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Outline

● Reinforcement Learning

● Paper presentation:

◯ David Lurie, Ben TenWolde: “Mixture of Agents with LLMs”

◯ Qing Cheng, Zhaomei Geng: “ChatGPT in medicine: an overview of its applications, 
advantages, limitations, future prospects, and ethical considerations”
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So far… Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 

semantic segmentation, image 

captioning, etc.

Cat

Classification
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So far… Unsupervised Learning

Data: x
no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 

learning, density estimation, etc.
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Today: Reinforcement Learning

Problems involving an agent 
interacting with an environment, 

which provides numeric reward 

signals

Goal: Learn how to take actions 

in order to maximize reward
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Overview

- What is Reinforcement Learning?

- Markov Decision Processes

- Q-Learning

- Policy Gradients
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Agent

Reinforcement Learning

Environment
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Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints 

Action: Torque applied on joints 

Reward: 1 at each time step upright + 

forward movement
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Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step
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Go

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Lecture 14 -
16

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the 

world

Defined by:

: set of possible states

: set of possible actions

: distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair

: discount factor

18



Markov Decision Process

- At time step t=0, environment samples initial state s0 ~ p(s0)

- Then, for t=0 until done:

- Agent selects action at

- Environment samples reward rt ~ R( . | st, at)

- Environment samples next state st+1 ~ P( . | st, at)

- Agent receives reward rt and next state st+1

- A policy π is a function from S to A that specifies what action to take in each state

- Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

- Objective: find policy π* that maximizes cumulative discounted reward:
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A simple MDP: Grid World

★

★

}

Objective: reach one of terminal states (greyed out) in 

least number of actions

actions = {

1. right

2. left

3. up

4. down

Set a negative “reward” 
for each transition

(e.g. r = -1)

states
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A simple MDP: Grid World

Random Policy Optimal Policy

★

★

★

★
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MDP for language generation

● (Autoregressive) text generation
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Sentence 𝒚 = (𝑦0, … , 𝑦𝑇)

𝜋𝜃 𝑦𝑡  𝒚<𝑡) = softmax(  𝑓𝜃 𝑦𝑡 𝒚<𝑡  )



The optimal policy π*

We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?
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The optimal policy π*

We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)? 

Maximize the expected sum of rewards!

Formally: with
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Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

26



Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy 

from state s:
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Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy 

from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from 

taking action a in state s and then following the policy:
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The optimal Q-value function Q* is the maximum expected cumulative reward achievable 

from a given (state, action) pair:

Bellman equation
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Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known, 

then the optimal strategy is to take the action that maximizes the expected value of

The optimal Q-value function Q* is the maximum expected cumulative reward achievable 

from a given (state, action) pair:
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Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known, 

then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy π* corresponds to taking the best action in any state as specified by Q*

The optimal Q-value function Q* is the maximum expected cumulative reward achievable 

from a given (state, action) pair:
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Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. 
current game state pixels, computationally infeasible to compute for entire 
state space!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. 
current game state pixels, computationally infeasible to compute for entire 
state space!

Question: how would you solve the issue?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. 
current game state pixels, computationally infeasible to compute for entire 
state space!

Question: how would you solve the issue?
Solution: use a function approximator to estimate Q(s,a). E.g. a neural

network!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
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Q-learning: Use a function approximator to estimate the action-value function

Solving for the optimal policy: Q-learning
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Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

If the function approximator is a deep neural network => deep q-learning!

38



Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Solving for the optimal policy: Q-learning
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 

Loss function:

where

Solving for the optimal policy: Q-learning
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 

Loss function:

where

Backward Pass

Gradient update (with respect to Q-function parameters θ)   : 

Solving for the optimal policy: Q-learning
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Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Input: state st

Current state st: 84x84x4 stack of last 4 frames

(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Familiar conv layers, 

FC layer

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions), 

corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions), 

corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions), 

corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

A single feedforward pass 
to compute Q-values for all 
actions from the current 

state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Summary so far

● Q-learning:

◯ Bellman equation

◯ Value-based RL

◯ Off-policy RL

● Next: Policy gradient

◯ Policy-based RL

◯ On-policy RL
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Loss function:

where



Questions?
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