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Outline

● Deep Generative Models

◯ Generative adversarial learning

● Paper presentation:

◯ Letong Liang: “DeepSeek-Prover-V2”

◯ Ali El Lahib, Darin Djapri: “TD-MPC2: Scalable, Robust World Models for Continuous Control”
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Implicit Generative Models

https://blog.openai.com/generative-models/

Roger Grosse CSC321 Lecture 19: Generat ive Adversarial Networks 6 / 25

Courtesy: Grosse CSC321 Lecture 19

Recap: Implicit Generative Models



Recap: Generative Adversarial Nets (GANs)

● Learning

◯ A minimax game between the generator and the discriminator

◯ Train 𝐷 to maximize the probability of assigning the correct label to both training 

examples and generated samples

◯ Train 𝐺 to fool the discriminator

© Petuum,Inc.
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Figure courtesy: Kim



Recap: Optimality of GANs

● The minimax game can now be reformulated as

5[Goodfellow et al., 2014]

Jensen-Shannon Divergence

Question: in practice, we’re unlikely to get the 
optimal 𝐷∗. In this case, what is the minimax 
game truly optimizing?



Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional space, the 
model’s manifold and the true data manifold can have a negligible intersection in 
practice 
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[Arjovsky et al., 2017] Slide adapted from bhiksha



Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional space, the 
model’s manifold and the true data manifold can have a negligible intersection in 
practice 

● The loss function and gradients may not be continuous and well behaved 
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Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional space, the 
model’s manifold and the true data manifold can have a negligible intersection in 
practice 

● The loss function and gradients may not be continuous and well behaved 

● The Wasserstein Distance is well defined

◯ Earth Mover’s Distance

◯ Minimum transportation cost for making one pile 

     of dirt in the shape of one probability distribution 

     to the shape of the other distribution
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[Arjovsky et al., 2017] Slide adapted from bhiksha



Wasserstein GAN (WGAN)

● Objective
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𝑊 𝑝𝑑𝑎𝑡𝑎 , 𝑝𝑔 =
1

𝐾
sup

||𝐷||𝐿≤𝐾
E𝑥∼𝑝𝑑𝑎𝑡𝑎

𝐷 𝑥 − E𝑥∼𝑝𝑔
[𝐷(𝑥)]

•  ||𝐷||𝐿 ≤ 𝐾 : K- Lipschitz continuous

• Use gradient-clipping to ensure 𝐷 has the Lipschitz continuity



Progressive GAN
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Low resolution images

[Karras et al., 2018]



Progressive GAN
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Low resolution images

add in 

additional 

layers

[Karras et al., 2018]



Progressive GAN
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Low resolution images

add in 

additional 

layers

High resolution images

[Karras et al., 2018]



BigGAN
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[Brock et al., 2018]



BigGAN

● GANs benefit dramatically from scaling 
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[Brock et al., 2018]



BigGAN

● GANs benefit dramatically from scaling 

● 2x – 4x more parameters

● 8x larger batch size

● Simple architecture changes that improve scalability 
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BigGAN

● GANs benefit dramatically from scaling 

● 2x – 4x more parameters

● 8x larger batch size

● Simple architecture changes that improve scalability 
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[Brock et al., 2018]



Key Takeaways

● Deep Generative Models: brief history

● GANs:

◯ Implicit generative model

◯ Minimax formulation

◯ Wasserstein GAN
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Diffusion model

36
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Reinforcement Learning



RL Conference 2024
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RL Conference 2024
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So far… Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 

semantic segmentation, image 

captioning, etc.

Cat

Classification
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So far… Unsupervised Learning

Data: x
no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 

learning, density estimation, etc.
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Today: Reinforcement Learning

Problems involving an agent 
interacting with an environment, 

which provides numeric reward 

signals

Goal: Learn how to take actions 

in order to maximize reward
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Overview

- What is Reinforcement Learning?

- Markov Decision Processes

- Q-Learning

- Policy Gradients
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Agent

Reinforcement Learning

Environment
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Agent

Environment

State st

Reinforcement Learning
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Agent

Environment

Action at

State st

Reinforcement Learning
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Agent

Environment

Action at

State st Reward rt

Reinforcement Learning
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Agent

Environment

Action a
t

State st

Reinforcement Learning

Reward rt 

Next state s
t+1
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Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints 

Action: Torque applied on joints 

Reward: 1 at each time step upright + 

forward movement
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Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step
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Go

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Lecture 14 -
52

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Agent

Environment

Action a
t

State st

How can we mathematically formalize the RL

problem?

Reward rt 

Next state s
t+1
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Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the 

world

Defined by:

: set of possible states

: set of possible actions

: distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair

: discount factor
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Markov Decision Process

- At time step t=0, environment samples initial state s0 ~ p(s0)

- Then, for t=0 until done:

- Agent selects action at

- Environment samples reward rt ~ R( . | st, at)

- Environment samples next state st+1 ~ P( . | st, at)

- Agent receives reward rt and next state st+1

- A policy π is a function from S to A that specifies what action to take in  

each state

- Objective: find policy π* that maximizes cumulative discounted reward:
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A simple MDP: Grid World

★

★

}

Objective: reach one of terminal states (greyed out) in 

least number of actions

actions = {

1. right

2. left

3. up

4. down

Set a negative “reward” 
for each transition

(e.g. r = -1)

states
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A simple MDP: Grid World

Random Policy Optimal Policy

★

★

★

★
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Questions?
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