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Outline

e Reinforcement Learning

e Paper presentation:

o Max Irby, Davit Abrahamyan: "Training Large Language Models to Reason in a Continuous
Latent Space”

o0 Yuyuan, Varun: “The Belief State Transformer”



Markov Decision Process < )

At time step t=0, environment samples initial state s, ~ p(s,)
. “—
Then, for t=0 until done: .
- Agent selects action a, 75 (¢ c/_(?a)
- Environment samples reward r, ~ R( . | s;, a,)
- Environment samples next state s,,, ~P(. | s,, a,) /" N
- Agent receives reward r, and next state s, , r~0 ¢ (7‘

£ T¥ 8
A policy 1'r'!s a function from S to A that specifies what action to take in each state

Following a policy produces sample frajectorie$ (or paths) sg, ag, o, Séi a, 1y, .-

t
Objective: find policy T that maximizes %ulative discounted reward: Z'}“ Tt
—_— £>0

w‘w{ f2p /% .
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The optimal policy T /2( t”/‘@'gté?)

<
e -
Following a policy produces sample trajector/es (or paths)), ag, gy Sy Ay Iy, ... &

»
-
A
[Y e

How do we handle the randomness (initial state, transition probability...)?
Maximize the eercted sum of rewards!

We want to find optimal policy 1T that maximizes the sum of reward

Formally: 7* = argma:x]E ny re|m| with 8g ~ p(8p), a¢ ~ m(-|8¢), St41 ~ p(+|8¢, a¢)
s A — ——— e—

= t>0
= y
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, ay, ry, S, @y, Iy, ...




Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, ry, S4, a4, Iy, ...

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy

from state s:
E'}*trﬂsﬂ = 8,

V™(s) =E
>0

g
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express the objective with the value function ) Z y @
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Definitions: Value function and Q-value function

Following a policy produces sample trajectorles (or paths) s,, a,, ry, Sq, a4, Iy, ...
= "

How good is a state? \/ ( Ka "1-'“76,@} Z_ S, 4)
The value function at state s, is the expected cumulative reward rom foIIowmg thenpolicy
from state s: 7%

V"*'T(S Z’}“ Ttlsﬂ =8, Q rg) —

2 ¥ #4@
How good is a state- actlon%? % /,C a -
taking action a in state s and then foIIowmg the policy:

Qﬂ(S,ﬂ,)—]E|:Z’}’TtS[]— :| ; if@h Q%

74)

’;@ £>0
The Q-value function at state’s and action a, is the expe Cu/rTMamLe_ce.w afd from

express the value function with the Q-value function



Bellman equation™

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(S,a) :ma.XIE E "}/t’f't|80 :S;QD ZG,,TF
iy
= £>0




Bellman equation S.4 —C

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = meXE Z"}’t’f't|80 = S8,a0 = Q, T

>0 |
Q* satisfies the following Bellman equation: T Mfﬂf‘@/ @ﬂj&
Q" (s,a) =Es e ?"—I—’)/m@XQ*(s’}a’NS,a} % Z‘Wwﬁl
— - e Yl

Intuition: if the optimal state-action values for the next fime-ste Q*(s’,a’)are known,
then the optimal strategy is to take the action that maximizes the expected value of

T (s)



Bellman equation

The optimal Q-value function Q" is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = meXE Z"}’t’f't|80 = 8,00 = Q,T
>0

Q* satisfies the following Bellman equation:
Q"(5,0) = Evne [r + ymaxQ*(s',a)ls,a] &7

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+yQ*(s', a’) @4“ CQ r—legﬂ}% ;

ey W/
{2+ he optimal policy T gorresponds to taking the best action in any stdte as specified by Q*

UL (0 5)
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Solving for the optimal policy e

Value iteration algorithm: Use Bellman equation as an iterative update
‘:=_

Qi11(5,0) = E [+ ymax Qi(s', ') s, a]
S— “—— : a’ =
Q: will converge to Q* as i -> infinity

11



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qir1(s,a) = E 1+ ymax Qi(s', ') s, a]
a
Q, will converge to Q* as i -> infinity

What's the problem with this?

12



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qit1(s,a) =E ['f‘ + ’)’maﬂ,«XQi(S":afNS:a}

Q: will converge to Q* as i -> infinity

] ]
What's the problem with this? )T
Not scalable. Must Comﬁaute Qls.a) for every state-action pair. If state ise-g-

current game state pixels, computationally infeasible to compute for entire
state space!

13



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qir1(s,a) = E 1+ ymax Qi(s', ') s, a]
a
Q, will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qg.
current game state pixels, computationally infeasible to compute for entire

state space!

How would you solve the issue?
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Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Q‘i—l_l(si a’) =E [T T ’)’II]E}.XQE(S y A )|S: a’}
R 1
Q: will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qg.
current game state pixels, computationally infeasible to compute for entire
state space!

How would you solve the issue?
Use a function aggroximator to estimate Q(s,a). E.g. a neural network!

Col(ew A Q(Ca)



Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) = Q*(s,a)

16



Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) = Q" (s, a)

If the function approximator is a deep neural network => deep g-learning!

PR/
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Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s, a; 91{@’“(8: a)

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!
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Solving for the optimal policy: Q-learning 6?0 & &)
Remember: want to find a Q-function that satisfies the Bellman Equation:
QR*(s,a) =Eg~¢ [’r +ymax Q*(s',a’)|s, a,}

S

FED<Ern |~ )]

m\_l
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Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

Q*(s,a) =Ey e [’r' + ymax Q*(s’,a’) s, a,} G
'ﬂa a’
Forward Pass e o
Loss function:  L;(6;) = Es a~p() [(yi — Q(s, a; 91'))2] J%fff’?@
C— @ prtreeem—“—

where Yi = Esng ['F +ymaxQ(s',a; 9i_1)|81a]4
? T
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Solving for the Pptimal policy: Q-learning
/
Remember: want to finop Q-function that satisfies the Bé’ﬁ?ﬁan Equation:

Forward Pass

Loss function:  L;(6;) = Eg anp() [(yi — Q(s,a; 91:))2]'_"7 /2_ é

P .
Whe/re@ Es g [?‘ + fyma&}xQ(s a5 0;-1)|s, a]
Mov,: ? éboé%
—flﬁ"" ’ ﬁ c
Backward Pass . v Ey- £ = %/?‘ J

Gradient update (with respect to Q-function param‘éteﬁ@}) ..;s"é o/ 7
7
Vo, Li(0;) = Esanp();s'~e [T + Hilﬁlx Q(S!: a'; 0i—1) — Q(s,q; %V&Q(S? a 91)]
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[Mnih et al. NIPS Workshop 2013; Nature 2015]
S—

Case Study: Playing Atari Games 4%'%1/

(3]

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Repr%guced with permission.



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network AFCEF%%&@/ Qé%

_20(s.0:0): FC4(Q ]
neural network = e _(r, Fe
with weights £ FC-256 /

26 Q) CAN(

TN

f T

v { ey 1) —
! f4),
/ 7

) V—
/Jl Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

LAY

Q?‘ )



Q-network Architecture

Q(s,a;0):
neural network
with weights £

FC-4 (Q-values)

FC-256

T

[Mnih et al. NIPS Workshop 2013; Nature 2015]

- Input: state s,

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S: a, 9) : - -
neural network FC-4 (Q-values)
with weights @ FC-256
= Familiar conv layers,
FC layer

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S y Ay 9) : FC-4 (O-values) - Last FC layer has 4-d

neural network output (if 4 actions),

with weights £ FC-256 corresponding to Q(s,,
a,), Q(s,, a,), Q(s, a,),
Q(s,,a,)

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S y Ay 9) : FC-4 (O-values) - Last FC layer has 4-d

neural network output (if 4 actions),

with weights £ FC-256 corresponding to Q(s,,
a,), Q(s,, a,), Q(s, a,),
Q(s,a,)

Number of actions between 4-18
—e=

depending on Atari game

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

28



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

s,a;0): i
n%g ral nétvxx)ork —ed (Ovalues) ) Eﬁf&i(f.f'if&'?fﬁs‘)‘ d
with weights £ FC-256 corresponding to Q(s,,

a,), Q(s,, a,), Q(s, a,),
Q(s,a,)

A single feedforward pass
to compute Q-values for all
actions, from the current Number of actions between 4-18

state => efficient! 110 — depending on Atari game

11|

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

29



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

30



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlaigd => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a replay memory table of transitions (si, a,, I, Si,.1) s game

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

31



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a,, r, s;,;) as game

(experience) episodes are played -
- Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

Each transition can also contribute
to multiple weight updates
=> greater data efficiency

32



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S _ { T; for terminal ¢ ;
ety; = 5 /. :
r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N - Initialize replay memory, Q-network
Initialize action-value function () with random weights o — T——
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
St 41 { T for terminal ¢, ;
ety; = 5 /. :
r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights

for episode = 1, M do = Play M episodes (full games)
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo

With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
St { T for terminal ;.
J r; + v maxy Q(¢;+1,a’;6) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;) <
fort=1,Tdo

With probability € select a random action a;

otherwise select a; = max, Q*(¢(s¢),a;6)

Execute action a, in emulator and observe reward r; and image x;

Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)

Store transition (¢y, a;, 7y, ¢1+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

St 41 { T for terminal ¢, ;

ety; = 5 /. :
r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

Initialize state
(starting game
screen pixels) at the
beginning of each
episode
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
for iv? thL T l()l:biljt e - For each timestep t
ith pro y € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6) of the game
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
St 41 { T for terminal ¢, ;
ety; = 5 /. :
r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for




[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo

With probability € select a random action a; -
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Seegyesin T for terminal ¢ ;

J r; + v maxy Q(¢;+1,a’;6) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

ﬂﬁ
My
iz Clor

select a random
. —
action (explor
l"'._--'_ )
otherwise select

s
S
Y% =V
/
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;

Set 841 = 84, a4, T4+ and preprocess @y.1 = O(841) < Take the action (a,),
Store transition (¢y, a;, 7y, ¢1+1) in D and observe the
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D reward r,and next
S _ ) 7 for terminal ¢ ; state s
et Y; = P /. < t+1
r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo

With probability € select a random action a;

otherwise select a; = max, Q*(¢(s¢),a;6)

Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)

Store transition (¢y, a;, 7y, ¢1+1) in D -
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _ ) 7 for terminal ¢ ;

Ct y] S— Z &8 .

r; +vmaxy Q(¢j+1,a’;0) for non-terminal ¢; 1

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

Store transition in
replay memory
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
~— for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;6)
Execute action a, in emulator and observe reward r; and image x;
Set sy+1 = 8¢, a4, Ty41 and preprocess @1 = O(8¢41)
Store transition (¢y, as, 7y, $y41) in ’

Sample random minibatch of transitions (¢;,a;,7;,¢;+1) fromD Experience Replay:
Sl pvics) T3 for terminal ¢, ; Sample a random
ety; = { r; +ymaxy Q(¢j+1,a’;6) for non-terminal ¢, miﬂi_lﬁlch.of_ttansitions
Perform a gradient descent step on (y; — Q(¢;, a;; 8))? according to equation 3~ from replay memory
end for and perform a gradient
end for descent step
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Summary so far

e Q-learning:
o Bellman equation
© Value-based RL
o Off-policy RL

e Next: Policy gradient
O Policy-based RL

©  On-policy RL

(

\_

\

Loss function:  L;(6;) = Eg qnp(.) (yi — Q(s,a;6;))?]

where Y; = Eg g [’r +ymax Q(s’,a’;0;-1)]s, a]
a

J
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Questions?
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