# **DSC291: Machine Learning with Few Labels**

**Data Manipulation** 

**Zhiting Hu** Lecture 10, May 1, 2025



HALICIOĞLU DATA SCIENCE INSTITUTE

# Outline

- Data Manipulation
  - (meta learning)



- Paper presentation:
  - Akbota Assan, Derrick Yao: "Reasoning Models Don't Always Say What They Think"

# **Data manipulation**

- Data augmentation
  - Applies label-preserving transformations on original data points to expand the data size
- Data reweighting
  - Assigns an importance weight to each instance to adapt its effect on learning
- Data synthesis
  - Generates entire artificial examples
- Curriculum learning
  - Makes use of data instances in an order based on "difficulty"
- • •

# **Data augmentation**

• Applies **label-preserving transformations** on original data points to expand the data size



# **Data augmentation**

Applies label-preserving transformations on original data points to expand the data size





mageller

- Change the pixels without changing the label
- Train on transformed data
- VERY widely used



# 1. Horizontal flips



Credit: http://cs231n.stanford.edu/slides/2016/winter1516\_lecture11.pdf

- 2. Random crops/scales
  - Training: sample random crops / scales



2. Random crops/scales

**Training**: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch



2. Random crops/scales

**Training**: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

#### **Testing**: average a fixed set of crops



Credit: http://cs231n.stanford.edu/slides/2016/winter1516\_lecture11.pdf

2. Random crops/scales

**Training**: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

# **Testing**: average a fixed set of crops ResNet:

- 1. Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips



3. Color jitter

Randomly jitter contrast



Credit: http://cs231n.stanford.edu/slides/2016/winter1516\_lecture11.pdf

# 4. Mixup

- **Training:** Train on random blends of images
- **Testing**: Use original images



[Zhang et al., "*mixup*: Beyond Empirical Risk Minimization", ICLR 2018]

Credit: http://cs231n.stanford.edu/slides/2019/cs231n\_2019\_lecture08.pdf

# 5. Get creative!

Random mix/combinations of :

- translation
- rotation
- stretching
- shearing
- lens distortions, ...

# Data augmentation for text

• Token-level augmentation

| Methods                              | Level | Diversity | Tasks                                                                                  | Related Work                                                                                                                   |
|--------------------------------------|-------|-----------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Synonym<br>replacement               | Token | Low       | Text classification<br>Sequence labeling                                               | Kolomiyets et al. (2011), Zhang et al. (2015a),<br>Yang (2015), Miao et al. (2020),<br>Wei and Zou (2019)                      |
| Word replacement<br>via LM           | Token | Medium    | Text classification<br>Sequence labeling<br>Machine translation                        | Kolomiyets et al. (2011), Gao et al. (2019)<br>Kobayashi (2018), Wu et al. (2019a)<br>Fadaee et al. (2017)                     |
| Random insertion, deletion, swapping | Token | Low       | Text classification<br>Sequence labeling<br>Machine translation<br>Dialogue generation | Iyyer et al. (2015), Xie et al. (2017)<br>Artetxe et al. (2018), Lample et al. (2018)<br>Xie et al. (2020), Wei and Zou (2019) |
| Compositional<br>Augmentation        | Token | High      | Semantic Parsing<br>Sequence labeling<br>Language modeling<br>Text generation          | Jia and Liang (2016), Andreas (2020)<br>Nye et al. (2020), Feng et al. (2020)<br>Furrer et al. (2020), Guo et al. (2020)       |

# Data augmentation for text

• Sentence-level augmentation

|   | Methods                | Level    | Diversity | Tasks                                                                                                         | Related Work                                                                                                          |
|---|------------------------|----------|-----------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Р | araphrasing            | Sentence | High      | Text classification<br>Machine translation<br>Question answering<br>Dialogue generation<br>Text summarization | Yu et al. (2018), Xie et al. (2020)<br>Chen et al. (2019), He et al. (2020)<br>Chen et al. (2020c), Cai et al. (2020) |
|   | Conditional generation | Sentence | High      | Text classification<br>Question answering                                                                     | Anaby-Tavor et al. (2020), Kumar et al. (2020)<br>Zhang and Bansal (2019), Yang et al. (2020)                         |

### **Data augmentation for text**

#### • Others

| Methods                      | Level                | Diversity | Tasks                                                                                                                              | Related Work                                                                                                                                               |
|------------------------------|----------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| White-box<br>attack          | Token or<br>Sentence | Medium    | Text classification<br>Sequence labeling<br>Machine translation                                                                    | Miyato et al. (2017), Ebrahimi et al. (2018b)<br>Ebrahimi et al. (2018a), Cheng et al. (2019),<br>Chen et al. (2020d)                                      |
| Black-box<br>attack          | Token or<br>Sentence | Medium    | Text classification<br>Sequence labeling<br>Machine translation<br>Textual entailment<br>Dialogue generation<br>Text Summarization | Jia and Liang (2017)<br>Belinkov and Bisk (2017), Zhao et al. (2017)<br>Ribeiro et al. (2018), McCoy et al. (2019)<br>Min et al. (2020), Tan et al. (2020) |
| Hidden-space<br>perturbation | Token or<br>Sentence | High      | Text classification<br>Sequence labeling<br>Speech recognition                                                                     | Hsu et al. (2017), Hsu et al. (2018)<br>Wu et al. (2019b), Chen et al. (2021)<br>Malandrakis et al. (2019), Shen et al. (2020)                             |
| Interpolation                | Token                | High      | Text classification<br>Sequence labeling<br>Machine translation                                                                    | Miao et al. (2020), Chen et al. (2020c)<br>Cheng et al. (2020b), Chen et al. (2020a)<br>Guo et al. (2020)                                                  |

- Lexical Substitution
  - Word-embedding substitution

Nearest neighbors in word2vec





- Lexical Substitution
  - Masked LM

This is very cool

[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]

- Lexical Substitution
  - Masked LM



- Paraphrasing
  - Back Translation

- Paraphrasing
  - Back Translation



[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]

- Lexical Substitution
  - Thesaurus-based substitution
  - Word-embedding substitution
  - Masked LM
  - TF-IDF based word replacement
- Paraphrasing
  - Back Translation
- MixUp





- Lexical Substitution
  - Thesaurus-based substitution
  - Word-embedding substitution
  - Masked LM
  - TF-IDF based word replacement
- Paraphrasing
  - Back Translation
- MixUp

#### Original Mixup algorithm





- Lexical Substitution
  - Thesaurus-based substitution
  - Word-embedding substitution
  - Masked LM
  - TF-IDF based word replacement
- Paraphrasing
  - Back Translation
- MixUp
- Generative Models
  - $\circ~$  Use pretrained LM to generate new data



#### • Generative Models

Use pretrained LM to generate new data

# Data reweighting

- Assigns an importance weight to each instance to adapt its effect on learning
  - Weighting by inverse class frequency
  - Weighting by the magnitude of loss

$$\min_{\theta} - \mathbb{E}_{x_i \sim \mathcal{D}} \left[ \phi_i \log p_{\theta}(x_i) \right]$$

# Meta-learning bi-level opt. Mathan Lindhart. or Automatically learn the data weights

• Can we learn  $\phi_i$  automatically?

$$\min_{\theta} - \mathbb{E}_{x_i \sim \mathcal{D}} \left[ \phi_i \log p_{\theta}(x_i) \right]$$

- Training set  $\mathcal{D}$ , a held-out "validation" set  $\mathcal{D}_{v}$
- Intuition: after training the model  $\theta$  on the weighted data, the model gets better <u>performance on the validation set</u>

$$\theta' = \operatorname{argmin}_{\theta} - \mathbb{E}_{x_i \sim \mathcal{D}} \left[ \phi_i \log p_{\theta}(x_i) \right]$$

 $\circ$   $\theta'$  is a function of  $\phi$ , i.e.,  $\theta' = \theta'(\phi)$ 

Meta-left 
$$\phi' = \operatorname{argm} in_{\phi} - \mathbb{E}_{x_i \sim \mathcal{D}_v} [\log p_{\theta'(\phi)}(x_i)]$$

Ren et al., "Learning to reweight examples for robust deep learning" Hu et al., "Learning Data Manipulation for Augmentation and Weighting"  $\mathbb{E}_{x_i \sim \mathcal{D}_{v}} \left[ \log p_{\theta'}(x_i) \right]$ 

# Automatically learn the data weights





Hu et al., "Learning Data Manipulation for Augmentation and Weighting"

# Apply the same algorithm to learn data augmentation

• Augmentation function  $x' = g_{\phi}(x)$ . Can we learn  $\phi$  automatically?

$$\min_{\theta} - \mathbb{E}_{x_i \sim \mathcal{D}} \left[ \log p_{\theta} \left( g_{\phi}(x_i) \right) \right]$$

- Training set  $\mathcal{D}$ , a held-out "validation" set  $\mathcal{D}_{v}$
- Intuition: after training the model  $\theta$  on the augmented data, the model gets better performance on the validation set

$$\theta' = \underset{\theta}{\operatorname{argmin}} - \mathbb{E}_{x_i \sim \mathcal{D}} \left[ \log p_{\theta}(g_{\phi}(x_i)) \right]$$

•  $\theta'$  is a function of  $\phi$ , i.e.,  $\theta' = \theta'(\phi)$ 

$$\boldsymbol{\phi}' = \operatorname{argm} i n_{\boldsymbol{\phi}} - \mathbb{E}_{x_i \sim \mathcal{D}_{\boldsymbol{v}}} \left[ \log p_{\theta'(\boldsymbol{\phi})}(x_i) \right]$$

Hu et al., "Learning Data Manipulation for Augmentation and Weighting"

NOT MY FIRST JIGSAW PUZZLE



Credit: Weinshall, "ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS 35

MY FIRST JIGSAW PUZZLE



Credit: Weinshall, "ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS<sup>36</sup>

LEARNING COGNITIVE TASKS (CURRICULUM):



Credit: Weinshall, "ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS<sup>37</sup>

- Standard supervised learning:
  - Data is sampled randomly

Self-paged

- Curriculum learning:
  - Instead of randomly selecting training points, select easier examples first, slowly exposing the more difficult examples from easiest to the most difficult
  - Key: definition of "difficulty"

# Key Takeaways

- Data manipulation
  - Augmentation
  - Reweighting
  - Curriculum learning
  - Synthesis (later)

#### How to get more labeled training data?



Semi-supervised Learning: Weak Supervision: Get Transfer Learning: Use Traditional Supervision: lower-quality labels more models already trained Have subject matter Use structural assumptions experts (SMEs) hand-label efficiently and/or at a on a different task to automatically leverage more training data unlabeled data higher abstraction level *Too expensive!* Active Learning: Estimate which points *Get cheaper, lower-quality* Get higher-level supervision Use one or more (noisy / are most valuable to over unlabeled data from SMEs *labels from non-experts* biased) <u>pre-trained m</u>odels solicit labels for to provide supervision uncer Distant Expected Heuristics Constraints Invariances Supervision distributions

Credit: https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/

# **Example (I): labeling with heuristics**

Task: Build a chest x-ray classifier (normal/abnormal)



Indication: Chest pain. Findings: Mediastinal contours are within **normal** limits. Heart size is within **normal** limits. **No** focal consolidation, pneumothorax or pleural effusion. Impression: No acute cardiopulmonary abnormality.

Can you use the accompanying medical report (text modality) to label the x-ray (image modality)?

# **Example (I): labeling with heuristics**



# **Example (I): labeling with heuristics**



Normal Report

```
def LF_pneumothorax(c):
    if re.search(r'pneumo.*', c.report.text):
        return "ABNORMAL"
def LF_pleural_effusion(c):
    if "pleural effusion" in c.report.text:
        return "ABNORMAL"
def LF_normal_report(c, thresh=2):
    if len(NORMAL_TERMS.intersection(c.
        report.words)) > thresh:
        return "NORMAL"
LFs
```

(labeling functions)

Source: Khandwala et. al 2017, Cross Modal Data Programming for Medical Images

Task: relation extraction from text

- Hypothesis: If two entities belong to a certain relation, any sentence containing those two entities is likely to express that relation
- Key idea: use a knowledge base of relations to get lots of noisy training examples

# Example (II): Labeling with knowledge bases Frequent Freebase relations

| Relation name                           | Size    | Example                                 |
|-----------------------------------------|---------|-----------------------------------------|
| /people/person/nationality              | 281,107 | John Dugard, South Africa               |
| /location/location/contains             | 253,223 | Belgium, Nijlen                         |
| /people/person/profession               | 208,888 | Dusa McDuff, Mathematician              |
| /people/person/place_of_birth           | 105,799 | Edwin Hubble, Marshfield                |
| /dining/restaurant/cuisine              | 86,213  | MacAyo's Mexican Kitchen, Mexican       |
| /business/business_chain/location       | 66,529  | Apple Inc., Apple Inc., South Park, NC  |
| /biology/organism_classification_rank   | 42,806  | Scorpaeniformes, Order                  |
| /film/film/genre                        | 40,658  | Where the Sidewalk Ends, Film noir      |
| /film/film/language                     | 31,103  | Enter the Phoenix, Cantonese            |
| /biology/organism_higher_classification | 30,052  | Calopteryx, Calopterygidae              |
| /film/film/country                      | 27,217  | Turtle Diary, United States             |
| /film/writer/film                       | 23,856  | Irving Shulman, Rebel Without a Cause   |
| /film/director/film                     | 23,539  | Michael Mann, Collateral                |
| /film/producer/film                     | 22,079  | Diane Eskenazi, Aladdin                 |
| /people/deceased_person/place_of_death  | 18,814  | John W. Kern, Asheville                 |
| /music/artist/origin                    | 18,619  | The Octopus Project, Austin             |
| /people/person/religion                 | 17,582  | Joseph Chartrand, Catholicism           |
| /book/author/works_written              | 17,278  | Paul Auster, Travels in the Scriptorium |
| /soccer/football_position/players       | 17,244  | Midfielder, Chen Tao                    |
| /people/deceased_person/cause_of_death  | 16,709  | Richard Daintree, Tuberculosis          |
| /book/book/genre                        | 16,431  | Pony Soldiers, Science fiction          |
| /film/film/music                        | 14,070  | Stavisky, Stephen Sondheim              |
| /business/company/industry              | 13,805  | ATS Medical, Health care                |

### Corpus text

Bill Gates founded Microsoft in 1975.Bill Gates, founder of Microsoft, ...Bill Gates attended Harvard from...Google was founded by Larry Page ...

# Training data



#### Freebase

Founder: (Bill Gates, Microsoft) Founder: (Larry Page, Google) CollegeAttended: (Bill Gates, Harvard)

## Corpus text

Bill Gates founded Microsoft in 1975. Bill Gates, founder of Microsoft, ... Bill Gates attended Harvard from... Google was founded by Larry Page ...

# Training data

(Bill Gates, Microsoft)Label: FounderFeature: X founded Y

#### Freebase

Founder: (<u>Bill Gates</u>, <u>Microsoft</u>) Founder: (Larry Page, Google) CollegeAttended: (Bill Gates, Harvard)

# Corpus text

Bill Gates founded Microsoft in 1975.
<u>Bill Gates</u>, founder of <u>Microsoft</u>, ...
Bill Gates attended Harvard from...
Google was founded by Larry Page ...

# Training data

(Bill Gates, Microsoft)Label: FounderFeature: X founded YFeature: X, founder of Y

### Freebase

Founder: (<u>Bill Gates</u>, <u>Microsoft</u>) Founder: (Larry Page, Google) CollegeAttended: (Bill Gates, Harvard)

### Corpus text

Bill Gates founded Microsoft in 1975. Bill Gates, founder of Microsoft, ... <u>Bill Gates</u> attended <u>Harvard</u> from... Google was founded by Larry Page ...

# Training data

(Bill Gates, Microsoft)Label: FounderFeature: X founded YFeature: X, founder of Y

### Freebase

Founder: (Bill Gates, Microsoft) Founder: (Larry Page, Google) CollegeAttended: (<u>Bill Gates</u>, <u>Harvard</u>) (Bill Gates, Harvard)Label: CollegeAttendedFeature: X attended Y

### Corpus text

(Bill Gates, Microsoft) Bill Gates founded Microsoft in 1975. Label: Founder Bill Gates, founder of Microsoft, .... Feature: X founded Y Bill Gates attended Harvard from... Feature: X, founder of Y Google was founded by Larry Page ... (Bill Gates, Harvard) Label: CollegeAttended X attended Y Feature: Freebase Founder: (Bill Gates, Microsoft) (Larry Page, Google) Founder: (Larry Page, Google) Label: Founder CollegeAttended: (Bill Gates, Harvard) Y was founded by X Feature:

Training data

# Example (II): Labeling with knowledge bases Negative training data

Can't train a classifier with only positive data! Training data Need negative training data too!

Solution? Sample 1% of unrelated pairs of entities.

#### Corpus text

Larry Page took a swipe at Microsoft... ...after Harvard invited Larry Page to... Google is Bill Gates' worst fear ... (Larry Page, Microsoft) Label: NO\_RELATION Feature: X took a swipe at Y

(Larry Page, Harvard) Label: NO\_RELATION Feature: Y invited X

(Bill Gates, Google) Label: NO\_RELATION Feature: Y is X's worst fear



Source: A. Ratner et. al https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/ [Credit: http://cs231n.stanford.edu/slides/2018/cs231n\_2018\_ds07.pdf]



Labeling functions (M functions)



Labeling functions (M functions)

How do we obtain probabilistic labels,  $\tilde{\mathbf{Y}}$ , from the label matrix, L?

#### Approach 1 - Majority Vote

Take the majority vote of the labelling functions (LFs).

How do we obtain probabilistic labels,  $\tilde{\mathbf{Y}}$ , from the label matrix, L?

#### Approach 1 - Majority Vote



Normal Report

Majority vote fails:

```
def LF_pneumothorax(c):
    if re.search(r'pneumo.*', c.report.text):
        return "ABNORMAL"

def LF_pleural_effusion(c):
    if "pleural effusion" in c.report.text:
        return "ABNORMAL"

def LF_normal_report(c, thresh=2):
    if len(NORMAL_TERMS.intersection(c.
        report.words)) > thresh:
        return "NORMAL"
```

LFs

How do we obtain probabilistic labels,  $\tilde{\mathbf{Y}}$ , from the label matrix, L?

#### Approach 2

Train a generative model over P(L, Y) where Y are the (unknown) true labels

Generative Model



# Summary: Weak/distant supervision

- Noisy labels from heuristics, knowledge bases, constraints, ...
- Integrating multiple noisy labels
  - Majority vote
  - Generative modeling
  - 0
- Not all information/experiences can easily be converted into labels
  - "Every part of speech sequence should have a verb"
  - "In a sentence with word 'but', the sentiment of text after 'but' dominates"
  - "Every image patch that is recognized as a bicycle should have at least one patch that is recognized as a wheel"
  - I have a "discriminator" model that can tell me whether a model-generated image is good or not
- Need a more flexible framework to incorporate all forms of experience

# **Questions?**