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This Lecture
● “Standard Model” (20mins)

● Presentation #1 (10mins): 
! Shanglin Zeng, What is important 

about the No Free Lunch theorems?

● Presentation #2 (10mins): 
! Jiatu Li, TBD

● Presentation #3 (10mins): 
! Jiaxian Xiang, ChineseBERT: Chinese 

Pretraining Enhanced by Glyph and 
Pinyin Information
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Google form for presentation 
questions and feedback:



Policy gradients: AlphaGo

- Featurize the board (stone color, move legality, bias, …)
- Initialize policy network with supervised training from professional go games, 

then continue training using policy gradient (play against itself from random 
previous iterations, +1 / -1 reward for winning / losing)

- Also learn value network (critic)
- Finally, combine policy and value networks in a Monte Carlo Tree Search

algorithm to select actions by lookahead search

Overview:
- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and 

recent ones (deep RL)

How to beat the Go world champion:

[Silver et al., 
Nature 2016]

This image is CC0 public domain

Lecture 14 -
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Experience of all kinds 
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Data examples Rewards Auxiliary agentsRules/Constraints

Type-2 
diabetes is 90% 
more common 
than type-1 

Adversaries

• And all combinations of such 
• Interpolations between such 
• …

…

Master classes
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Knowledge graphs



Data examples Rewards Auxiliary agentsRules/Constraints

Type-2 
diabetes is 90% 
more common 
than type-1 

Adversaries

• And all combinations of such 
• Interpolations between such 
• …

…

Master classes
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Knowledge graphs

Human learning vs machine learning 



The zoo of ML/AI models 
● Neural networks
! Convolutional networks
! AlexNet, GoogleNet, ResNet
! Recurrent networks, LSTM
! Transformers
! BERT, GPTs

● Graphical models
! Bayesian networks
! Markov Random fields
! Topic models, LDA
! HMM, CRF
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● Kernel machines
! Radial Basis Function Networks
! Gaussian processes
! Deep kernel learning
! Maximum margin
! SVMs 

● Decision trees
● PCA, Probabilistic PCA, Kernel 

PCA, ICA
● Boosting



The zoo of ML/AI algorithms
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The zoo of ML/AI algorithms

actor-critic

imitation learning softmax policy gradient

policy optimization

posterior regularization
constraint-driven learning

regularized Bayes 

GANs

active learning

intrinsic reward

inverse RL

knowledge distillation

energy-based GANs 

maximum likelihood estimation

prediction minimization generalized expectation

learning from measurements 

adversarial domain adaptation

reinforcement learning as inference

data augmentation

data re-weighting

label smoothing

weak/distant supervision

reward-augmented maximum likelihood
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Standard Model in Physics

∂vF
uV

=
4π

c
ju

ε
uvkλ

∂vFkλ = 0

1861 1910s 1970s

Diverse 
electro-
magnetic 
theories

Maxwell’s Eqns: 
original form

Simplified w/ 
rotational 
symmetry

Further 
simplified w/ 
symmetry of 
special relativity

Standard Model 
w/ Yang-Mills 
theory and US(3) 
symmetry

Unification of 
fundamental 
forces? 



𝒎𝒊𝒏
𝒒, 𝜽

	 − 𝔼 + 𝔻 −ℍ

Experience Divergence Uncertainty
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[Hu & Xing, Harvard Data Science Review, 2022]: https://arxiv.org/abs/2108.07783

https://arxiv.org/abs/2108.07783


Maximum likelihood estimation (MLE) at a close look:
● The most classical learning algorithm 

● Supervised:
! Observe data 𝒟 = {(𝒙∗, 𝒚∗)}
! Solve with SGD

● Unsupervised:
! Observe 𝒟 = 𝒙∗ , 𝒚 is latent variable
! Posterior 𝑝"(𝒚|𝒙)
! Solve with EM:
§ E-step imputes latent variable 𝒚 through expectation on complete likelihood 
§ M-step: supervised MLE
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min
$
− 𝔼 𝒙∗,𝒚∗ ∼𝒟

1
log	𝑝$(𝒚∗|𝒙∗)

min
$
− 𝔼𝒙∗∼𝒟

1
log7

𝒚
𝑝$(𝒙∗, 𝒚)



MLE as Entropy Maximization 
● Equivalence between supervised MLE and maximum entropy (when 𝑝$ is 

an exponential family distribution)
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min
*(𝒙,𝒚)

	 𝐻 𝑝

		s.t.		𝔼* 𝑇(𝒙, 𝒚) = 𝔼(-∗,.∗)∼𝒟 𝑇(𝒙, 𝒚)

features 𝑇(𝒙, 𝒚)

data as constraints

Shannon entropy 𝐻

min
$
− 𝔼 𝒙∗,𝒚∗ ∼𝒟

1
log	𝑝$(𝒚∗|𝒙∗)



MLE as Entropy Maximization 
● Unsupervised MLE can be achieved by maximizing the negative free 

energy: 

! Introduce an auxiliary variational distribution 𝑞(𝒚|𝒙) (and then play with its entropy 
and cross entropy, etc.)
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log7
𝒚
𝑝$(𝒙∗, 𝒚) ≥ 𝐻 𝑞 𝒚|𝒙∗ + 𝔼/(𝒚|𝒙∗) log	𝑝$(𝒙∗, 𝒚)



MaxEnt perspective

● Supervised MLE and maximum entropy

● Unsupervised MLE and maximum entropy

● Bayesian inference and maximum entropy

! Bayesian inference as optimization

17

The general expression as a constrained optimization:
(auxiliary) distribution 𝑞

constrained set

loss



MaxEnt perspective

● Supervised MLE and maximum entropy

● Unsupervised MLE and maximum entropy

● Bayesian inference and maximum entropy
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The general expression as a constrained optimization:
(auxiliary) distribution 𝑞

constrained set

loss

𝑠. 𝑡. 	𝑞 𝒛 ∈ 𝒫



A “Standard Model” of Machine Learning
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● Let 𝒕 be the variable of interest
! E.g., the input-output pair 𝒕 = (𝒙, 𝒚) in a prediction task
! or 𝒕 = 𝒙 in generative modeling

● 	𝑝$ 𝒕 : the target model to be learned
●  𝑞 𝒕 : auxiliary distribution
● The SE:

! Experience function 𝑓	 represents external experiences of different kinds for 
training the model
§ 𝑓! 𝒕 ∈ ℝ: measures the goodness of a configuration 𝒕 in light of any given experiences
§ Data, constraints, reward, adversarial discriminators, etc., can all be formulated as an 

experience function (later)
§ Maximizing 𝔼" 𝒕 𝑓! 𝒕   -> 𝑞 is encouraged to produce samples receiving high scores

The Standard Equation (SE) 
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min
/, 𝜽,	𝝃

− 𝛼ℍ 𝑞 + 𝛽𝔻
1
	 + 𝑈(𝝃)

𝑠. 𝑡. 	−𝔼/ 𝒕
4 < 𝝃5,    𝑘 = 1,… , 𝐾

𝑞 𝒕 ,	𝑝$ 𝒕

𝑓5 𝒕

[Hu & Xing, 2021]



● Let 𝒕 be the variable of interest
! E.g., the input-output pair 𝒕 = (𝒙, 𝒚) in a prediction task
! or 𝒕 = 𝒙 in generative modeling

● 	𝑝$ 𝒕 : the target model to be learned
●  𝑞 𝒕 : auxiliary distribution
● The SE:

! Divergence 𝔻: measures the distance between the target model 𝑝$ to be trained 
and the auxiliary model 𝑞
§ E.g., cross entropy

The Standard Equation (SE) 
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● Let 𝒕 be the variable of interest
! E.g., the input-output pair 𝒕 = (𝒙, 𝒚) in a prediction task
! or 𝒕 = 𝒙 in generative modeling

● 	𝑝$ 𝒕 : the target model to be learned
●  𝑞 𝒕 : auxiliary distribution
● The SE:

! Uncertainty ℍ: controls the compactness of the model
§ E.g., Shannon entropy

The Standard Equation (SE) 

23

min
/, 𝜽,	𝝃

− 𝛼ℍ 𝑞 + 𝛽𝔻
1
	 + 𝑈(𝝃)

𝑠. 𝑡. 	−𝔼/ 𝒕
4 < 𝝃5,    𝑘 = 1,… , 𝐾
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The Standard Equation (SE) 
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min
/, 𝜽,	𝝃

− 𝛼ℍ 𝑞 + 𝛽𝔻
1
	 + 𝑈(𝝃)

𝑠. 𝑡. 	−𝔼/ 𝒕
4 < 𝝃5,    𝑘 = 1,… , 𝐾

𝑞 𝒕 ,	𝑝$ 𝒕

𝑓5 𝒕

min
/, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1
	 − 𝔼/ 𝒕

1
𝑓 𝒕𝑞 𝒕 ,	𝑝$ 𝒕

3 terms:
Experiences
(exogenous regularizations)
e.g., data examples, rules

Textbook
	𝑓 𝒕

Divergence
(fitness)
e.g., Cross Entropy

Teacher 
𝑞 𝒕  

Student 
𝑝$ 𝒕

Uncertainty
(self-regularization)
e.g., Shannon entropy

Uncertainty

Assuming penalty 𝑈 = ∑! 𝜉!, and 𝑓 = ∑! 𝑓! :
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The Standard Equation (SE) 

[Note: in SE, experience function 𝑓 can also depends on 𝜃. See the paper for mor details]

min
/, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1
	 − 𝔼/ 𝒕

1
𝑓 𝒕𝑞 𝒕 ,	𝑝$ 𝒕



The Standard Equation (SE) 

● Formulates a large space of learning algorithms, which encompasses many well-
known algorithms
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min
/, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1
	 − 𝔼/ 𝒕

1
𝑓 𝒕𝑞 𝒕 ,	𝑝$ 𝒕
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SE encompasses many well-known algorithms (more later)

T
ow

ard
a

‘Standard
M

odel’of
M

achine
L
earning
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Experience type Experience function f Divergence D ↵ � Algorithm

Data instances

fdata(x;D) CE 1 1 Unsupervised MLE

fdata(x,y;D) CE 1 ✏ Supervised MLE

fdata-self(x,y;D) CE 1 ✏ Self-supervised MLE

fdata-w(t;D) CE 1 ✏ Data Re-weighting

fdata-aug(t;D) CE 1 ✏ Data Augmentation

factive(x,y;D) CE 1 ✏ Active Learning (Ertekin et al., 2007)

Knowledge
frule(x,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)

frule(x,y) CE R 1 Unified EM (Samdani et al., 2012)

Reward

logQ✓(x,y) CE 1 1 Policy Gradient

logQ✓(x,y) +Qin,✓(x,y) CE 1 1 + Intrinsic Reward

Q✓(x,y) CE ⇢ > 0 ⇢ > 0 RL as Inference

Model fmimicking
model (x,y;D) CE 1 ✏ Knowledge Distillation (G. Hinton et al., 2015)

Variational

binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)

discriminator f -divergence 0 1 f-GAN (Nowozin et al., 2016)

1-Lipschitz discriminator W1 distance 0 1 WGAN (Arjovsky et al., 2017)

1-Lipschitz discriminator KL 0 1 PPO-GAN (Y. Wu et al., 2020)

Online f⌧ (t) CE ⇢ > 0 ⇢ > 0 Multiplicative Weights (Freund & Schapire, 1997)

Table 1. Example configurations of the components in the standard equation (Eqs.3.1, 3.2), which recover different existing
algorithms. Here, ‘CE’ means Cross Entropy; ‘JSD’ is the Jensen-Shannon divergence; ‘W1 dist.’ is the first-order Wasserstein
distance; and ‘KL’ is the KL divergence. Refer to Sections 4, 5, and 6 for more details.



min
/, $

− 𝔼/ 𝒙,𝒚
1

+ 𝛽𝔻
1
	 − 𝛼ℍ 𝑞𝑓 𝒙	, 𝒚 𝑞 𝒙, 𝒚 ,	𝑝$ 𝒙, 𝒚

SE Component: Experience Function 𝑓 

Experience
(exogenous regularizations)
e.g., data examples, rules

Set Divergence to Cross 
Entropy
𝔻 𝑞, 𝑝$ = −𝔼"[ log 𝑝$ ]

Set Uncertainty to 
Shannon Entropy
ℍ 𝑞 = 𝐻 𝑞 := −𝔼![ log 𝑞 ]

Different choices of experience function 𝑓 lead to different algorithms:



SE with supervised data experience

● Input-output variables 𝒕 = 𝒙, 𝒚
● Experience: dataset 𝒟 = 𝒙∗, 𝒚∗  of size 𝑁
! defines the empirical distribution

● Define the experience function 

● Let 𝔻 cross entropy, ℍ Shannon entropy, 𝛼 = 1, 𝛽 = 𝜖 (a very small value)
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min
/, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1
	 − 𝔼/ 𝒕

1
𝑓 𝒕𝑞 𝒕 ,	𝑝$ 𝒕

9𝑝 𝒙, 𝒚 =
𝑚(𝒙, 𝒚)
𝑁 = 𝔼 𝒙∗,𝒚∗ ∼𝒟[𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 ]

𝑓:= 𝑓*+,+ 𝒙 , 𝒚	; 𝒟 	= log	𝔼	(𝒙∗,	𝒚∗)∼𝒟 	𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 	

min	
/, $

−𝐻 𝑞 − 𝜖	𝔼/
1

− 𝔼/
1
𝑓DEFE 𝒙, 𝒚; 𝒟log	𝑝$ 𝒙, 𝒚



SE with supervised data experience

● At each iteration 𝑛:

● Recovers supervised MLE!  
33

𝑓:= 𝑓*+,+ 𝒙 , 𝒚	; 𝒟 	= log	𝔼	(𝒙∗,	𝒚∗)∼𝒟 	𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 	

min	
/, $

−𝐻 𝑞 − 𝜖	𝔼/
1

− 𝔼/
1
𝑓DEFE 𝒙, 𝒚; 𝒟log	𝑝$ 𝒙, 𝒚

≈ "𝑝(𝒙, 𝒚)

𝑞 reduces to the 
empirical distribution

Maximizes data log-likelihood



SE with unsupervised data experience 

● Input-output variables 𝒕 = 𝒙, 𝒚
● Experience: dataset 𝒟 = 𝒙∗  of size 𝑁, I,e., we only observe the 𝒙 part
! defines the empirical distribution

● Define the experience function 

● Let 𝔻 cross entropy, ℍ Shannon entropy, 𝛼 = 1, 𝛽 = 1

! Assume 𝑞 𝒙, 𝒚 = 8𝑝 𝒙 𝑞(𝒚|𝒙)
34

min
/, $

− 𝛼ℍ 𝑞 + 𝛽𝔻
1
	 − 𝔼/ 𝒕

1
𝑓 𝒕𝑞 𝒕 ,	𝑝$ 𝒕

9𝑝 𝒙 =
𝑚(𝒙)
𝑁 = 𝔼𝒙∗∼𝒟[𝟙𝒙∗ 𝒙 ]

𝑓:= 𝑓*+,+ 𝒙 ;𝒟 	= log	𝔼𝒙∗∼𝒟[𝟙𝒙∗ 𝒙 ]

min	
/, $

−𝐻 𝑞 −	𝔼/
1

− 𝔼/
1
𝑓DEFE 𝒙;𝒟log	𝑝$ 𝒙, 𝒚

Recovers unsupervised 
MLE (EM)!



SE with manipulated data experience 

● Input-output variables 𝒕 = 𝒙, 𝒚
● Experience: dataset 𝒟 = 𝒙∗, 𝒚∗  of size 𝑁
! defines the empirical distribution

● Define the experience function

● The similarity measure 𝟙E 𝑏  is too restrictive. Let’s enrich it:
! Don’t have to be 0/1, we can scale it

! Plug 𝑓*+,+./ into SE, keep all other configurations the same as supervised MLE, 
we recover data re-weighting in the ”student” step 
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9𝑝 𝒙, 𝒚 =
𝑚(𝒙, 𝒚)
𝑁 = 𝔼 𝒙∗,𝒚∗ ∼𝒟[𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 ]

𝑓:= 𝑓*+,+ 𝒙 , 𝒚	; 𝒟 	= log	𝔼	(𝒙∗,	𝒚∗)∼𝒟 	𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 	

𝑓:= 𝑓*+,+./ 𝒙 , 𝒚	; 𝒟 	= log	𝔼	(𝒙∗,	𝒚∗)∼𝒟 𝑤 𝒙∗, 𝒚∗ ⋅ 	 𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 	



SE with manipulated data experience 

● Input-output variables 𝒕 = 𝒙, 𝒚
● Experience: dataset 𝒟 = 𝒙∗, 𝒚∗  of size 𝑁
! defines the empirical distribution

● Define the experience function

● The similarity measure 𝟙E 𝑏  is too restrictive. Let’s enrich it:
! Don’t have to match exactly, we can relax it

§ 𝑎(𝒙∗,𝒚∗) 𝒙, 𝒚 : assigns non-zero probability to not only the exact (𝒙∗, 𝒚∗) but also other 
𝒙, 𝒚  configurations

! Plug 𝑓*+,+.+01 into SE, keep all other configurations the same as supervised MLE, 
we recover data augmentation in the ”student” step 36

𝑓:= 𝑓*+,+.+01 𝒙 , 𝒚	; 𝒟 	= log	𝔼	(𝒙∗,	𝒚∗)∼𝒟 	𝑎(𝒙∗,𝒚∗) 𝒙, 𝒚 	

9𝑝 𝒙, 𝒚 =
𝑚(𝒙, 𝒚)
𝑁 = 𝔼 𝒙∗,𝒚∗ ∼𝒟[𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 ]

𝑓:= 𝑓*+,+ 𝒙 , 𝒚	; 𝒟 	= log	𝔼	(𝒙∗,	𝒚∗)∼𝒟 	𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 	



SE with reward experience -- Policy Gradient

● Policy gradient

min	
/, $

− 𝛼𝐻 𝑞 − 𝛽𝔼/
1

− 𝔼/
1
𝑓 𝒙, 𝒚log	𝑝$ 𝒙, 𝒚

𝛼 = 𝛽 = 1𝑓$ 𝒙, 𝒚 ∶= log	𝑄$ 𝒙, 𝒚

! Teacher step: 
! Student step:

𝑞(+) 𝒙, 𝒚 = 𝑝$(#)(𝒙, 𝒚)𝑄
$(#)(𝒙, 𝒚)	/	𝑍
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(log-derivative trick)

(policy gradient theorem)
policy gradient



Key Takeaways
● The MaxEnt perspective converts learning into a constrained 

optimization problem
● The standard equation (SE):
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min!,	$ − %ℍ ' + )* 1 																	 − -! %
1 						. /' / ,	1$ /

3 terms:
Experiences
(exogenous regularizations)
e.g., data examples, rules

Textbook
	" #

Divergence
(fitness)
e.g., Cross Entropy

Teacher
$ #

Student
%! #

Uncertainty
(self-regularization)
e.g., Shannon entropy

Uncertainty

(auxiliary) distribution !

constrained set

loss



Questions?


