHF)

32

Reward model

calculates a

reward for the

output

Questions?

	Slide 1: DSC291: Machine Learning with Few Labels Reinforcement Learning
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: Recap: Value function and Q-value function
	Slide 5: Recap: Solving for the optimal policy: Q-learning
	Slide 6: Summary so far
	Slide 7: Policy Gradients
	Slide 8: Policy Gradients
	Slide 9: Policy Gradients
	Slide 10: Policy Gradients
	Slide 11: Policy Gradients
	Slide 12: REINFORCE algorithm
	Slide 13: REINFORCE algorithm
	Slide 14: REINFORCE algorithm
	Slide 15: REINFORCE algorithm
	Slide 16: REINFORCE algorithm
	Slide 17: REINFORCE algorithm
	Slide 18: REINFORCE algorithm
	Slide 19: REINFORCE algorithm
	Slide 20: REINFORCE algorithm
	Slide 21: REINFORCE algorithm
	Slide 22: REINFORCE algorithm
	Slide 23: Intuition
	Slide 24: Intuition
	Slide 25: Intuition
	Slide 26
	Slide 27: RL for Text Generation: Formulation
	Slide 28: RL for Text Generation: Formulation
	Slide 29: From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)
	Slide 30: From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)
	Slide 31: From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)
	Slide 32: From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)
	Slide 33: Questions?

