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Outline

e Reinforcement Learning

e Paper presentation:
©0 David Lurie, Ben TenWolde: “Mixture of Agents with LLMs”

© Qing Cheng, Zhaomei Geng: “ChatGPT in medicine: an overview of its applications,
advantages, limitations, future prospects, and ethical considerations”



Attention on Reinforcement Learning
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So far... Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y — Cat

Examples: Classification,
regression, object detection,
semantic segmentation, image Classification
captioning, efc.



So far... Unsupervised Learning
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Data: x
no labels!
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Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
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Today: Reinforcement Learning

Problems involving an agent

interacting with an environment, ———
which provides numeric reward

signals

Reward F;
Next state S,.q

Action a,

Environment

Goal: Learn how to take actions
In order to maximize reward

Atari games figure copyright Volodymyr Mnih et al., 2013. Reproguced with permission.



Overview

What is Reinforcement Learning?
Markov Decision Processes
Q-Learning

Policy Gradients



Reinforcement Learning

Environment




Reinforcement Learning

State s,

Environment




Reinforcement Learning

State s,

Environment

Action a,
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Reinforcement Learning

State s,

Reward r,

Environment

Action a,
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Reinforcement Learning

State s, Reward r,

Next state S..,

Environment

Action a t
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Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torque applied on joints
Reward: 1 at each time step upright +
forward movement

1
Figures copyright John Schulman et al., 2016. Reproéuced with permission.



Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

1
Figures copyright Voladymyr Mnih et al., 2013. Reproguced with permission.
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Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

How can we mathematically formalize the RL
problem?

State s, Reward r,

Action a
Nextstate s t

Environment
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Markov Decision Process

- Mathematical formulation of the RL problem

- Markov property: Current state completely characterises the state of the
world

Defined by: (S, A, R, IP)) 7)

. set of possible states
. set of possible actions
. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

REAXN 0
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Markov Decision Process

At time step t=0, environment samples initial state s, ~ p(s,)
Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r, ~ R( . | s;, a,)

- Environment samples next state s, ~P( . | s,, &)

- Agent receives reward r, and next state s, ,

A policy Tris a function from S to A that specifies what action to take in each state

Following a policy produces sample frajectories (or paths) s,, a,, ry, S4, a4, Iy, ..

t
Objective: find policy 1 that maximizes cumulative discounted reward: Z'}’ Tt
£>0
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{(S,A, R, P, f)/)}

A simple MDP: Grid World

actions = { states
1. right ~— *
2. left < Set a negative “reward”
3. u I * for each transition
i (e.9.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions

20



A simple MDP: Grid World
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{(S,A, R, P, f)/)}

MDP for language generation

e (Autoregressive) text generation

Sentence y = (yg, «+) VT)

o (Ve | ¥<¢) = softmax( fo(yely<))

22



The optimal policy 11

We want to find optimal policy 1 that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

24



The optimal policy 11

We want to find optimal policy 1 that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Forma”y: T = ElIng?ElJ{]E Z’}‘ Ttlﬂ- with Sp ™ p(Sﬂ), ay ~ ﬂ-('|3t):3t—|—l ~ P('|3t$ﬂt)
t}ﬂ
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S4, a4, Iy, --.
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, ry, S¢, a4, Iy, ..

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
Vi(s) =E Z’}ft?'tls.g =8,

>0
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, ry, S¢, a4, Iy, ..

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
V7(s) = E'}* T¢|80 = 8,

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E |:Z 'ytrt|3n = 8,09 = @, ’JT:|

>0
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Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = IIIE,XE Z"}’t’f‘t|50 = S8,a0 = Q, T
>0
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Bellman equation
The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = IIIE,XE Z"}’t’f‘t|50 = S8,a0 = Q, T
>0

Q* satisfies the following Bellman equation:
Q*(S: a’) = Egng [T + 7y HE:}X Q*(S!, CL!)|S, a,}

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)
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Bellman equation
The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = IIIE,XE Z"}’t’f‘t|50 = S8,a0 = Q, T
>0

Q* satisfies the following Bellman equation:
Q*(S: a’) = Egng [T + 7y HE:}X Q*(S!, CL!)|S, a,}

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)

The optimal policy ™ corresponds to taking the best action in any state as specified by Q*

31



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qitr1(s,a) =E [’r + ymax Q;(s’,a’)|s, a}
a

Q, will converge to Q* as i -> infinity

32



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qir1(s,a) = E 1+ ymax Qi(s', ') s, a]
a
Q, will converge to Q* as i -> infinity

What's the problem with this?
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Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qitr1(s,a) =E [’r + ymax Q;(s’,a’)|s, a}
a
Q: will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire

state space!

34



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qitr1(s,a) =E [’r + ymax Q;(s’,a’)|s, a}
a
Q: will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qg.
current game state pixels, computationally infeasible to compute for entire

state space!
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Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qitr1(s,a) =E [’r + ymax Q;(s’,a’)|s, a}
a
Q: will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qg.
current game state pixels, computationally infeasible to compute for entire
state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural
network!

36



Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) =~ Q*(s,a)
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Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) =~ Q*(s,a)

If the function approximator is a deep neural network => deep g-learning!
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Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s, a; 91{@’“(8: a)

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

39



Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
QR*(s,a) =Eg~¢ [’r +ymax Q*(s’,a’)|s, a,}
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Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

QR*(s,a) =Eg~¢ [’r +ymax Q*(s’,a’)|s, a,}
Forward Pass
Loss function: Li(gi) _ Es,awp(-) [(% _ Q(s, a; 91))2]

where ¥ = Egg [?“-I-’)/IIR}XQ(S’:@’;@:'—MS:@]
a

41



Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
QR*(s,a) =Eg~¢ [’r +ymax Q*(s’,a’)|s, a,}

Forward Pass
Loss function:  L;(6;) = Eg anp() [(yz — Q(s, a; 91:))2]

where ¥ = Egg [?“-I-’)/IIR}XQ(S’:@’;@:'—MS:@]
a

Backward Pass
Gradient update (with respect to Q-function parameters 0) :

Vo,Li(0:) = Es anp(-);s'~E [’r +ymaxQ(s',a';0i-1) — Q(s, a;0:)) Vo, Q(s, a3 9?:)]

42



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Case Study: Playing Atari Games

(3]

R § =3 —n N

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Repr%éuced with permission.



Q-network Architecture

Q(s,a;0):
neural network
with weights £

FC-4 (Q-values)

FC-256

T

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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Q-network Architecture

Q(s,a;0):
neural network
with weights £

FC-4 (Q-values)

FC-256

T

[Mnih et al. NIPS Workshop 2013; Nature 2015]

- Input: state s,

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S: a, 9) : - -
neural network FC-4 (Q-values)
with weights @ FC-256
= Familiar conv layers,
FC layer

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S y Ay 9) : FC-4 (O-values) - Last FC layer has 4-d

neural network output (if 4 actions),

with weights £ FC-256 corresponding to Q(s,,
a,), Q(s,, a,), Q(s, a,),
Q(s,,a,)

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S y Ay 9) : FC-4 (O-values) - Last FC layer has 4-d

neural network output (if 4 actions),

with weights £ FC-256 corresponding to Q(s,,
a,), Q(s,, a,), Q(s, a,),
Q(s,a,)

Number of actions between 4-18

depending on Atari game

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

s,a;0): i
n%g ral nétvxx)ork —ed (Ovalues) ) Eﬁf&i(f.f'if&'?fﬁs‘)‘ d
with weights £ FC-256 corresponding to Q(s,,

a,), Q(s,, a,), Q(s, a,),
Q(s,a,)

A single feedforward pass
to compute Q-values for all

actions from the current Number of actions between 4-18

state => efficient! 110 — depending on Atari game

11|

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

50



Summary so far

e Q-learning:
o Bellman equation
© Value-based RL
o Off-policy RL

e Next: Policy gradient
O Policy-based RL
©  On-policy RL

(

\_

\

Loss function:  L;(6;) = Eg qnp(.) (yi — Q(s,a;6;))?]

where Y; = Eg g [’r +ymax Q(s’,a’;0;-1)]s, a]
a

J
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Questions?
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