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Outline

e Deep Generative Models

o Generative adversarial learning

e Paper presentation:
o Devanshi Garg, Shrenik Jain: “RHO-1: Not All Tokens Are What You Need”



Generative modeling

e In generative modeling, we’d like to train a network that models a distribution,
such as a distribution over images.

e One way to judge the quality of the model is to sample from it.

e This field has seen rapid progress:
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Deep generative models

e Define probabilistic distributions over a set of variables

e "Deep" means multiple layers of hidden variables!

G
:



Early forms of deep generative models

e Hierarchical Bayesian models

o Sigmoid brief nets Neal 1992]
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Early forms of deep generative models

e Hierarchical Bayesian models

o Sigmoid brief nets Neal 1992]

e Neural network models
O Helmholtz machines [payan et al.,1995]

O Predictability minimization [schmidhuber 1995]

Figure courtesy: Schmidhuber 1996
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Resurgence of deep generative models

e Restricted Boltzmann machines (RBMs) (smolensky, 198¢]
o Building blocks of deep probabilistic models
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Resurgence of deep generative models

e Restricted Boltzmann machines (RBMs) tsmolensky, 1986]
o Building blocks of deep probabilistic models

e Deep belief networks (DBNs) rinton et al, 2006]
o Hybrid graphical model
O Inference in DBNs is problematic due to explaining away

] Deep BO|1'2mCInn MOChineS (DBMS) [Salakhutdinov & Hinton, 2009]

o Undirected model

Deep Belief Network Deep Boltzmann Machine
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Resurgence of deep generative models

e Variational autoencoders (VAES) ikingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) tmin & Gregor, 2014]
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Figure courtesy: Kingma & Welling, 2014
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Resurgence of deep generative models

e Variational autoencoders (VAES) ikingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) tmain & Gregor, 2014]

e Generative adversarial networks (GANS) (coodfeliow et al,. 2014]
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Resurgence of deep generative models

e Variational autoencoders (VAES) ikingma & Welling, 2014]
/ Neural Variational Inference and Learning (NVIL) tmin & Gregor, 2014]
e Generative adversarial networks (GANS) [coodfeliow et al,. 2014]

e Generative moment matching networks (GMMNS) (i et al, 2015; Dzivgaite et al., 2015]
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Resurgence of deep generative models

e Variational autoencoders (VAES) ikingma & Welling, 2014]
/ Neural Variational Inference and Learning (NVIL) tmin & Gregor, 2014]
e Generative adversarial networks (GANS) (Goodtellow et al,. 2014
e Generative moment matching networks (GMMNS) (i et al, 2015; Dzivgaite et al., 2015]

e Autoregressive neural networks
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Resurgence of deep generative models

e Variational autoencoders (VAES) ikingma & Welling, 2014]
/ Neural Variational Inference and Learning (NVIL) tmin & Gregor, 2014]
e Generative adversarial networks (GANS) (Goodtellow et al,. 2014
e Generative moment matching networks (GMMNS) (i et al, 2015; Dzivgaite et al., 2015]
e Autoregressive neural networks

e Reversible architectures (flow models)
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Resurgence of deep generative models

e Variational autoencoders (VAES) ikingma & Welling, 2014]
/ Neural Variational Inference and Learning (NVIL) tmin & Gregor, 2014]
e Generative adversarial networks (GANS) (Goodtellow et al,. 2014
e Generative moment matching networks (GMMNS) (i et al, 2015; Dzivgaite et al., 2015]
e Autoregressive neural networks
e Reversible architectures (flow models)

e Diffusion models

Sample data p(x;,) = turn to noise
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Generative Adversarial Networks



Implicit Generative Models

m Implicit generative models implicitly define a probability distribution

m Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

m The generator network computes a differentiable function G mapping
z to an x in data space

sample x = G(z)

T * a stochastic process to simulate
data x
* Intractable to evaluate likelihood

N — —

code vector

Courtesy: Grosse CSC321 Lecture 19 21




Implicit Generative Models

A 1-dimensional example:
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Courtesy: Grosse CSC321 Lecture 19
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Implicit Generative Models
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A
| | P(x)
unit gausmar‘/
generative
Q model .
2 || (neural net) «._[oss]

\ image space image space

https://blog.openai.com/generative -models/
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Implicit Generative Models

e The advantage of implicit generative models: if you have some criterion for
evaluating the quality of samples, then you can compute its gradient with respect
to the network parameters, and update the network’s parameters to make the
sample a little better

e The idea behind Generative Adversarial Networks (GANs): train two different
networks

O The generator network tries to produce realistic-looking samples

o0 The discriminator network tries to figure out whether an image came from the training
set or the generator network

e The generator network tries to fool the discriminator network

Courtesy: Grosse CSC321 Lecture 19 24



Generative Adversarial Nets (GANSs)

e Generative model x = Gg(z), z ~ p(2)
© Maps noise variable Z to data space x

o Defines an implicit distribution over x: py (X)

e Discriminator Dy (x)
o0 Qutput the probability that X came from the data rather than the generator
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Generative Adversarial Nets (GANSs)

e Learning

© A minimax game between the generator and the discriminator

o Train D to maximize the probability of assigning the correct label to both training
examples and generated samples

o Train G to fool the discriminator

maxp ,CD = Ewdiata,(w) [1Og D(ZB)] + EwwG(z),sz(z) [10g<1 _ D(iB))]
minG ,CG — Ewwg(z),zwp(z) [10g(1 — D((D))] .

D 1(Rea|)
(discriminator O(fake)
1(rea|)
— G 8 " = Discriminator training
von > — Generator training
' ' fake image
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Generative Adversarial Nets (GANSs)
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Generative Adversarial Nets (GANSs)

Updating the discriminator:
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Courtesy: Grosse CSC321 Lecture 19
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Generative Adversarial Nets (GANSs)

Updating the generator:

Courtesy: Grosse CSC321 Lecture 19

backprop the derivatives,
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flip the sign

of the derivatives

update the generator
weights using backprop
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Generative Adversarial Nets (GANSs)

Alternating training of the generator and discriminator:
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Optimality of GANs

e Obijectives:

maxp ED — Ewdiata(w) [log D(m)] + EmNG(z),sz(z) [log(l - D(iI)))]
ming Lg = EwNG(z),sz(z) [1Og(1 _ D(CI}))] '

e Global optimality: pg = Dgatq

e Proof:

Courtesy: Grosse CSC321 Lecture 19 31



Optimality of GANs

Proposition 1. For G fixed, the optimal discriminator D is

* L pdata(m)
Do) = @) + py(@ ®

[Goodfellow et al., 2014] 32



Optimality of GANs

Proposition 1. For G fixed, the optimal discriminator D is

* . pdata(w)
Da(@) = Pdata(X) + pg(x) )

Proof. The training criterion for the discriminator D, given any generator (G, is to maximize the
quantity V' (G, D)

V(G,D) = / Paaa () log(D () )dz + / p=(2) log(1 — D(g(2)))dz

9 4 z

— / Paana () log(D(x)) + py () log(1 — D(a))dax 3)

For any (a,b) € R?\ {0,0}, the function y — alog(y) + blog(1 — y) achieves its maximum in
0,1] at %5 - o

[Goodfellow et al., 2014] 33



Optimality of GANs

e The minimax game can now be reformulated as

C(G) = max V(G,D)

_Emdiata log D& ()] + Eznp, [log(1 — DE(G(2)))]
=Eanp 108 DG (2)] 4 Eznp, [log(1 — Dg(z))]

Pdata () ] [ Pg()
=Eg~ ata lo + Een lo
P4 & Pdata(m) + pg(w) bs & pdata(m) + Dy (.’B)

[Goodfellow et al., 2014]
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Optimality of GANs

e The minimax game can now be reformulated as
C(G) = max V(G,D)
_E, .. 08 D) + Eavp. log(1 — D5(G(2))
~Eoorpia 108 D3 (@)] + Egnp, [log(1 — D (x))]

pg(a:)
[1°g Paa(@) + 7y (@)

pdata(m) ]
ZE;BN ata 10 + Ea:m
et [ Paaa(@) +pyla)| T

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
Dg = Ddata- At that point, C'(G) achieves the value — log 4.

[Goodfellow et al., 2014] 35



Optimality of GANs

e The minimax game can now be reformulated as

C(G) = max V(G, D)

:EMM log D¢ (x)] + Eznp, [log(1 — DE(G(2)))]
=Ea~pu, 108 Dg(2)] + Eznp, [log(l — Dg(x))]

:Emmpdata llog pdata(m) ] —|_ E"BNPQ

py() ]
Paata(T) + pg()

[1°g Paa(@) + 7y (@)

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
Dg = Ddata- At that point, C'(G) achieves the value — log 4.

C(G) = —log(4) + KL (p

Ddata T P
ata2 9)_|_KL(pg

Ddata 1 Pg
2

—log(4) +2 - JSD (pagaa |lpg) Jensen-Shannon Divergence
[Goodfellow et al., 2014] 36



in practice, we’re unlikely to get the optimal
D*. In this case, what is the minimax game truly

Optimality of GANs optimizing?

e The minimax game can now be reformulated as

C(G) = max V(G, D)
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Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional space, the
model’s manifold and the true data manifold can have a negligible intersection in
practice

[Arjovsky et al., 2017]



Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional space, the
model’s manifold and the true data manifold can have a negligible intersection in

practice

e The loss function and gradients may not be continuous and well behaved

[Arjovsky et al., 2017]



Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional space, the
model’s manifold and the true data manifold can have a negligible intersection in
practice

e The loss function and gradients may not be continuous and well behaved

=
c

e The Wasserstein Distance is well defined
© Earth Mover’s Distance
O Minimum transportation cost for making one pile
of dirt in the shape of one probability distribution
to the shape of the other distribution

[Arjovsky et al., 2017]



Wasserstein GAN (WGAN)

e Obijective

1

W(pdata» pg) — E ||l§|l|1pK Ex~pdata [D(x)] — Ex~pg D (x)]
L=

|ID]|, < K : K- Lipschitz continuous
« Use gradient-clipping to ensure D has the Lipschitz continuity



Progressive GAN

G Latent

Low resolution images

Training progresses >

47

[Karras et al., 2018]



Progressive GAN

G Latent Latent
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[Karras et al., 2018] :



Progressive GAN

G Latent Latent Latfnt
. . * * [ axa ]
Low resolution images 5 =
add in
additional l 10241024 |
Iayers . ' Reals ﬂ. 'Reals ot & i Reals
v D [ 1024x1024 |
High resolution images
| Bx8. ———
Training progresses >

[Karras et al., 2018] "



BigGAN

[Brock et al., 2018]



BigGAN

e GANs benefit dramatically from scaling

[Brock et al., 2018]



BigGAN

e GANs benefit dramatically from scaling
e 2x — 4x more parameters
e 8x larger batch size

e Simple architecture changes that improve scalability

[Brock et al., 2018]



BigGAN

e GANs benefit dramatically from scaling
e 2x — 4x more parameters
e 8x larger batch size

e Simple architecture changes that improve scalability

[Brock et al., 2018]
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BigGAN

e GANs benefit dramatically from scaling

[Brock et al., 2018]
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Key Takeaways

e Deep Generative Models: brief history

e GAN:ES:
O Implicit generative model

O  Minimax formulation
O Woasserstein GAN

67



Questions?
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