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Outline

● Deep Generative Models

◯ Generative adversarial learning

● Paper presentation:

◯ Devanshi Garg, Shrenik Jain: “RHO-1: Not All Tokens Are What You Need”
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Generative modeling

● In generative modeling, we’d like to train a network that models a distribution, 
such as a distribution over images. 

● One way to judge the quality of the model is to sample from it. 

● This field has seen rapid progress: 
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Generative modeling

● In generative modeling, we’d like to train a network that models a distribution, 
such as a distribution over images. 

● One way to judge the quality of the model is to sample from it. 

● This field has seen rapid progress: 
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Deep generative models

● Define probabilistic distributions over a set of variables

● "Deep" means multiple layers of hidden variables!
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Early forms of deep generative models

● Hierarchical Bayesian models

◯ Sigmoid brief nets [Neal 1992]
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Early forms of deep generative models

● Hierarchical Bayesian models

◯ Sigmoid brief nets [Neal 1992]

● Neural network models

◯ Helmholtz machines [Dayan et al.,1995]

9

inference 

weights

[Dayan et al. 1995]

𝑍1

𝑍2

𝑋



Early forms of deep generative models

● Hierarchical Bayesian models

◯ Sigmoid brief nets [Neal 1992]

● Neural network models

◯ Helmholtz machines [Dayan et al.,1995]

◯ Predictability minimization [Schmidhuber 1995]

10

Figure courtesy: Schmidhuber 1996

DATA



Resurgence of deep generative models

● Restricted Boltzmann machines (RBMs) [Smolensky, 1986]

◯ Building blocks of deep probabilistic models
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Resurgence of deep generative models

● Restricted Boltzmann machines (RBMs) [Smolensky, 1986]

◯ Building blocks of deep probabilistic models

● Deep belief networks (DBNs) [Hinton et al., 2006]

◯ Hybrid graphical model

◯ Inference in DBNs is problematic due to explaining away

● Deep Boltzmann Machines (DBMs) [Salakhutdinov & Hinton, 2009]

◯ Undirected model

© Petuum,Inc.
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Resurgence of deep generative models

● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]
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Resurgence of deep generative models

● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

● Generative adversarial networks (GANs) [Goodfellow et al,. 2014]

15

𝐺𝜃: generative model 

𝐷𝜙: discriminator
?



Resurgence of deep generative models
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/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

● Generative adversarial networks (GANs) [Goodfellow et al,. 2014]

● Generative moment matching networks (GMMNs) [Li et al., 2015; Dziugaite et al., 2015]
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Resurgence of deep generative models

● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

● Generative adversarial networks (GANs) [Goodfellow et al,. 2014]

● Generative moment matching networks (GMMNs) [Li et al., 2015; Dziugaite et al., 2015]

● Autoregressive neural networks

● Reversible architectures (flow models)

● Diffusion models
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Implicit Generative Models

21Courtesy: Grosse CSC321 Lecture 19

• a stochastic process to simulate 

data 𝒙
• Intractable to evaluate likelihood



Implicit Generative Models
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Implicit Generative Models

https://blog.openai.com/generative-models/

Roger Grosse CSC321 Lecture 19: Generat ive Adversarial Networks 6 / 25
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Implicit Generative Models
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● The advantage of implicit generative models: if you have some criterion for 
evaluating the quality of samples, then you can compute its gradient with respect 
to the network parameters, and update the network’s parameters to make the 
sample a little better

● The idea behind Generative Adversarial Networks (GANs): train two different 
networks 

◯ The generator network tries to produce realistic-looking samples

◯ The discriminator network tries to figure out whether an image came from the training 
set or the generator network 

● The generator network tries to fool the discriminator network 



Generative Adversarial Nets (GANs)

● Generative model 𝒙 = 𝐺𝜃 𝒛 ,  𝒛 ∼ 𝑝(𝒛)
◯ Maps noise variable 𝒛 to data space 𝒙

◯ Defines an implicit distribution over 𝒙: 𝑝𝑔𝜃
(𝒙) 

● Discriminator 𝐷𝜙 𝒙
◯ Output the probability that 𝒙 came from the data rather than the generator

© Petuum,Inc.
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Generative Adversarial Nets (GANs)

● Learning

◯ A minimax game between the generator and the discriminator

◯ Train 𝐷 to maximize the probability of assigning the correct label to both training 

examples and generated samples

◯ Train 𝐺 to fool the discriminator

© Petuum,Inc.
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Generative Adversarial Nets (GANs)
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Generative Adversarial Nets (GANs)
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Updating the discriminator: 



Generative Adversarial Nets (GANs)

29Courtesy: Grosse CSC321 Lecture 19

Updating the generator: 



Generative Adversarial Nets (GANs)

30Courtesy: Grosse CSC321 Lecture 19

Alternating training of the generator and discriminator: 



Optimality of GANs

● Objectives:

● Global optimality: 𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎

● Proof:

31Courtesy: Grosse CSC321 Lecture 19



Optimality of GANs

32[Goodfellow et al., 2014]
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Optimality of GANs

● The minimax game can now be reformulated as
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Optimality of GANs

● The minimax game can now be reformulated as

37[Goodfellow et al., 2014]

Jensen-Shannon Divergence

Question: in practice, we’re unlikely to get the optimal 
𝐷∗. In this case, what is the minimax game truly 
optimizing?



Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional space, the 
model’s manifold and the true data manifold can have a negligible intersection in 
practice 

40
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Wasserstein GAN (WGAN)

● If our data are on a low-dimensional manifold of a high dimensional space, the 
model’s manifold and the true data manifold can have a negligible intersection in 
practice 

● The loss function and gradients may not be continuous and well behaved 

● The Wasserstein Distance is well defined

◯ Earth Mover’s Distance

◯ Minimum transportation cost for making one pile 

     of dirt in the shape of one probability distribution 

     to the shape of the other distribution

42

[Arjovsky et al., 2017] Slide adapted from bhiksha



Wasserstein GAN (WGAN)

● Objective
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𝑊 𝑝𝑑𝑎𝑡𝑎 , 𝑝𝑔 =
1

𝐾
sup

||𝐷||𝐿≤𝐾
E𝑥∼𝑝𝑑𝑎𝑡𝑎

𝐷 𝑥 − E𝑥∼𝑝𝑔
[𝐷(𝑥)]

•  ||𝐷||𝐿 ≤ 𝐾 : K- Lipschitz continuous

• Use gradient-clipping to ensure 𝐷 has the Lipschitz continuity



Progressive GAN
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Low resolution images

[Karras et al., 2018]



Progressive GAN
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Low resolution images

add in 

additional 

layers

[Karras et al., 2018]



Progressive GAN
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Low resolution images

add in 

additional 

layers

High resolution images

[Karras et al., 2018]



BigGAN

50

[Brock et al., 2018]



BigGAN

● GANs benefit dramatically from scaling 
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BigGAN

● GANs benefit dramatically from scaling 

● 2x – 4x more parameters

● 8x larger batch size

● Simple architecture changes that improve scalability 
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BigGAN

● GANs benefit dramatically from scaling 

● 2x – 4x more parameters

● 8x larger batch size

● Simple architecture changes that improve scalability 
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Key Takeaways

● Deep Generative Models: brief history

● GANs:

◯ Implicit generative model

◯ Minimax formulation

◯ Wasserstein GAN
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Questions?
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