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Outline

e Deep Generative Models

o Generative adversarial learning

e Paper presentation:

O Letong Liang: “DeepSeek-Prover-V2”
o Ali El Lahib, Darin Djapri: “TD-MPC2: Scalable, Robust World Models for Continuous Control”



Recap: Implicit Generative Models
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Recap: Generative Adversarial Nets (GANs)

e Learning

o A mWe between the generator and the discriminator

o Train D to maximize the probability of assigning the correct label to both training
examples and generated samples

o Train G to fool the discriminator
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in practice, we’re unlikely to get the
optimal D*. In this case, what is the minimax

Recap: Optimality of GANs game truly optimizing?

e The minimax game can now be reformulated as
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Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if apd only if
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Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional space, the
model’s manifold and the true data manifold can have a negligible intersection in

practice

e The loss function and gradients may not be continuous and well behaved

[Arjovsky et al., 2017]



Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional space, the
model’s manifold and the true data manifold can have a negligible intersection in
practice

e The loss function and gradients may not be continuous and well behaved

e The Wasserstein Distance is well defined
o Earth Mayers Distance i 7
O inimum rtation cost for making one pile L PJ
of dirt in the shape of one probability distribution /‘?
to the shape of the other distribution P}_ il

[Arjovsky et al., 2017]
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Progressive GAN
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Progressive GAN
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BigGAN

[Brock et al., 2018]



BigGAN

e GANs benefit dramatically from scaling

[Brock et al., 2018]



BigGAN

e GANs benefit dramatically from scaling
e 2x — 4x more parameters
e 8x larger batch size

e Simple architecture changes that improve scalability

[Brock et al., 2018]



BigGAN

e GANs benefit dramatically from scaling
e 2x — 4x more parameters
e 8x larger batch size

e Simple architecture changes that improve scalability

[Brock et al.\01
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BigGAN

e GANs benefit dramatically from scaling

[Brock et al., 2018]
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Key Takeaways

e Deep Generative Models: brief history

e GAN:s:

O Implicit generative model

O  Minimax formulation -ai?ﬁm/f,@, {éf&’

O Woasserstein GAN

\
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Reinforcement Learning



RL Conference 2024

In the peginning
ML was RL

Andrew Barto

August 2024
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RL Conference 2024

Welcome to the Era of Egerience

David Silver, Richard S. Sutton*
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So far... Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.
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Classification

Cat
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So far... Unsupervised Learning
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Data: x
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Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
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Today: Reinforcement Learning

Problems involving an agent

interacting with an environment, ———
which provides numeric reward

signals

Reward F;
Next state S,.q

Action a,

Environment

Goal: Learn how to take actions
In order to maximize reward

Atari games figure copyright Volodymyr Mnih et al., 2013. Reprg%uced with permission.



Overview

What is Reinforcement Learning?
Markov Decision Processes
Q-Learning

Policy Gradients
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Reinforcement Learning

Environment
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Reinforcement Learning

State s,

Environment
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Reinforcement Learning

State s,

Environment

Action a,
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Reinforcement Learning

State s,

Reward r,

Environment

Action a,
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Reinforcement Learning

State s, Reward r,

Next state S..,

Environment

Action a t
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Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torque applied on joints
Reward: 1 at each time step upright +
forward movement

5
Figures copyright John Schulman et al., 2016. Reproguced with permission.



Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

5
Figures copyright Voladymyr Mnih et al., 2013. Repro;:liuced with permission.
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Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

How can we mathematically formalize the RL
problem?

State s, Reward r,

Action a
Nextstate s t

Environment
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Markov Decision Process

- Mathematical formulation of the RL problem

- Markov property: Current state completely characterises the state of the
world

Defined by: (S, A, R, IP)) 7)

. set of possible states
. set of possible actions
. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

REAXN 0
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Markov Decision Process

At time step t=0, environment samples initial state s, ~ p(s,)
Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r, ~ R( . | s;, a,)

- Environment samples next state s, ~P( . | s,, &)

- Agent receives reward r, and next state s, ,

A policy TTis a function from S to A that specifies what action to take in
each state

Objective: find policy 1t that maximizes cumulative discounted reward: Z”f’t’*”t
t>0
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A simple MDP: Grid World

actions = { states
1. right ~— *
2. left <— Set a negative “reward”
3. u I * for each transition
i (e.9.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions
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A simple MDP: Grid World
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Questions?
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