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Logistics

● 05/22 (Thursday): Guest Lecture

● 06/03, 06/05: Course Project Presentations

◯ 06/03 – classroom is taken by an HDSI/NSF workshop

◯ 06/05 – not sure yet

◯ So, we’ll do all presentations on Zoom!
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Outline

● Reinforcement Learning

● Paper presentation:

◯ Licheng Hu, Lance Zhu: "Inference-Time Scaling for Generalist Reward Modeling”
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Recap: Value function and Q-value function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy 

from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from 

taking action a in state s and then following the policy:
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 

Loss function:

where

Backward Pass

Gradient update (with respect to Q-function parameters θ)   : 

Recap: Solving for the optimal policy: Q-learning
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Summary so far

● Q-learning:

◯ Bellman equation

◯ Value-based RL

◯ Off-policy RL

● Next: Policy gradient

◯ Policy-based RL

◯ On-policy RL
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Loss function:

where



Policy Gradients

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 

to learn exact value of every (state, action) pair
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Policy Gradients

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 

to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly?
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Gradient ascent on policy parameters!

Policy Gradients
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Mathematically, we can write:

Where 𝑟(𝜏) is the reward of a trajectory
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REINFORCE algorithm



Mathematically, we can write:

Where 𝑟(𝜏) is the reward of a trajectory
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REINFORCE algorithm

Question: Express 𝑝(𝜏; 𝜃) with policy 𝜋𝜃 𝑎𝑡  𝑠𝑡) and transition probability 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) 



Mathematically, we can write:

Where 𝑟(𝜏) is the reward of a trajectory
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REINFORCE algorithm

Question: Express 𝑝(𝜏; 𝜃) with policy 𝜋𝜃 𝑎𝑡  𝑠𝑡) and transition probability 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) 
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REINFORCE algorithm
Mathematically, we can write:



REINFORCE algorithm

Now let’s differentiate this:
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Question: How to estimate the gradient?

Mathematically, we can write:



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when 𝑝
depends on θ

Now let’s differentiate this:
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Question: How to estimate the gradient?

Mathematically, we can write:



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Now let’s differentiate this:

However, we can use a nice trick:
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Mathematically, we can write:



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Now let’s differentiate this:

However, we can use a nice trick: 

If we inject this back:
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Mathematically, we can write:

Question: How to estimate the gradient?



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Can estimate with 
Monte Carlo sampling

Now let’s differentiate this:
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Mathematically, we can write:

Question: How to estimate the gradient?

However, we can use a nice trick: 

If we inject this back:



REINFORCE algorithm

We have: 
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Question: In most RL problems, we don’t know the transition probabilities. 

Can we still estimate the gradient?



REINFORCE algorithm

We have: 

And when differentiating:

Therefore, when sampling a trajectory 𝜏, we can estimate 𝐽(𝜃) with

Doesn’t depend on 

transition probabilities!
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Question: In most RL problems, we don’t know the transition probabilities. 

Can we still estimate the gradient?



Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen
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Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 

good. But in expectation, it averages out!
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Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 

good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment 

is really hard. 
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RL for LLMs



RL for Text Generation: Formulation

● (Autoregressive) text generation model:

Sentence 𝒚 = (𝑦0, … , 𝑦𝑇)

In RL terms: state, 𝒔𝑡action, 𝑎𝑡trajectory, 𝜏 policy 𝜋𝜃 𝑎𝑡  𝒔𝑡  )

𝜋𝜃 𝑦𝑡 𝒚<𝑡) = softmax(  𝑓𝜃 𝑦𝑡 𝒚<𝑡  )
logits



RL for Text Generation: Formulation

● (Autoregressive) text generation model:

𝜋𝜃 𝑦𝑡 𝒚<𝑡) = softmax(  𝑓𝜃 𝑦𝑡 𝒚<𝑡  )Sentence 𝒚 = (𝑦0, … , 𝑦𝑇)

In RL terms: state, 𝒔𝑡action, 𝑎𝑡trajectory, 𝜏

• Reward 𝑟𝑡 = 𝑟(𝒔𝑡 , 𝑎𝑡)

• Often sparse: 𝑟𝑡 = 0 for 𝑡 < 𝑇

• The general RL objective: maximize cumulative reward

• 𝑄-function: expected future reward of taking action 𝑎𝑡  in state 𝒔𝑡    

𝑄𝜋 𝒔𝑡 , 𝑎𝑡 = 𝔼𝜋  σ𝑡′=𝑡
𝑇 𝛾𝑡′

 𝑟𝑡′ | 𝒔𝑡 , 𝑎𝑡  

policy 𝜋𝜃 𝑎𝑡  𝒔𝑡  )

logits



From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and 
Reinforcement Learning from Human Feedback (RLHF)
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From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and 
Reinforcement Learning from Human Feedback (RLHF)
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A labeler gives 

a reward for the 

output



From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and 
Reinforcement Learning from Human Feedback (RLHF)
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Reward model 

calculates a 

reward for the 

output



From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and 
Reinforcement Learning from Human Feedback (RLHF)
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Reward model 

calculates a 

reward for the 

output



Questions?
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