DSC291: Machine Learning with Few Labels

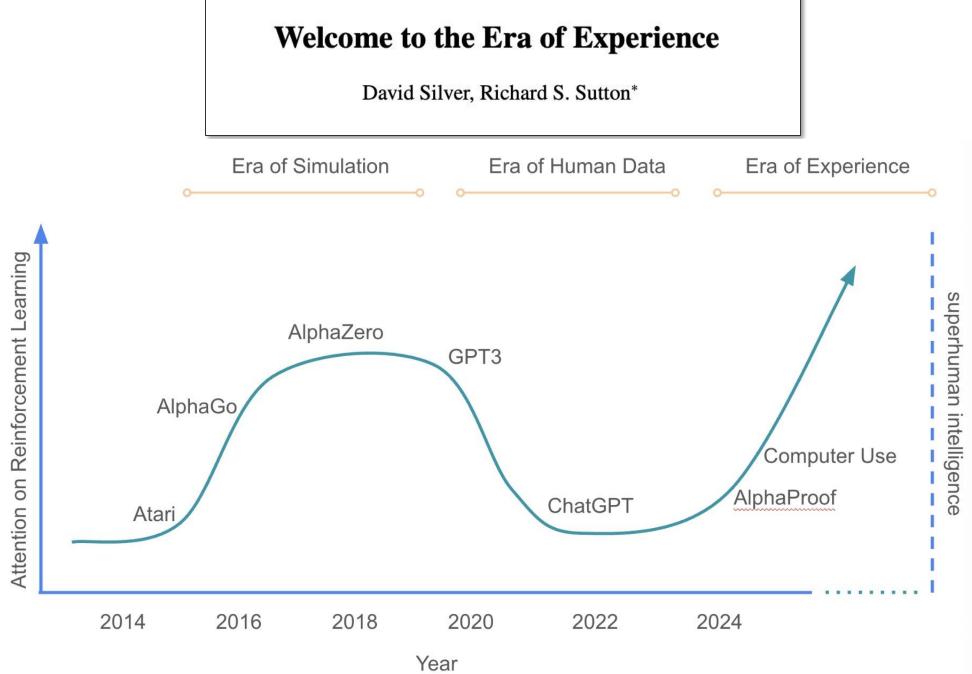
Reinforcement Learning

Zhiting Hu Lecture 13, May 13, 2025

HALICIOĞLU DATA SCIENCE INSTITUTE

Outline

- Paper presentation:
 - David Lurie, Ben TenWolde: "Mixture of Agents with LLMs"
 - Qing Cheng, Zhaomei Geng: "ChatGPT in medicine: an overview of its applications, advantages, limitations, future prospects, and ethical considerations"



So far... Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

So far... Unsupervised Learning

Data: x no labels!

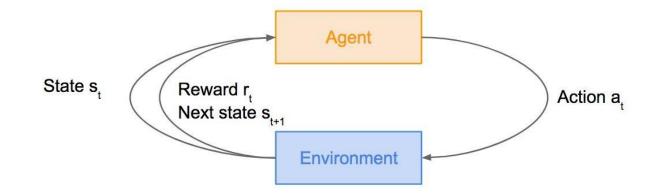
Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Today: Reinforcement Learning

Problems involving an **agent** interacting with an **environment**, which provides numeric **reward** signals

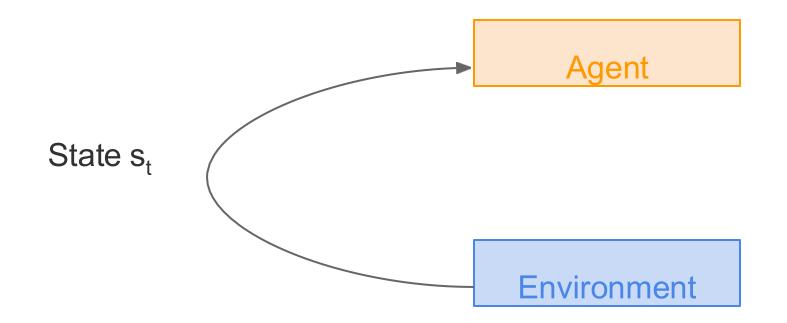
Goal: Learn how to take actions in order to maximize reward

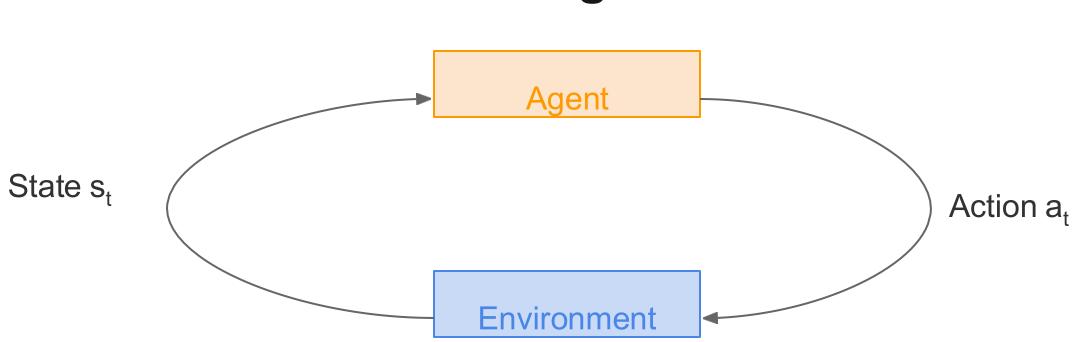


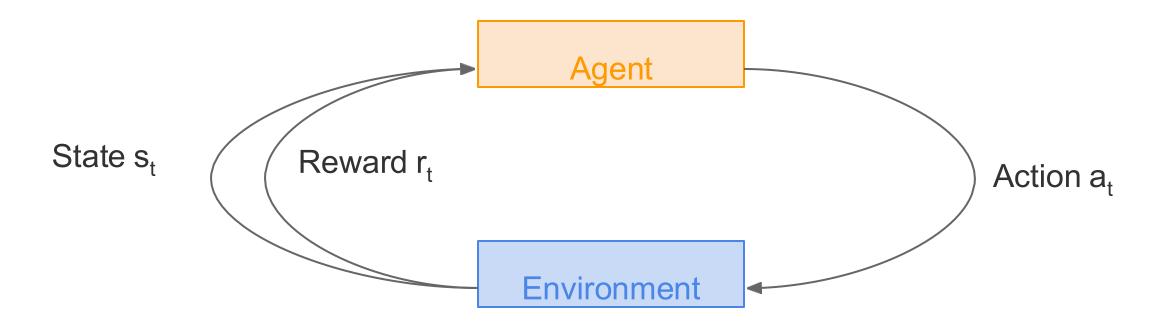
Overview

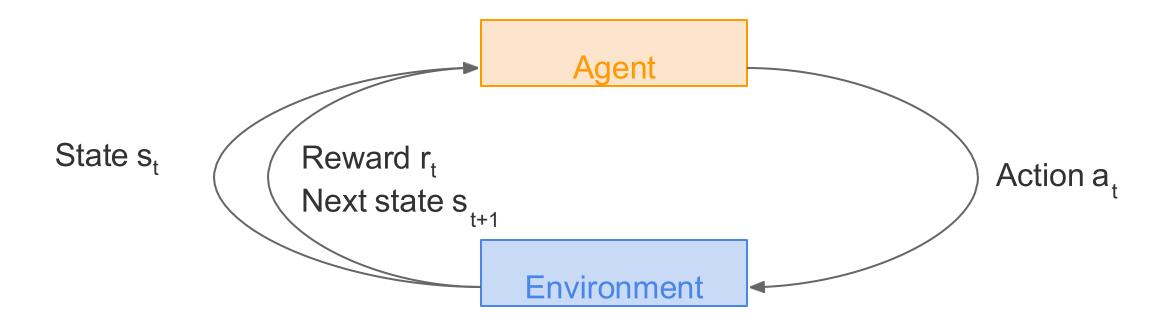
- What is Reinforcement Learning?
- Markov Decision Processes
- Q-Learning
- Policy Gradients

Environment

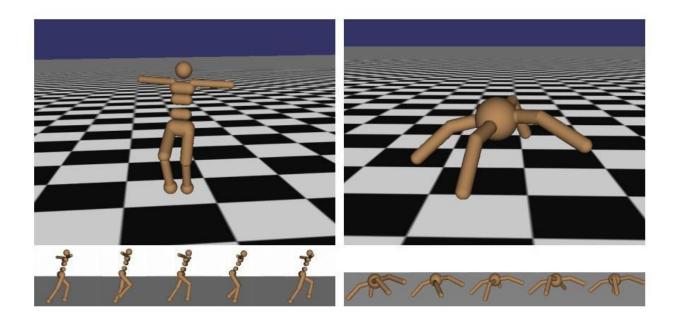








Robot Locomotion



Objective: Make the robot move forward

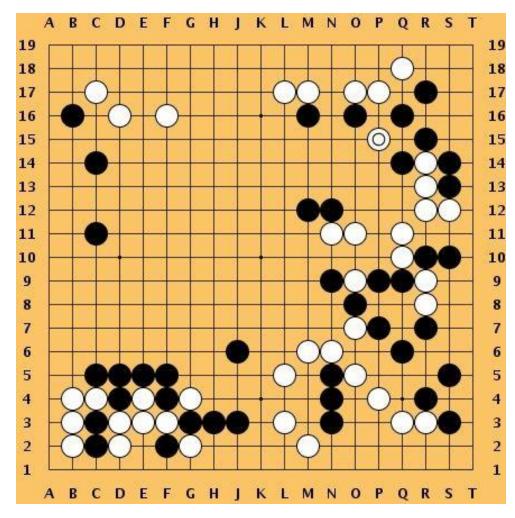
State: Angle and position of the joints **Action:** Torque applied on joints **Reward:** 1 at each time step upright + forward movement

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game stateAction: Game controls e.g. Left, Right, Up, DownReward: Score increase/decrease at each time step

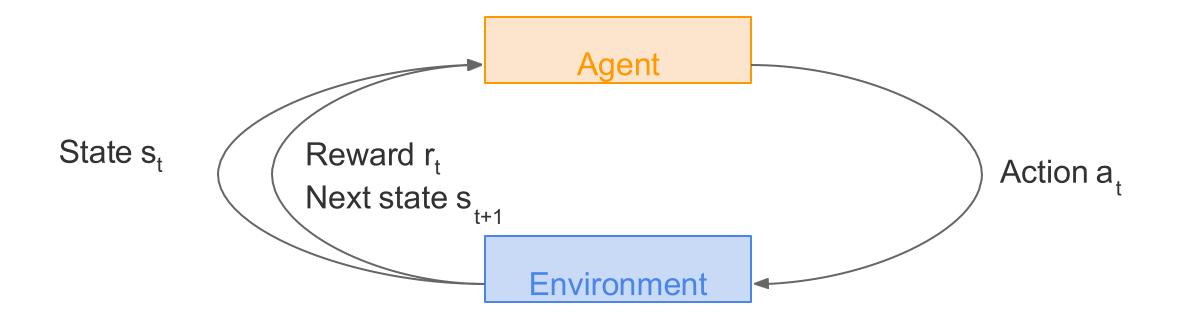
Go



Objective: Win the game!

State: Position of all piecesAction: Where to put the next piece downReward: 1 if win at the end of the game, 0 otherwise

How can we mathematically formalize the RL problem?



Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the world

Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma)$

- ${\cal S}$: set of possible states
- ${\cal A}$: set of possible actions
- $\boldsymbol{\mathcal{R}}$: distribution of reward given (state, action) pair
- ℙ : transition probability i.e. distribution over next state given (state, action) pair
- γ : discount factor

Markov Decision Process

- At time step t=0, environment samples initial state $s_0 \sim p(s_0)$
- Then, for t=0 until done:
 - Agent selects action a_t
 - Environment samples reward $r_t \sim R(. | s_t, a_t)$
 - Environment samples next state $s_{t+1} \sim P(. | s_t, a_t)$
 - Agent receives reward r_t and next state s_{t+1}

- A policy π is a function from S to A that specifies what action to take in each state
- Following a policy produces sample *trajectories* (or paths) s₀, a₀, r₀, s₁, a₁, r₁, ...

- **Objective**: find policy π^* that maximizes cumulative discounted reward: $\sum_{t>0} \gamma^t r_t$

 $(\mathcal{S},\mathcal{A},\mathcal{R},\mathbb{P},\gamma)$

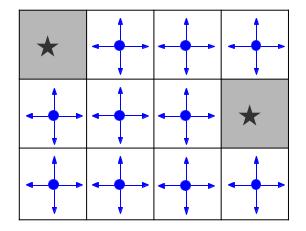
A simple MDP: Grid World

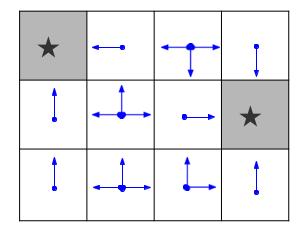


Set a negative "reward" for each transition (e.g. r = -1)

Objective: reach one of terminal states (greyed out) in least number of actions

A simple MDP: Grid World





Random Policy

$$igl(\mathcal{S},\mathcal{A},\mathcal{R},\mathbb{P},\gamma)igr)$$

MDP for language generation

• (Autoregressive) text generation

Sentence $\boldsymbol{y} = (y_0, \dots, y_T)$

 $\pi_{\theta}(y_t \mid \boldsymbol{y}_{< t}) = \text{softmax}(f_{\theta}(y_t \mid \boldsymbol{y}_{< t}))$

The optimal policy π^*

We want to find optimal policy π^* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

The optimal policy π^*

We want to find optimal policy π^* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)? Maximize the **expected sum of rewards**!

Formally:
$$\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t \ge 0} \gamma^t r_t | \pi \right]$$
 with $s_0 \sim p(s_0), a_t \sim \pi(\cdot | s_t), s_{t+1} \sim p(\cdot | s_t, a_t)$

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy from state s: $V^{\pi}(s) = \mathbb{E}\left[\sum \gamma^{t} r_{t} | s_{0} = s, \pi\right]$

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy from state s: $V\pi(x) = \sum_{i=1}^{n} \int_{-\infty}^{\infty} \frac{1}{x^{n-1}} dx^{n-1} dx^{$

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

How good is a state-action pair?

The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Q* satisfies the following **Bellman equation**:

$$Q^*(s,a) = \mathbb{E}_{s'\sim\mathcal{E}}\left[r + \gamma \max_{a'} Q^*(s',a')|s,a\right]$$

Intuition: if the optimal state-action values for the next time-step Q*(s',a') are known, then the optimal strategy is to take the action that maximizes the expected value of $r + \gamma Q^*(s',a')$

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Q* satisfies the following **Bellman equation**:

$$Q^*(s,a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s',a') | s, a \right]$$

Intuition: if the optimal state-action values for the next time-step Q*(s',a') are known, then the optimal strategy is to take the action that maximizes the expected value of $r + \gamma Q^*(s',a')$

The optimal policy π^* corresponds to taking the best action in any state as specified by Q^{*}

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s',a')|s,a\right]$$

 Q_i will converge to Q^* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s',a')|s,a\right]$$

 Q_i will converge to Q^* as i -> infinity

Question: What's the problem with this?

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s',a')|s,a\right]$$

 Q_i will converge to Q^* as i -> infinity

Question: What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s',a')|s,a\right]$$

 Q_i will converge to Q^* as i -> infinity

Question: What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!

Question: how would you solve the issue?

Value iteration algorithm: Use Bellman equation as an iterative update

$$Q_{i+1}(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s',a')|s,a\right]$$

 Q_i will converge to Q^* as i -> infinity

Question: What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!

Question: how would you solve the issue?

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

 $Q(s,a;\theta) \approx Q^*(s,a)$

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

$$Q(s,a;\theta) \approx Q^*(s,a)$$

If the function approximator is a deep neural network => **deep q-learning**!

Q-learning: Use a function approximator to estimate the action-value function

$$Q(s,a;\theta) \approx Q^*(s,a)$$

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s,a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s',a') | s, a \right]$$

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s,a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s',a') | s, a \right]$$

Forward Pass

Loss function:
$$L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s,a;\theta_i))^2 \right]$$

where $y_i = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s',a';\theta_{i-1}) | s, a \right]$

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s,a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s',a') | s, a \right]$$

Forward Pass

Loss function:
$$L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s,a;\theta_i))^2 \right]$$

where $y_i = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s',a';\theta_{i-1}) | s, a \right]$

Backward Pass

Gradient update (with respect to Q-function parameters θ):

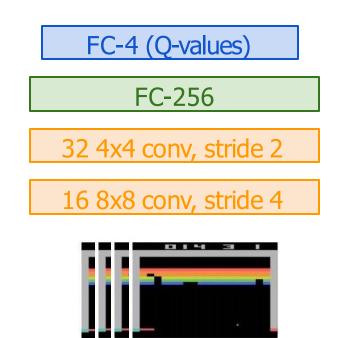
$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s',a';\theta_{i-1}) - Q(s,a;\theta_i)) \nabla_{\theta_i} Q(s,a;\theta_i) \right]$$

Case Study: Playing Atari Games

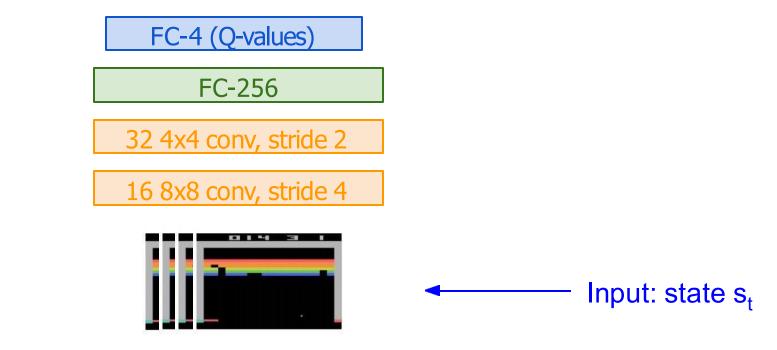
Objective: Complete the game with the highest score

State: Raw pixel inputs of the game stateAction: Game controls e.g. Left, Right, Up, DownReward: Score increase/decrease at each time step

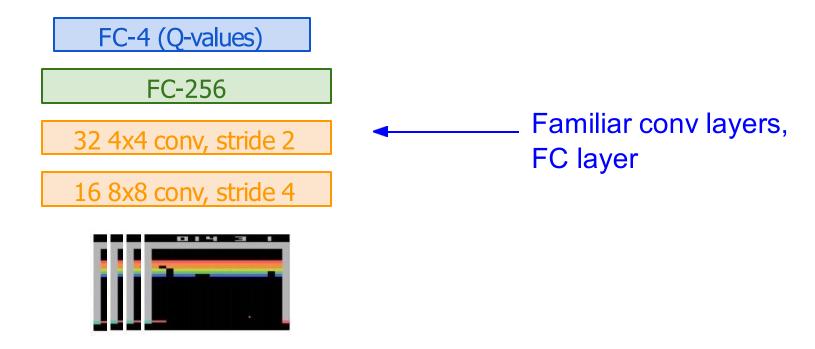
Q(s,a; heta) : neural network with weights heta



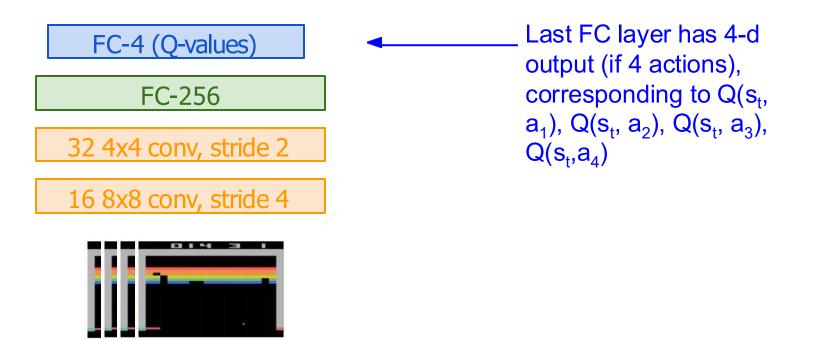
Q(s,a; heta) : neural network with weights $\, heta$



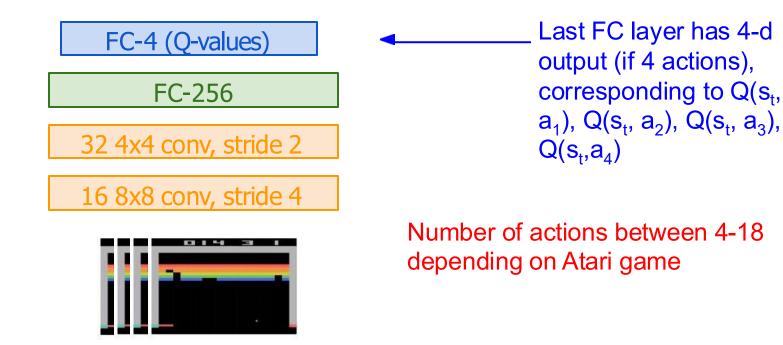
Q(s,a; heta) : neural network with weights heta



Q(s,a; heta) : neural network with weights heta

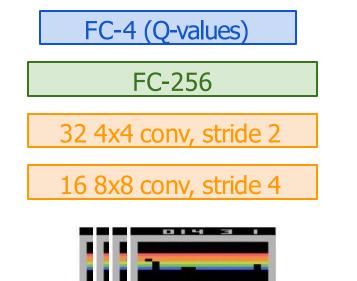


Q(s,a; heta) : neural network with weights heta



Q(s,a; heta): neural network with weights heta

A single feedforward pass to compute Q-values for all actions from the current state => efficient!



Last FC layer has 4-d output (if 4 actions), corresponding to $Q(s_t, a_1)$, $Q(s_t, a_2)$, $Q(s_t, a_3)$, $Q(s_t, a_4)$

Number of actions between 4-18 depending on Atari game

Summary so far

- Q-learning:
 - Bellman equation
 - Value-based RL
 - Off-policy RL

$$\left[\begin{array}{ll} \text{Loss function:} & L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s,a;\theta_i))^2 \right] \\ \text{where} & y_i = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s',a';\theta_{i-1}) | s,a \right] \end{array} \right]$$

- Next: Policy gradient
 - Policy-based RL
 - On-policy RL

Questions?