
DSC291: Machine Learning with Few Labels

Reinforcement Learning

Zhiting Hu

Lecture 13, May 13, 2025

Outline

● Reinforcement Learning

● Paper presentation:

◯ David Lurie, Ben TenWolde: “Mixture of Agents with LLMs”

◯ Qing Cheng, Zhaomei Geng: “ChatGPT in medicine: an overview of its applications,
advantages, limitations, future prospects, and ethical considerations”

2

3

So far… Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,

semantic segmentation, image

captioning, etc.

Cat

Classification

4

So far… Unsupervised Learning

Data: x
no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature

learning, density estimation, etc.

5

Today: Reinforcement Learning

Problems involving an agent
interacting with an environment,

which provides numeric reward

signals

Goal: Learn how to take actions

in order to maximize reward

6

Overview

- What is Reinforcement Learning?

- Markov Decision Processes

- Q-Learning

- Policy Gradients

7

Agent

Reinforcement Learning

Environment

8

Agent

Environment

State st

Reinforcement Learning

9

Agent

Environment

Action at

State st

Reinforcement Learning

10

Agent

Environment

Action at

State st Reward rt

Reinforcement Learning

11

Agent

Environment

Action a
t

State st

Reinforcement Learning

Reward rt

Next state s
t+1

12

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints

Action: Torque applied on joints

Reward: 1 at each time step upright +

forward movement

14

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

15

Go

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Lecture 14 -
16

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Agent

Environment

Action a
t

State st

How can we mathematically formalize the RL

problem?

Reward rt

Next state s
t+1

17

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by:

: set of possible states

: set of possible actions

: distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair

: discount factor

18

Markov Decision Process

- At time step t=0, environment samples initial state s0 ~ p(s0)

- Then, for t=0 until done:

- Agent selects action at

- Environment samples reward rt ~ R(. | st, at)

- Environment samples next state st+1 ~ P(. | st, at)

- Agent receives reward rt and next state st+1

- A policy π is a function from S to A that specifies what action to take in each state

- Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

- Objective: find policy π* that maximizes cumulative discounted reward:

19

A simple MDP: Grid World

★

★

}

Objective: reach one of terminal states (greyed out) in

least number of actions

actions = {

1. right

2. left

3. up

4. down

Set a negative “reward”
for each transition

(e.g. r = -1)

states

20

A simple MDP: Grid World

Random Policy Optimal Policy

★

★

★

★

21

MDP for language generation

● (Autoregressive) text generation

22

Sentence 𝒚 = (𝑦0, … , 𝑦𝑇)

𝜋𝜃 𝑦𝑡 𝒚<𝑡) = softmax(𝑓𝜃 𝑦𝑡 𝒚<𝑡)

The optimal policy π*

We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

24

The optimal policy π*

We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

Maximize the expected sum of rewards!

Formally: with

25

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

26

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy

from state s:

27

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy

from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

28

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

Bellman equation

29

Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,

then the optimal strategy is to take the action that maximizes the expected value of

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

30

Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,

then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy π* corresponds to taking the best action in any state as specified by Q*

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

31

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

32

Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

33

Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

34

Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Question: how would you solve the issue?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

35

Qi will converge to Q* as i -> infinity

Question: What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Question: how would you solve the issue?
Solution: use a function approximator to estimate Q(s,a). E.g. a neural

network!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

36

Q-learning: Use a function approximator to estimate the action-value function

Solving for the optimal policy: Q-learning

37

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

If the function approximator is a deep neural network => deep q-learning!

38

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

39

Remember: want to find a Q-function that satisfies the Bellman Equation:

Solving for the optimal policy: Q-learning

40

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass

Loss function:

where

Solving for the optimal policy: Q-learning

41

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass

Loss function:

where

Backward Pass

Gradient update (with respect to Q-function parameters θ) :

Solving for the optimal policy: Q-learning

42

Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

44

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

45

:
neural network

with weights

Q-network Architecture

Input: state st

Current state st: 84x84x4 stack of last 4 frames

(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

46

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Familiar conv layers,

FC layer

[Mnih et al. NIPS Workshop 2013; Nature 2015]

47

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions),

corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

48

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions),

corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

49

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions),

corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

A single feedforward pass
to compute Q-values for all
actions from the current

state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

50

Summary so far

● Q-learning:

◯ Bellman equation

◯ Value-based RL

◯ Off-policy RL

● Next: Policy gradient

◯ Policy-based RL

◯ On-policy RL

51

Loss function:

where

Questions?

	Slide 1: DSC291: Machine Learning with Few Labels Reinforcement Learning
	Slide 2: Outline
	Slide 3
	Slide 4: So far… Supervised Learning
	Slide 5: So far… Unsupervised Learning
	Slide 6: Today: Reinforcement Learning
	Slide 7: Overview
	Slide 8: Reinforcement Learning
	Slide 9: Reinforcement Learning
	Slide 10: Reinforcement Learning
	Slide 11: Reinforcement Learning
	Slide 12: Reinforcement Learning
	Slide 14: Robot Locomotion
	Slide 15: Atari Games
	Slide 16: Go
	Slide 17: How can we mathematically formalize the RL problem?
	Slide 18: Markov Decision Process
	Slide 19: Markov Decision Process
	Slide 20: A simple MDP: Grid World
	Slide 21: A simple MDP: Grid World
	Slide 22: MDP for language generation
	Slide 24: The optimal policy π*
	Slide 25: The optimal policy π*
	Slide 26: Definitions: Value function and Q-value function
	Slide 27: Definitions: Value function and Q-value function
	Slide 28: Definitions: Value function and Q-value function
	Slide 29: Bellman equation
	Slide 30: Bellman equation
	Slide 31: Bellman equation
	Slide 32: Solving for the optimal policy
	Slide 33: Solving for the optimal policy
	Slide 34: Solving for the optimal policy
	Slide 35: Solving for the optimal policy
	Slide 36: Solving for the optimal policy
	Slide 37: Solving for the optimal policy: Q-learning
	Slide 38: Solving for the optimal policy: Q-learning
	Slide 39: Solving for the optimal policy: Q-learning
	Slide 40: Solving for the optimal policy: Q-learning
	Slide 41: Solving for the optimal policy: Q-learning
	Slide 42: Solving for the optimal policy: Q-learning
	Slide 44: Case Study: Playing Atari Games
	Slide 45: Q-network Architecture
	Slide 46: Q-network Architecture
	Slide 47: Q-network Architecture
	Slide 48: Q-network Architecture
	Slide 49: Q-network Architecture
	Slide 50: Q-network Architecture
	Slide 51: Summary so far
	Slide 52: Questions?

