
DSC291: Machine Learning with Few Labels

Reinforcement Learning

Zhiting Hu

Lecture 14, May 15, 2025

Outline

● Reinforcement Learning

● Paper presentation:

◯ Max Irby, Davit Abrahamyan: "Training Large Language Models to Reason in a Continuous
Latent Space”

◯ Yuyuan, Varun: “The Belief State Transformer”

2

Markov Decision Process

- At time step t=0, environment samples initial state s0 ~ p(s0)

- Then, for t=0 until done:

- Agent selects action at

- Environment samples reward rt ~ R(. | st, at)

- Environment samples next state st+1 ~ P(. | st, at)

- Agent receives reward rt and next state st+1

- A policy π is a function from S to A that specifies what action to take in each state

- Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

- Objective: find policy π* that maximizes cumulative discounted reward:

3

The optimal policy π*

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

We want to find optimal policy π* that maximizes the sum of rewards

Question: How do we handle the randomness (initial state, transition probability…)?

Maximize the expected sum of rewards!

Formally: with

4

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

5

Definitions: Value function and Q-value function

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy

from state s:

6

Question: express the objective with the value function

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy

from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

7

Question: express the value function with the Q-value function

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

8

Bellman equation

Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,

then the optimal strategy is to take the action that maximizes the expected value of

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

9

Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,

then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy π* corresponds to taking the best action in any state as specified by Q*

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

10

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

11

Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

12

Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

13

Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Question: How would you solve the issue?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

14

Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

 Question: How would you solve the issue?

Use a function approximator to estimate Q(s,a). E.g. a neural network!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

15

Q-learning: Use a function approximator to estimate the action-value function

16

Solving for the optimal policy: Q-learning

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

If the function approximator is a deep neural network => deep q-learning!

17

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

18

Remember: want to find a Q-function that satisfies the Bellman Equation:

Solving for the optimal policy: Q-learning

19

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass

Loss function:

where

Solving for the optimal policy: Q-learning

20

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass

Loss function:

where

Backward Pass

Gradient update (with respect to Q-function parameters θ) :

Solving for the optimal policy: Q-learning

21

Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

23

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

24

:
neural network

with weights

Q-network Architecture

Input: state st

Current state st: 84x84x4 stack of last 4 frames

(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

25

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Familiar conv layers,

FC layer

[Mnih et al. NIPS Workshop 2013; Nature 2015]

26

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions),

corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

27

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions),

corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

28

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions),

corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

A single feedforward pass
to compute Q-values for all
actions from the current

state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

29

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand

size) => can lead to bad feedback loops

[Mnih et al. NIPS Workshop 2013; Nature 2015]

30

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand

size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game

(experience) episodes are played

- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples

[Mnih et al. NIPS Workshop 2013; Nature 2015]

31

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand

size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game

(experience) episodes are played

- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute

to multiple weight updates

=> greater data efficiency

[Mnih et al. NIPS Workshop 2013; Nature 2015]

32

Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Initialize state
(starting game
screen pixels) at the

beginning of each
episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

36

Putting it together: Deep Q-Learning with Experience Replay

For each timestep t
of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

With small probability,
select a random
action (explore),

otherwise select
greedy action from
current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

38

Take the action (at),
and observe the
reward rt and next

state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

39

Store transition in
replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

40

Experience Replay:

Sample a random

minibatch of transitions
from replay memory
and perform a gradient

descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

41

Summary so far

● Q-learning:

◯ Bellman equation

◯ Value-based RL

◯ Off-policy RL

● Next: Policy gradient

◯ Policy-based RL

◯ On-policy RL

42

Loss function:

where

Questions?

	Slide 1: DSC291: Machine Learning with Few Labels Reinforcement Learning
	Slide 2: Outline
	Slide 3: Markov Decision Process
	Slide 4: The optimal policy π*
	Slide 5: Definitions: Value function and Q-value function
	Slide 6: Definitions: Value function and Q-value function
	Slide 7: Definitions: Value function and Q-value function
	Slide 8: Bellman equation
	Slide 9: Bellman equation
	Slide 10: Bellman equation
	Slide 11: Solving for the optimal policy
	Slide 12: Solving for the optimal policy
	Slide 13: Solving for the optimal policy
	Slide 14: Solving for the optimal policy
	Slide 15: Solving for the optimal policy
	Slide 16
	Slide 17: Solving for the optimal policy: Q-learning
	Slide 18: Solving for the optimal policy: Q-learning
	Slide 19: Solving for the optimal policy: Q-learning
	Slide 20: Solving for the optimal policy: Q-learning
	Slide 21: Solving for the optimal policy: Q-learning
	Slide 23: Case Study: Playing Atari Games
	Slide 24: Q-network Architecture
	Slide 25: Q-network Architecture
	Slide 26: Q-network Architecture
	Slide 27: Q-network Architecture
	Slide 28: Q-network Architecture
	Slide 29: Q-network Architecture
	Slide 30: Training the Q-network: Experience Replay
	Slide 31: Training the Q-network: Experience Replay
	Slide 32: Training the Q-network: Experience Replay
	Slide 33: [Mnih et al. NIPS Workshop 2013; Nature 2015]
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Summary so far
	Slide 43: Questions?

