DSC291: Machine Learning with Few Labels

Generative Adversarial Learning

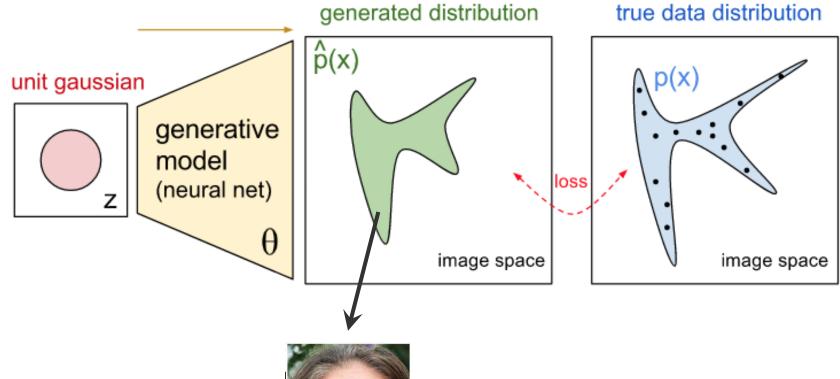
Zhiting Hu Lecture 12, May 8, 2025

Outline

- Deep Generative Models
 - Generative adversarial learning

- Paper presentation:
 - Letong Liang: "DeepSeek-Prover-V2"
 - Ali El Lahib, Darin Djapri: "TD-MPC2: Scalable, Robust World Models for Continuous Control"

Recap: Implicit Generative Models



https://blog.openai.com/generative-models/

Recap: Generative Adversarial Nets (GANs)

Learning

- A minimax game between the generator and the discriminator
- \circ Train D to maximize the probability of assigning the correct label to both training examples and generated samples
- \circ Train G to fool the discriminator

$$\max_{D} \mathcal{L}_{D} = \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})} \left[\log D(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{x} \sim G(\boldsymbol{z}), \boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log (1 - D(\boldsymbol{x})) \right]$$
$$\min_{G} \mathcal{L}_{G} = \mathbb{E}_{\boldsymbol{x} \sim G(\boldsymbol{z}), \boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log (1 - D(\boldsymbol{x})) \right].$$

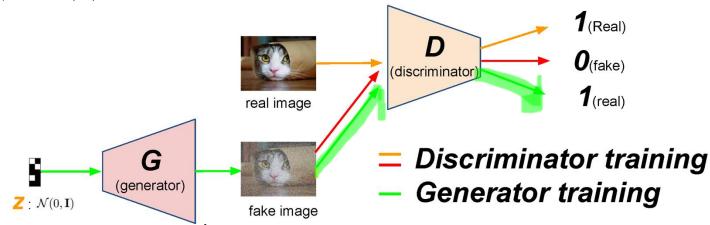


Figure courtesy: Kim

Recap: Optimality of GANs

Question: in practice, we're unlikely to get the optimal D^* . In this case, what is the minimax game truly optimizing?

The minimax game can now be reformulated as

$$\begin{split} C(G) &= \max_{D} V(G, D) \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\log (1 - D_G^*(G(\boldsymbol{z})))] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g} [\log (1 - D_G^*(\boldsymbol{x}))] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_g} \left[\log \frac{p_g(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right] \end{split}$$

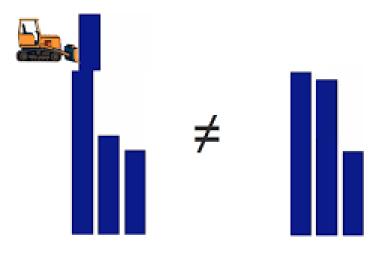
Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if $p_g = p_{data}$. At that point, C(G) achieves the value $-\log 4$.

$$\begin{split} C(G) &= -\log(4) + KL\left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_g}{2} \right. \right) + KL\left(p_g \left\| \frac{p_{\text{data}} + p_g}{2} \right. \right) \\ &= -\log(4) + 2 \cdot JSD\left(p_{\text{data}} \left\| p_g \right. \right) \quad \text{Jensen-Shannon Divergence} \end{split}$$

• If our data are on a low-dimensional manifold of a high dimensional space, the model's manifold and the true data manifold can have a negligible intersection in practice

- If our data are on a low-dimensional manifold of a high dimensional space, the model's manifold and the true data manifold can have a negligible intersection in practice
- The loss function and gradients may not be continuous and well behaved

- If our data are on a low-dimensional manifold of a high dimensional space, the model's manifold and the true data manifold can have a negligible intersection in practice
- The loss function and gradients may not be continuous and well behaved
- The Wasserstein Distance is well defined
 - Earth Mover's Distance
 - Minimum transportation cost for making one pile
 of dirt in the shape of one probability distribution
 to the shape of the other distribution



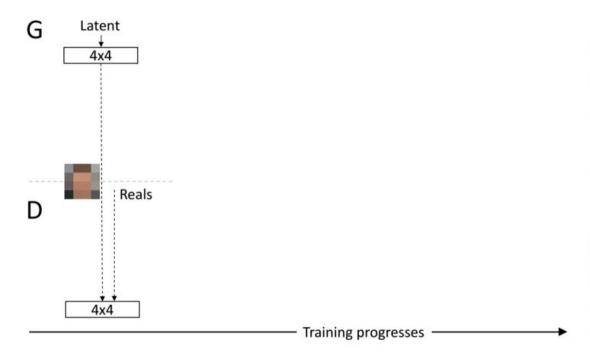
Objective

$$W(p_{data}, p_g) = \frac{1}{K} \sup_{\|D\|_{L} \le K} E_{x \sim p_{data}} [D(x)] - E_{x \sim p_g} [D(x)]$$

- $||D||_L \le K$: K- Lipschitz continuous
- Use gradient-clipping to ensure *D* has the Lipschitz continuity

Progressive GAN

Low resolution images

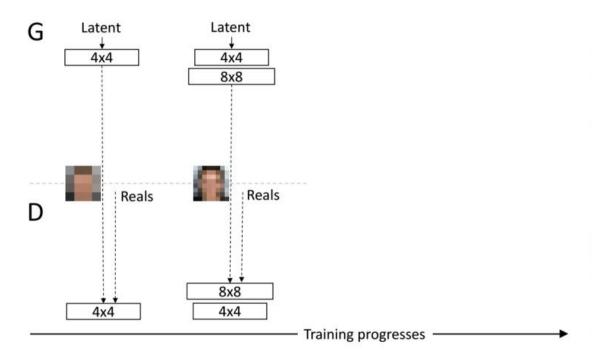


[Karras et al., 2018]

Progressive GAN

Low resolution images

add in additional layers



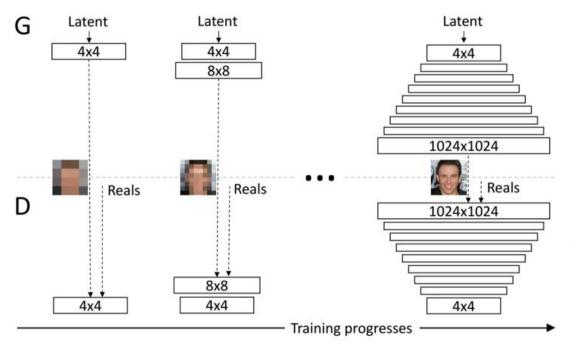
[Karras et al., 2018]

Progressive GAN

Low resolution images

add in
additional
layers

★
High resolution images



[Karras et al., 2018]

[Brock et al., 2018]

• GANs benefit dramatically from scaling

19

- GANs benefit dramatically from scaling
- 2x 4x more parameters
- 8x larger batch size
- Simple architecture changes that improve scalability

- GANs benefit dramatically from scaling
- 2x 4x more parameters
- 8x larger batch size
- Simple architecture changes that improve scalability

21

• GANs benefit dramatically from scaling

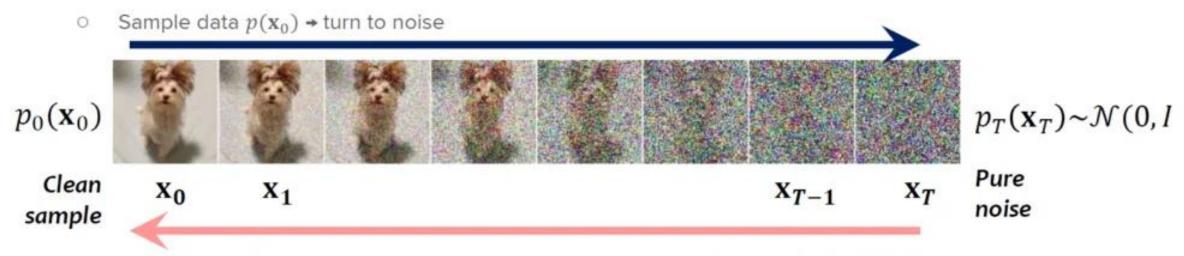
22

Key Takeaways

- Deep Generative Models: brief history
- GANs:
 - Implicit generative model
 - Minimax formulation
 - Wasserstein GAN

Diffusion model

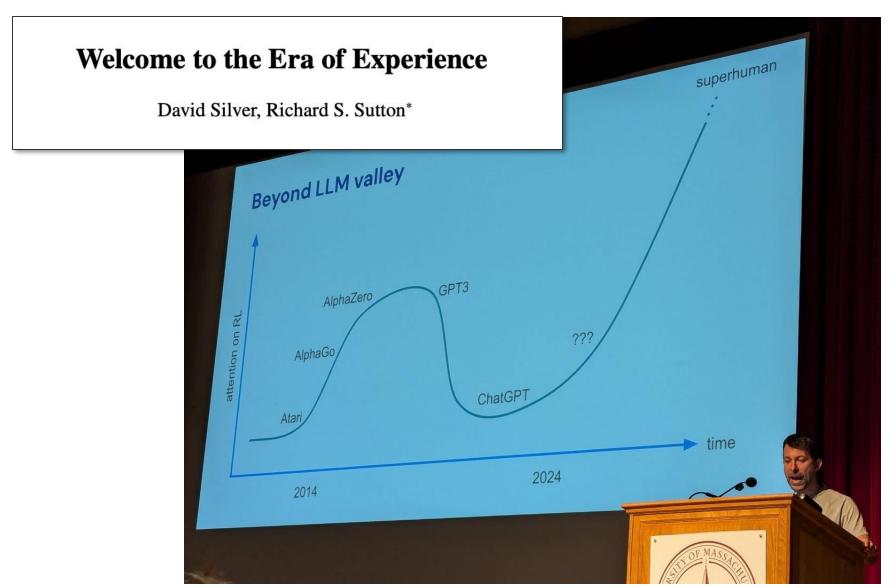
Forward / noising process



- Reverse / denoising process
 - Sample noise $p_T(\mathbf{x}_T)$ → turn into data

RL Conference 2024

RL Conference 2024

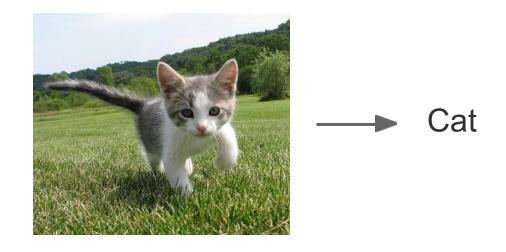


So far... Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.



Classification

So far... Unsupervised Learning

Data: x

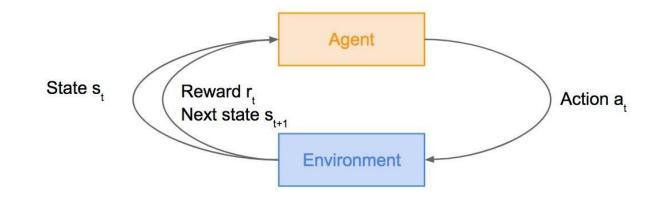
no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Today: Reinforcement Learning

Problems involving an **agent** interacting with an **environment**, which provides numeric **reward** signals



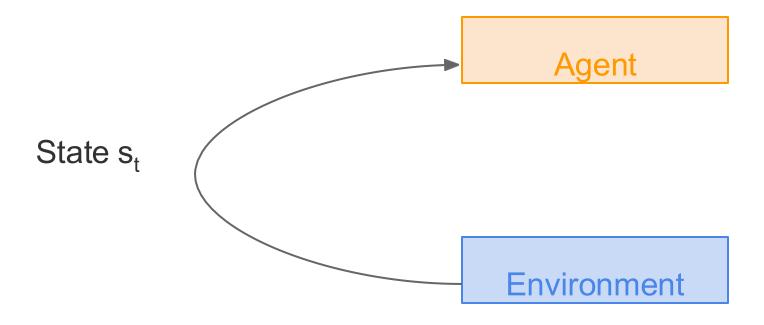
Goal: Learn how to take actions in order to maximize reward

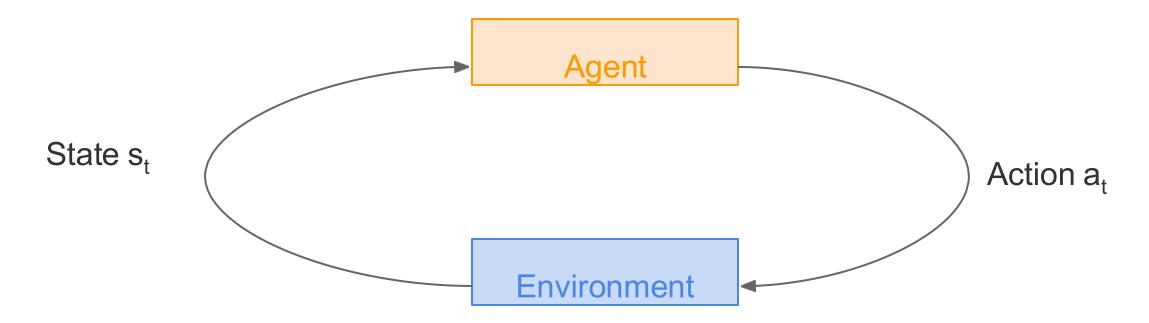
Overview

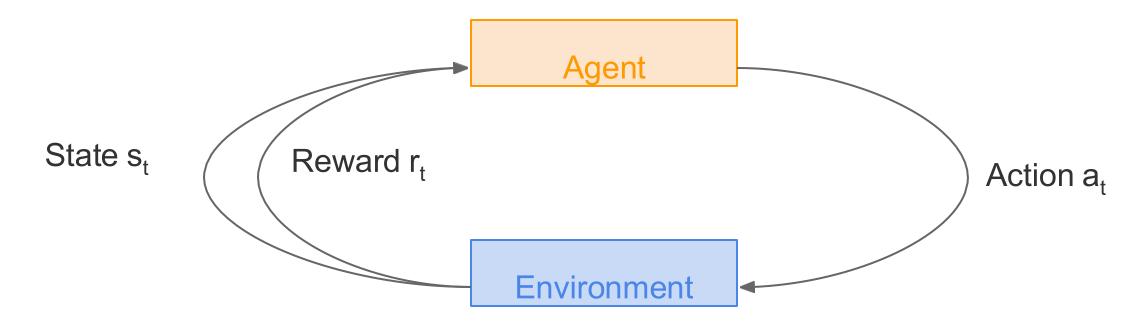
- What is Reinforcement Learning?
- Markov Decision Processes
- Q-Learning
- Policy Gradients

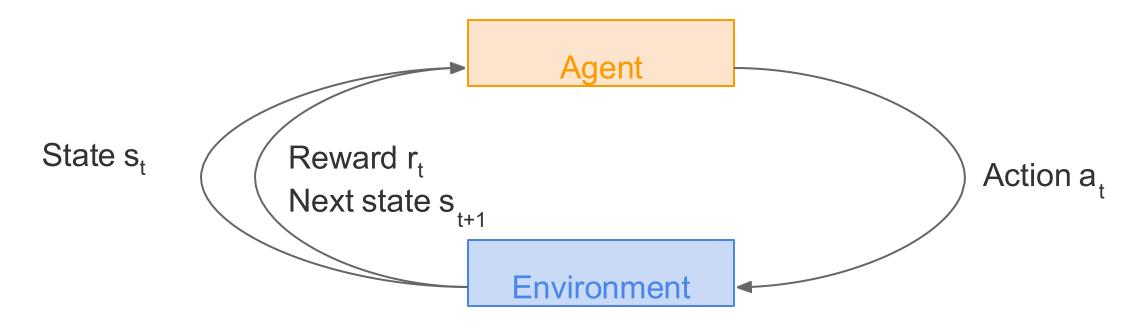
Agent

Environment

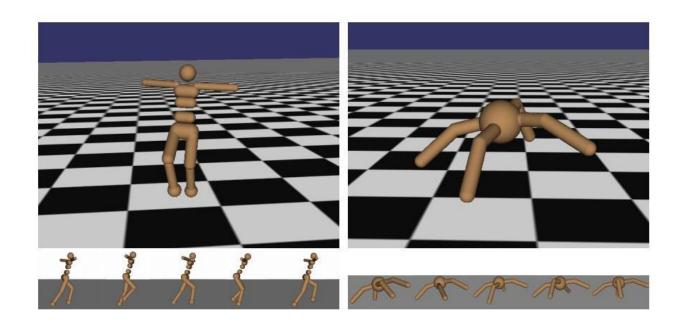








Robot Locomotion



Objective: Make the robot move forward

State: Angle and position of the joints

Action: Torque applied on joints

Reward: 1 at each time step upright +

forward movement

Atari Games

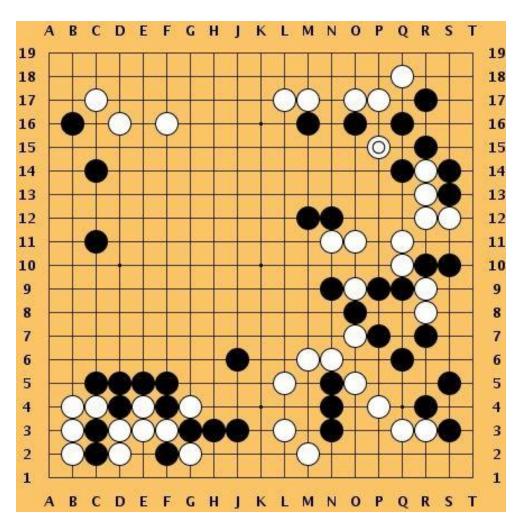
Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Go



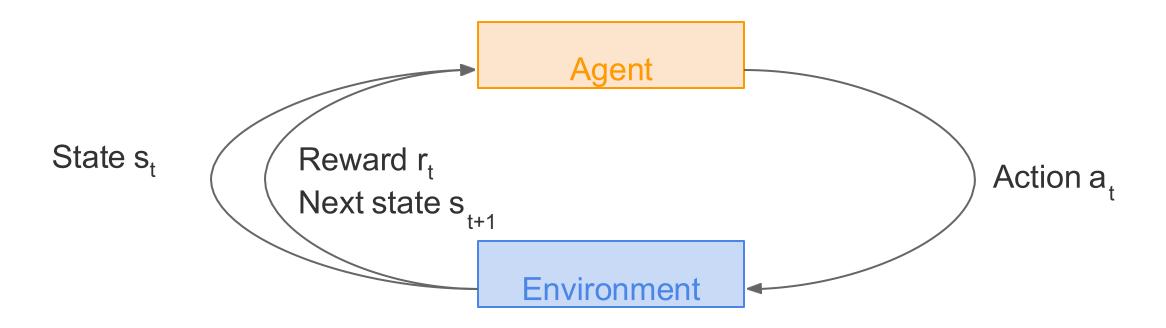
Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

How can we mathematically formalize the RL problem?



Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the world

```
Defined by: (\mathcal{S},\mathcal{A},\mathcal{R},\mathbb{P},\gamma)
```

 ${\mathcal S}$: set of possible states

 ${\cal A}$: set of possible actions

 ${\cal R}\,$: distribution of reward given (state, action) pair

P: transition probability i.e. distribution over next state given (state, action) pair

 γ : discount factor

Markov Decision Process

- At time step t=0, environment samples initial state $s_0 \sim p(s_0)$
- Then, for t=0 until done:
 - Agent selects action a_t
 - Environment samples reward $r_t \sim R(. | s_t, a_t)$
 - Environment samples next state $s_{t+1} \sim P(.|s_t, a_t)$
 - Agent receives reward r_t and next state s_{t+1}

- A policy π is a function from S to A that specifies what action to take in each state
- **Objective**: find policy π* that maximizes cumulative discounted reward:

A simple MDP: Grid World

```
actions = {

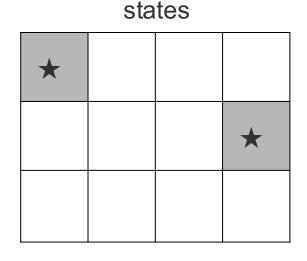
1. right

2. left

3. up

4. down

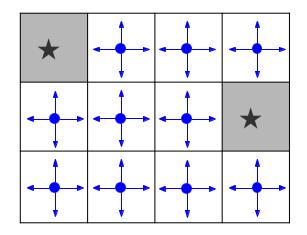
}
```



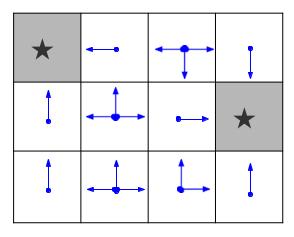
Set a negative "reward" for each transition (e.g. r = -1)

Objective: reach one of terminal states (greyed out) in least number of actions

A simple MDP: Grid World



Random Policy



Optimal Policy

Questions?