DSC291: Machine Learning with Few Labels

Reinforcement Learning

Zhiting Hu
Lecture 13, May 13, 2025

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

Outline

e Reinforcement Learning

e Paper presentation:
©0 David Lurie, Ben TenWolde: “Mixture of Agents with LLMs”

© Qing Cheng, Zhaomei Geng: “ChatGPT in medicine: an overview of its applications,
advantages, limitations, future prospects, and ethical considerations”

Attention on Reinforcement Learning

-

AlphaGo

Atari

Welcome to the Era of Experience

David Silver, Richard S. Sutton*

Era of Simulation

Era of Human Data

AlphaZero

ChatGPT

Era of Experience

Computer Use

AAAAAAAAPANANANANAA

2014

2016

2018 2020 2022 2024

Year

aouabi|@jul uewnytadns

So far... Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y — Cat

Examples: Classification,
regression, object detection,
semantic segmentation, image Classification
captioning, efc.

So far... Unsupervised Learning

-
-
b,
e,

Data: x
no labels!

s
bea s

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

o H H
IS 02 I I s T

:3 .
-
>
3
x&

L H
HoHCH H H H

L
o

Today: Reinforcement Learning

Problems involving an agent

interacting with an environment, ———
which provides numeric reward

signals

Reward F;
Next state S,.q

Action a,

Environment

Goal: Learn how to take actions
In order to maximize reward

Atari games figure copyright Volodymyr Mnih et al., 2013. Reproguced with permission.

Overview

What is Reinforcement Learning?
Markov Decision Processes
Q-Learning

Policy Gradients

Reinforcement Learning

Environment

Reinforcement Learning

State s,

Environment

Reinforcement Learning

State s,

Environment

Action a,

10

Reinforcement Learning

State s,

Reward r,

Environment

Action a,

11

Reinforcement Learning

State s, Reward r,

Next state S..,

Environment

Action a t

12

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torque applied on joints
Reward: 1 at each time step upright +
forward movement

1
Figures copyright John Schulman et al., 2016. Reproéuced with permission.

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

1
Figures copyright Voladymyr Mnih et al., 2013. Reproguced with permission.

P e T R i
O N W & U N WO

=N WA Uy N @

Go

A: B € DUE B G H] K L MiN O P QO RS T

r

@7

_/

o°

S

A BCDEFGH)] KLMNUOPA QRST

P e I
O N W & U &y N 0 WO

= N W R Uy N @

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

16

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

How can we mathematically formalize the RL
problem?

State s, Reward r,

Action a
Nextstate s t

Environment

17

Markov Decision Process

- Mathematical formulation of the RL problem

- Markov property: Current state completely characterises the state of the
world

Defined by: (S, A, R, IP)) 7)

. set of possible states
. set of possible actions
. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

REAXN 0

18

Markov Decision Process

At time step t=0, environment samples initial state s, ~ p(s,)
Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r, ~ R(. | s;, a,)

- Environment samples next state s, ~P(. | s,, &)

- Agent receives reward r, and next state s, ,

A policy Tris a function from S to A that specifies what action to take in each state

Following a policy produces sample frajectories (or paths) s,, a,, ry, S4, a4, Iy, ..

t
Objective: find policy 1 that maximizes cumulative discounted reward: Z'}’ Tt
£>0

19

{(S,A, R, P, f)/)}

A simple MDP: Grid World

actions = { states
1. right ~— *
2. left < Set a negative “reward”
3. u I * for each transition
i (e.9.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions

20

A simple MDP: Grid World

*

+

+

+

{(S,A, R, P, f)/)}

+

+

+

*

<+

e

1

+

+

+

+

.

o——2>

*

Random Policy

1.

L.

I

Optimal Policy

{(S,A, R, P, f)/)}

MDP for language generation

e (Autoregressive) text generation

Sentence y = (yg, «+) VT)

o (Ve | ¥<¢) = softmax(fo(yely<))

22

The optimal policy 11

We want to find optimal policy 1 that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

24

The optimal policy 11

We want to find optimal policy 1 that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Forma”y: T = ElIng?ElJ{]E Z’}‘ Ttlﬂ- with Sp ™ p(Sﬂ), ay ~ ﬂ-('|3t):3t—|—l ~ P('|3t$ﬂt)
t}ﬂ

25

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S4, a4, Iy, --.

26

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, ry, S¢, a4, Iy, ..

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
Vi(s) =E Z’}ft?'tls.g =8,

>0

27

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, ry, S¢, a4, Iy, ..

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
V7(s) = E'}* T¢|80 = 8,

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E |:Z 'ytrt|3n = 8,09 = @, ’JT:|

>0

28

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = IIIE,XE Z"}’t’f‘t|50 = S8,a0 = Q, T
>0

29

Bellman equation
The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = IIIE,XE Z"}’t’f‘t|50 = S8,a0 = Q, T
>0

Q* satisfies the following Bellman equation:
Q*(S: a’) = Egng [T + 7y HE:}X Q*(S!, CL!)|S, a,}

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)

30

Bellman equation
The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = IIIE,XE Z"}’t’f‘t|50 = S8,a0 = Q, T
>0

Q* satisfies the following Bellman equation:
Q*(S: a’) = Egng [T + 7y HE:}X Q*(S!, CL!)|S, a,}

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)

The optimal policy ™ corresponds to taking the best action in any state as specified by Q*

31

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qitr1(s,a) =E [’r + ymax Q;(s’,a’)|s, a}
a

Q, will converge to Q* as i -> infinity

32

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qir1(s,a) = E 1+ ymax Qi(s', ') s, a]
a
Q, will converge to Q* as i -> infinity

What's the problem with this?

33

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qitr1(s,a) =E [’r + ymax Q;(s’,a’)|s, a}
a
Q: will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire

state space!

34

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qitr1(s,a) =E [’r + ymax Q;(s’,a’)|s, a}
a
Q: will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qg.
current game state pixels, computationally infeasible to compute for entire

state space!

35

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
/!
Qitr1(s,a) =E [’r + ymax Q;(s’,a’)|s, a}
a
Q: will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.qg.
current game state pixels, computationally infeasible to compute for entire
state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural
network!

36

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) =~ Q*(s,a)

37

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) =~ Q*(s,a)

If the function approximator is a deep neural network => deep g-learning!

38

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s, a; 91{@’“(8: a)

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

39

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
QR*(s,a) =Eg~¢ [’r +ymax Q*(s’,a’)|s, a,}

40

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

QR*(s,a) =Eg~¢ [’r +ymax Q*(s’,a’)|s, a,}
Forward Pass
Loss function: Li(gi) _ Es,awp(-) [(% _ Q(s, a; 91))2]

where ¥ = Egg [?“-I-’)/IIR}XQ(S’:@’;@:'—MS:@]
a

41

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
QR*(s,a) =Eg~¢ [’r +ymax Q*(s’,a’)|s, a,}

Forward Pass
Loss function: L;(6;) = Eg anp() [(yz — Q(s, a; 91:))2]

where ¥ = Egg [?“-I-’)/IIR}XQ(S’:@’;@:'—MS:@]
a

Backward Pass
Gradient update (with respect to Q-function parameters 0) :

Vo,Li(0:) = Es anp(-);s'~E [’r +ymaxQ(s',a';0i-1) — Q(s, a;0:)) Vo, Q(s, a3 9?:)]

42

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Case Study: Playing Atari Games

(3]

R § =3 —n N

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Repr%éuced with permission.

Q-network Architecture

Q(s,a;0):
neural network
with weights £

FC-4 (Q-values)

FC-256

T

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

45

Q-network Architecture

Q(s,a;0):
neural network
with weights £

FC-4 (Q-values)

FC-256

T

[Mnih et al. NIPS Workshop 2013; Nature 2015]

- Input: state s,

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

46

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S: a, 9) : - -
neural network FC-4 (Q-values)
with weights @ FC-256
= Familiar conv layers,
FC layer

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

47

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S y Ay 9) : FC-4 (O-values) - Last FC layer has 4-d

neural network output (if 4 actions),

with weights £ FC-256 corresponding to Q(s,,
a,), Q(s,, a,), Q(s, a,),
Q(s,,a,)

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

48

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S y Ay 9) : FC-4 (O-values) - Last FC layer has 4-d

neural network output (if 4 actions),

with weights £ FC-256 corresponding to Q(s,,
a,), Q(s,, a,), Q(s, a,),
Q(s,a,)

Number of actions between 4-18

depending on Atari game

T

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

49

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

s,a;0): i
n%g ral nétvxx)ork —ed (Ovalues)) Eﬁf&i(f.f'if&'?fﬁs‘)‘ d
with weights £ FC-256 corresponding to Q(s,,

a,), Q(s,, a,), Q(s, a,),
Q(s,a,)

A single feedforward pass
to compute Q-values for all

actions from the current Number of actions between 4-18

state => efficient! 110 — depending on Atari game

11|

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

50

Summary so far

e Q-learning:
o Bellman equation
© Value-based RL
o Off-policy RL

e Next: Policy gradient
O Policy-based RL
© On-policy RL

(

_

\

Loss function: L;(6;) = Eg qnp(.) (yi — Q(s,a;6;))?]

where Y; = Eg g [’r +ymax Q(s’,a’;0;-1)]s, a]
a

J

51

Questions?

	Slide 1: DSC291: Machine Learning with Few Labels Reinforcement Learning
	Slide 2: Outline
	Slide 3
	Slide 4: So far… Supervised Learning
	Slide 5: So far… Unsupervised Learning
	Slide 6: Today: Reinforcement Learning
	Slide 7: Overview
	Slide 8: Reinforcement Learning
	Slide 9: Reinforcement Learning
	Slide 10: Reinforcement Learning
	Slide 11: Reinforcement Learning
	Slide 12: Reinforcement Learning
	Slide 14: Robot Locomotion
	Slide 15: Atari Games
	Slide 16: Go
	Slide 17: How can we mathematically formalize the RL problem?
	Slide 18: Markov Decision Process
	Slide 19: Markov Decision Process
	Slide 20: A simple MDP: Grid World
	Slide 21: A simple MDP: Grid World
	Slide 22: MDP for language generation
	Slide 24: The optimal policy π*
	Slide 25: The optimal policy π*
	Slide 26: Definitions: Value function and Q-value function
	Slide 27: Definitions: Value function and Q-value function
	Slide 28: Definitions: Value function and Q-value function
	Slide 29: Bellman equation
	Slide 30: Bellman equation
	Slide 31: Bellman equation
	Slide 32: Solving for the optimal policy
	Slide 33: Solving for the optimal policy
	Slide 34: Solving for the optimal policy
	Slide 35: Solving for the optimal policy
	Slide 36: Solving for the optimal policy
	Slide 37: Solving for the optimal policy: Q-learning
	Slide 38: Solving for the optimal policy: Q-learning
	Slide 39: Solving for the optimal policy: Q-learning
	Slide 40: Solving for the optimal policy: Q-learning
	Slide 41: Solving for the optimal policy: Q-learning
	Slide 42: Solving for the optimal policy: Q-learning
	Slide 44: Case Study: Playing Atari Games
	Slide 45: Q-network Architecture
	Slide 46: Q-network Architecture
	Slide 47: Q-network Architecture
	Slide 48: Q-network Architecture
	Slide 49: Q-network Architecture
	Slide 50: Q-network Architecture
	Slide 51: Summary so far
	Slide 52: Questions?

