DSC291: Machine Learning with Few Labels

Reinforcement Learning

Zhiting Hu
Lecture 14, May 15, 2025

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

Outline

e Reinforcement Learning

e Paper presentation:

o Max Irby, Davit Abrahamyan: "Training Large Language Models to Reason in a Continuous
Latent Space”

o0 Yuyuan, Varun: “The Belief State Transformer”

Markov Decision Process <)

At time step t=0, environment samples initial state s, ~ p(s,)
. “—
Then, for t=0 until done: .
- Agent selects action a, 75 (¢ c/_(?a)
- Environment samples reward r, ~ R(. | s;, a,)
- Environment samples next state s,,, ~P(. | s,, a,) /" N
- Agent receives reward r, and next state s, , r~0 ¢ (7‘

£ T¥ 8
A policy 1'r'!s a function from S to A that specifies what action to take in each state

Following a policy produces sample frajectorie$ (or paths) sg, ag, o, Séi a, 1y, .-

t
Objective: find policy T that maximizes %ulative discounted reward: Z'}“ Tt
—_— £>0

w‘w{ f2p /% .

L
The optimal policy T /2(t”/‘@'gté?)

<
e -
Following a policy produces sample trajector/es (or paths)), ag, gy Sy Ay Iy, ... &

»
-
A
[Y e

How do we handle the randomness (initial state, transition probability...)?
Maximize the eercted sum of rewards!

We want to find optimal policy 1T that maximizes the sum of reward

Formally: 7* = argma:x]E ny re|m| with 8g ~ p(8p), a¢ ~ m(-|8¢), St41 ~ p(+|8¢, a¢)
s A — ——— e—

= t>0
= y

-ﬁ@.,)

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, ay, ry, S, @y, Iy, ...

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, ry, S4, a4, Iy, ...

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy

from state s:
E'}*trﬂsﬂ = 8,

V™(s) =E
>0

g

S OVIG) SvPUS) £ R

express the objective with the value function) Z y @
_ _ /G|~
® — 7 = - -
220 _

Definitions: Value function and Q-value function

Following a policy produces sample trajectorles (or paths) s,, a,, ry, Sq, a4, Iy, ...
= "

How good is a state? \/ (Ka "1-'“76,@} Z_ S, 4)
The value function at state s, is the expected cumulative reward rom foIIowmg thenpolicy
from state s: 7%

V"*'T(S Z’}“ Ttlsﬂ =8, Q rg) —

2 ¥ #4@
How good is a state- actlon%? % /,C a -
taking action a in state s and then foIIowmg the policy:

Qﬂ(S,ﬂ,)—]E|:Z’}’TtS[]— :| ; if@h Q%

74)

’;@ £>0
The Q-value function at state’s and action a, is the expe Cu/rTMamLe_ce.w afd from

express the value function with the Q-value function

Bellman equation™

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(S,a) :ma.XIE E "}/t’f't|80 :S;QD ZG,,TF
iy
= £>0

Bellman equation S.4 —C

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = meXE Z"}’t’f't|80 = S8,a0 = Q, T

>0 |
Q* satisfies the following Bellman equation: T Mfﬂf‘@/ @ﬂj&
Q" (s,a) =Es e ?"—I—’)/m@XQ*(s’}a’NS,a} % Z‘Wwﬁl
— - e Yl

Intuition: if the optimal state-action values for the next fime-ste Q*(s’,a’)are known,
then the optimal strategy is to take the action that maximizes the expected value of

T (s)

Bellman equation

The optimal Q-value function Q" is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = meXE Z"}’t’f't|80 = 8,00 = Q,T
>0

Q* satisfies the following Bellman equation:
Q"(5,0) = Evne [r + ymaxQ*(s',a)ls,a] &7

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+yQ*(s', a’) @4“ CQ r—legﬂ}% ;

ey W/
{2+ he optimal policy T gorresponds to taking the best action in any stdte as specified by Q*

UL (0 5)

10

Solving for the optimal policy e

Value iteration algorithm: Use Bellman equation as an iterative update
‘:=_

Qi11(5,0) = E [+ ymax Qi(s', ') s, a]
S— “—— : a’ =
Q: will converge to Q* as i -> infinity

11

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qir1(s,a) = E 1+ ymax Qi(s', ') s, a]
a
Q, will converge to Q* as i -> infinity

What's the problem with this?

12

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qit1(s,a) =E ['f‘ + ’)’maﬂ,«XQi(S":afNS:a}

Q: will converge to Q* as i -> infinity

]]
What's the problem with this?)T
Not scalable. Must Comﬁaute Qls.a) for every state-action pair. If state ise-g-

current game state pixels, computationally infeasible to compute for entire
state space!

13

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qir1(s,a) = E 1+ ymax Qi(s', ') s, a]
a
Q, will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qg.
current game state pixels, computationally infeasible to compute for entire

state space!

How would you solve the issue?

14

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Q‘i—l_l(si a’) =E [T T ’)’II]E}.XQE(S y A)|S: a’}
R 1
Q: will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qg.
current game state pixels, computationally infeasible to compute for entire
state space!

How would you solve the issue?
Use a function aggroximator to estimate Q(s,a). E.g. a neural network!

Col(ew A Q(Ca)

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) = Q*(s,a)

16

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) = Q" (s, a)

If the function approximator is a deep neural network => deep g-learning!

PR/

17

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s, a; 91{@’“(8: a)

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

18

Solving for the optimal policy: Q-learning 6?0 & &)
Remember: want to find a Q-function that satisfies the Bellman Equation:
QR*(s,a) =Eg~¢ [’r +ymax Q*(s',a’)|s, a,}

S

FED<Ern |~)]

m_l

19

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q*(s,a) =Ey e [’r' + ymax Q*(s’,a’) s, a,} G
'ﬂa a’
Forward Pass e o
Loss function: L;(6;) = Es a~p() [(yi — Q(s, a; 91'))2] J%fff’?@
C— @ prtreeem—“—

where Yi = Esng ['F +ymaxQ(s',a; 9i_1)|81a]4
? T

20

Solving for the Pptimal policy: Q-learning
/
Remember: want to finop Q-function that satisfies the Bé’ﬁ?ﬁan Equation:

Forward Pass

Loss function: L;(6;) = Eg anp() [(yi — Q(s,a; 91:))2]'_"7 /2_ é

P .
Whe/re@ Es g [?‘ + fyma&}xQ(s a5 0;-1)|s, a]
Mov,: ? éboé%
—flﬁ"" ’ ﬁ c
Backward Pass . v Ey- £ = %/?‘ J

Gradient update (with respect to Q-function param‘éteﬁ@}) ..;s"é o/ 7
7
Vo, Li(0;) = Esanp();s'~e [T + Hilﬁlx Q(S!: a'; 0i—1) — Q(s,q; %V&Q(S? a 91)]

21

[Mnih et al. NIPS Workshop 2013; Nature 2015]
S—

Case Study: Playing Atari Games 4%'%1/

(3]

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Repr%guced with permission.

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network AFCEF%%&@/ Qé%

_20(s.0:0): FC4(Q]
neural network = e _(r, Fe
with weights £ FC-256 /

26 Q) CAN(

TN

f T

v { ey 1) —
! f4),
/ 7

) V—
/Jl Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

LAY

Q?‘)

Q-network Architecture

Q(s,a;0):
neural network
with weights £

FC-4 (Q-values)

FC-256

T

[Mnih et al. NIPS Workshop 2013; Nature 2015]

- Input: state s,

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

25

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S: a, 9) : - -
neural network FC-4 (Q-values)
with weights @ FC-256
= Familiar conv layers,
FC layer

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

26

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S y Ay 9) : FC-4 (O-values) - Last FC layer has 4-d

neural network output (if 4 actions),

with weights £ FC-256 corresponding to Q(s,,
a,), Q(s,, a,), Q(s, a,),
Q(s,,a,)

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

27

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S y Ay 9) : FC-4 (O-values) - Last FC layer has 4-d

neural network output (if 4 actions),

with weights £ FC-256 corresponding to Q(s,,
a,), Q(s,, a,), Q(s, a,),
Q(s,a,)

Number of actions between 4-18
—e=

depending on Atari game

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

28

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

s,a;0): i
n%g ral nétvxx)ork —ed (Ovalues)) Eﬁf&i(f.f'if&'?fﬁs‘)‘ d
with weights £ FC-256 corresponding to Q(s,,

a,), Q(s,, a,), Q(s, a,),
Q(s,a,)

A single feedforward pass
to compute Q-values for all
actions, from the current Number of actions between 4-18

state => efficient! 110 — depending on Atari game

11|

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

29

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

30

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlaigd => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a replay memory table of transitions (si, a,, I, Si,.1) s game

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

31

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a,, r, s;,;) as game

(experience) episodes are played -
- Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

Each transition can also contribute
to multiple weight updates
=> greater data efficiency

32

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S _ { T; for terminal ¢ ;
ety; = 5 /. :
r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N - Initialize replay memory, Q-network
Initialize action-value function () with random weights o — T——
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
St 41 { T for terminal ¢, ;
ety; = 5 /. :
r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights

for episode = 1, M do = Play M episodes (full games)
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo

With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
St { T for terminal ;.
J r; + v maxy Q(¢;+1,a’;6) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;) <
fort=1,Tdo

With probability € select a random action a;

otherwise select a; = max, Q*(¢(s¢),a;6)

Execute action a, in emulator and observe reward r; and image x;

Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)

Store transition (¢y, a;, 7y, ¢1+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

St 41 { T for terminal ¢, ;

ety; = 5 /. :
r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

Initialize state
(starting game
screen pixels) at the
beginning of each
episode

36

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
for iv? thL T l()l:biljt e - For each timestep t
ith pro y € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6) of the game
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
St 41 { T for terminal ¢, ;
ety; = 5 /. :
r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo

With probability € select a random action a; -
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Seegyesin T for terminal ¢ ;

J r; + v maxy Q(¢;+1,a’;6) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

ﬂﬁ
My
iz Clor

select a random
. —
action (explor
l"'._--'_)
otherwise select

s
S
Y% =V
/

38

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;

Set 841 = 84, a4, T4+ and preprocess @y.1 = O(841) < Take the action (a,),
Store transition (¢y, a;, 7y, ¢1+1) in D and observe the
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D reward r,and next
S _) 7 for terminal ¢ ; state s
et Y; = P /. < t+1
r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

39

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo

With probability € select a random action a;

otherwise select a; = max, Q*(¢(s¢),a;6)

Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)

Store transition (¢y, a;, 7y, ¢1+1) in D -
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _) 7 for terminal ¢ ;

Ct y] S— Z &8 .

r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

Store transition in
replay memory

40

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
~— for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, as, 7y, $y41) in ’

Sample random minibatch of transitions (¢;,a;,7;,¢;+1) fromD Experience Replay:
Sl pvics) T3 for terminal ¢, ; Sample a random
ety; = { r; +ymaxy Q(¢j+1,a’;6) for non-terminal ¢, miﬂi_lﬁlch.of_ttansitions
Perform a gradient descent step on (y; — Q(¢;, a;; 8))? according to equation 3~ from replay memory
end for and perform a gradient
end for descent step

41

Summary so far

e Q-learning:
o Bellman equation
© Value-based RL
o Off-policy RL

e Next: Policy gradient
O Policy-based RL

© On-policy RL

(

_

\

Loss function: L;(6;) = Eg qnp(.) (yi — Q(s,a;6;))?]

where Y; = Eg g [’r +ymax Q(s’,a’;0;-1)]s, a]
a

J

42

Questions?

	Slide 1: DSC291: Machine Learning with Few Labels Reinforcement Learning
	Slide 2: Outline
	Slide 3: Markov Decision Process
	Slide 4: The optimal policy π*
	Slide 5: Definitions: Value function and Q-value function
	Slide 6: Definitions: Value function and Q-value function
	Slide 7: Definitions: Value function and Q-value function
	Slide 8: Bellman equation
	Slide 9: Bellman equation
	Slide 10: Bellman equation
	Slide 11: Solving for the optimal policy
	Slide 12: Solving for the optimal policy
	Slide 13: Solving for the optimal policy
	Slide 14: Solving for the optimal policy
	Slide 15: Solving for the optimal policy
	Slide 16
	Slide 17: Solving for the optimal policy: Q-learning
	Slide 18: Solving for the optimal policy: Q-learning
	Slide 19: Solving for the optimal policy: Q-learning
	Slide 20: Solving for the optimal policy: Q-learning
	Slide 21: Solving for the optimal policy: Q-learning
	Slide 23: Case Study: Playing Atari Games
	Slide 24: Q-network Architecture
	Slide 25: Q-network Architecture
	Slide 26: Q-network Architecture
	Slide 27: Q-network Architecture
	Slide 28: Q-network Architecture
	Slide 29: Q-network Architecture
	Slide 30: Training the Q-network: Experience Replay
	Slide 31: Training the Q-network: Experience Replay
	Slide 32: Training the Q-network: Experience Replay
	Slide 33: [Mnih et al. NIPS Workshop 2013; Nature 2015]
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Summary so far
	Slide 43: Questions?

