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This Lecture .
Google form for presentation

e "“Standard Model” (20mins) questions and feedback:

e Presentation #1 (10mins):
o Shanglin Zeng, What is important
about the No Free Lunch theorems?
e Presentation #2 (10mins):
o Jiatu Li, TBD
e Presentation #3 (10mins):

o Jiaxian Xiang, ChineseBERT: Chinese
Pretraining Enhanced by Glyph and
Pinyin Information



Policy gradients: AlphaGo

Overview:

Mix of supervised learning and reinforcement learning
Mix of old methods (Monte Carlo Tree Search) and
recent ones (deep RL)

How to beat the Go world champion:

Featurize the board (stone color, move legality, bias, ...)
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Initialize policy network with supervised training from professional go games,
then continue training using policy gradient (play against itself from random

previous iterations, +1 / -1 reward for winning / losing)
Also learn value network (critic)

Finally, combine policy and value networks in a Monte Carlo Tree Search

algorithm to select actions by lookahead search

[Silver et al.,
Nature 2016]


https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Human learning vs machine learning
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The zoo of ML/AI models

e Neural networks e Kernel machines

o Convolutional networks o Radial Basis Function Networks
o AlexNet, GoogleNet, ResNet o (Gaussian processes
o Recurrent networks, LSTM o Deep kernel learning
o Transformers o Maximum margin
o BERT, GPTs o SVMs
e Graphical models e Decision trees
o Bayesian networks e PCA, Probabilistic PCA, Kernel
o Markov Random fields PCA. ICA
o Topic models, LDA o Boosting
o HMM, CRF



The zoo of ML/AI algorithms
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The zoo of ML/AI algorithms

maximum likelihood estimation reinforcement learning as inference

data re-weighting inverse RL  policy optimization active learning

data augmentation actor-critic reward-augmented maximum likelihood

label smoothing imitation learning softmax policy gradient

adversarial domain adaptation posterior regularization
GANs

knowledge distillation intrinsic reward

constraint-driven learning

prediction minimization generalized expectation

regularized Bayes |
learning from measurements

energy-based GANs
weak/distant supervision



Standard Model in Physics

Maxwell's Egns: Simplified w/  Further Standard Model Unification of
original form rotational simplified w/ w/ Yang-Mills fundamental
symmetry symmetry of theory and US(3) forces?
SRR W sl special relativity ~ symmetry

dH dG
po=——-
dy dz
dF aH Equivalent to Gauss’ Law
HE = & dx @ g magnetism V O D = pV

Diverse S 1

kX
po oy _ g F _d¥ R = g’ (9Fk)\:() S—— F‘2
electro- ”E : ﬁzg £ V-B=0 . Lot = —5 Tr(F?)
. Q=ya—-y— [-—-— 3) (with the Lorentz Force
magnetlc . ('B;_ 2)_;_2 = (andPoisson'sLaw) — an,“/F;}u
theories T 4

. da dy
? > | o 42 _dY _mi .., d8 -
; e S‘\ g y o i | =gt (4) Ampére-Maxwell Law
7 4 /[ 7/ O/ dg _da » o o dh
A ¢ [ 4 X

: dx dy dt
— i
T _ _ _ The electric elasticity
P=lf Q=kg R=k equation (E = D/e)
de -l-2 +d_q+d 0 Continuity of charge
dt dx dy dz

1861 1910s 1970s O



Toward a ‘Standard Model’ of Machine Learning

Zhiting Hu!", Eric P. XingHob™*
T Halicioglu Data Science Institute, University of California San Diego, San Diego, USA
! Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA
% Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
¢ Petuum Inc., Pittsburgh, USA

[Hu & Xing, Harvard Data Science Review, 2022]: https.//arxiv.orq/abs/2108.07783
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https://arxiv.org/abs/2108.07783

Maximum likelihood estimation (MLE) at a close look:

e The most classical learning algorithm

e Supervised:

o Observe data D = {(x*, y")}

o Solve with SGD mén B [E(x*’y*)ND [log Po (Y| )]

e Unsupervised:

o QObserve D = {(x*)}, y is latent variable
o Posterior pg(y|x) mgn —Ex~p [ logj Pe(x*»Y)]
o Solve with EM: y

= E-step imputes latent variable y through expectation on complete likelihood
= M-step: supervised MLE

12



MLE as Entropy Maximization

e Equivalence between supervised MLE and maximum entropy (when pyg is
an exponential family distribution)

m@in — Ey)~D [ log pg (y*|x*)]

Shannon entropy H

A
min H(p) ~

p(xy) features T (x,y)

A

s.it. Ep|T(x,y)] = Eix yy~lT(x, )]
data as constraints

14



MLE as Entropy Maximization

e Unsupervised MLE can be achieved by maximizing the negative free
energy:

o Introduce an auxiliary variational distribution g(y|x) (and then play with its entropy
and cross entropy, etc.)

log j po(x*,y) = H(qIx")) + gy [l0g P (°, )]
y

15



The general expression as a constrained optimization:

: auxiliary) distributionq . -7 l0ss
MaxEnt perspective ( V) < min £(q, 6)
-  constrained set
e Supervised MLE and maximum entropy s.t. q € o)

e Unsupervised MLE and maximum entropy

e Bayesian inference and maximum entropy

o Bayesian inference as optimization

17



The general expression as a constrained optimization:

: auxiliary) distribution -7 10SS
MaxEnt perspective ( V) < min £(q, 6)
+ _, constrained set

e Supervised MLE and maximum entropy s.t. q € Qf'
e Unsupervised MLE and maximum entropy

e Bayesian inference and maximum entropy

II(liI)l —H(q(2)) +logp(D) — Eqy(2) [logw + Z logp x ]z)}
q(z

s.t. q(z) e P

18



A “Standard Model” of Machine Learning

ﬁﬁerent Model Types _
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The Standard Equation (SE)

e Lett be the variable of interest

o E.g., the input-output pair t = (x,y) in a prediction task
o ort = x in generative modeling

e py(t): the target model to be learned
e q(t): auxiliary distribution

e The SE: min — aH(qg) + D (q(t), Do (t)) + U(¢)
q,0,$

s.t.—Eq | i@ | <& k=1,..K

o Experience function f represents external experiences of different kinds for
training the model
= fr(t) € R: measures the goodness of a configuration t in light of any given experiences
= Data, constraints, reward, adversarial discriminators, etc., can all be formulated as an
experience function (later)

= Maximizing E, g [fx(t)] -> q is encouraged to produce samples receiving high scores
[Hu & Xing, 2021]

21



The Standard Equation (SE)

o Lett be the variable of interest
o E.g., the input-output pair t = (x,y) in a prediction task
o ort = x in generative modeling

e py(t): the target model to be learned
e q(t): auxiliary distribution

e The SE: min — aH(qg) + D (q(t), Do (t)) + U(¢)
q,0,$

s.t.—Eq | i@ | <& k=1,..K

o Divergence ID: measures the distance between the target model pg to be trained
and the auxiliary model g

= E.g., cross entropy

[Hu & Xing, 2021]
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The Standard Equation (SE)

e Lett be the variable of interest

o E.g., the input-output pair t = (x,y) in a prediction task
o ort = x in generative modeling

e py(t): the target model to be learned
e q(t): auxiliary distribution

e The SE: min — aH(qg) + D (q(t), Do (t)) + U(¢)
q,0,$

s.t.—Eq | i@ | <& k=1,..K

o Uncertainty H: controls the compactness of the model
= E.g., Shannon entropy

[Hu & Xing, 2021]

23



The Standard Equation (SE)

mg,r% — aH(q) + D (Q(t) Po (t)) + U(¢)

s.t.—Eq | i@ | <& k=1,..K

Assuming penalty U = )., &, and f = Y. f -

rg)ign — aH(q) + D (Q(t)» Po (t)) — Eqp) [f(t)]

3 terms:
Uncertainty Divergence Experiences
(self-regularization) (fitness) (exogenous regularizations)
e.g., Shannon entropy e.g., Cross Entropy e.g., data examples, rules

| Teacher l Student Textbook
Uncertainty q(t) “ sﬁ po (1) (0

24



The Standard Equation (SE)

min — aH(q) + D
q,0

( Different Model Types .
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The Standard Equation (SE)
rg)ign — aH(q) + DD (Q(t)» Po (t)) — Eq) [f(t)]

e Formulates a large space of learning algorithms, which encompasses many well-
known algorithms

28



SE encompasses many well-known algorithms (more later)

Experience type Experience function f Divergence D « B Algorithm
faata(x; D) CE 1 1 Unsupervised MLE
faata(, y; D) CE 1 € Supervised MLE

) faataseit(x, y; D) CE 1 € Self-supervised MLE

Data instances
faata-w (t; D) CE 1 € Data Re-weighting
fdata-aug(t; D) CE 1 € Data Augmentation
factive(x, y; D) CE 1 € Active Learning (Ertekin et al., 2007)
frute(,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)

Knowledge
frute(T,y) CE R 1 Unified EM (Samdani et al., 2012)
log Q% (x,y) CE 1 1 Policy Gradient

Reward log Q% (x,y) + Q™ (x,y) CE 1 1 + Intrinsic Reward
Q% (x,y) CE p>0 p>0 RL as Inference

Model frimicking (. o). D) CE 1 € Knowledge Distillation (G. Hinton et al., 2015)
binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)

o discriminator f-divergence 0 1 f-GAN (Nowozin et al., 2016)

Variational
1-Lipschitz discriminator ~ Wj distance 0 1 WGAN (Arjovsky et al., 2017)
1-Lipschitz discriminator KL 0 1 PPO-GAN (Y. Wu et al., 2020)

Online fr(t) CE p>0 p>0 Multiplicative Weights (Freund & Schapire, 1997) 29




SE Component: Experience Function f

Different choices of experience function f lead to different algorithms:

mip — Eqgey | /(9 | + 6D (aC0), po (6,9)) - ati(a)

S
| S

1 AN
v 4
Experience Set Divergence to Cross

L Set Uncertainty to
(exogenous regularizations) Entropy

Shannon Entropy
e.g., data examples, rules  D(q,pg) = —E4[logpg | H(q) = H(q): = —E,[logq ]



SE with supervised data experience
rcr11,19n — aH(q) + D (Cl(t); Po (t)) — Eqp ’f(t)]

e Input-output variables t = (x,y)
e Experience: dataset D = {(x*,y")} of size N
o defines the empirical distribution

m(x,y)
v = Eary~nlleeyn (% Y)]

p(x,y) =

e Define the experience function
fi= fdata(x ,¥;D) = log E (x*,y*)~2)[ ﬂ(x*,y*) (x, y) ]
e Let D cross entropy, H Shannon entropy, « = 1,8 = € (a very small value)

min — H (@) — € Eq llog po(x,y) ] — E, [ faata(%,y; D) ]

32



SE with supervised data experience

f; — fdata(x 'Y, D) = log E (x*, y*)~D ﬂ(x*,y*) (x; Y) ]

min — H(q) — € E, llog pe(x,y) | — Eq [ faata(x, y; D) ]

e At each iteration n:

Blog pgn) (t) + f(t)
(@

Teacher: ¢V (¢) = exp{ } /Z =p(x,y)

o empirical distribution

{ Maximizes data log-likelihood

e Recovers supervised MLE!

Student: 0"tV = argmax B+ (1) log po(t)], {q reduces to the

33



SE with unsupervised data experience
rcr11,19n — aH(q) + D (Cl(t); Po (t)) — Eqp) [f(t)]

e Input-output variables t = (x,y)

e Experience: dataset D = {(x*)} of size N, |,e., we only observe the x part
o defines the empirical distribution

pix) = 2 = B (1G]

: : : 4 )
e Define the experience function .
Recovers unsupervised
fi= faata(x;D) =log Ey-_p[ly-(x)] MLE (EM)!
e Let D cross entropy, H Shannon entropy, « =1, =1 \V y
min — H(q) — Eq | logpe(x,y) | - Eq[ faata(x;D) ]

o Assume q(x,y) = p(x)q(y|x) 34



SE with manipulated data experience

e Input-output variables t = (x,y)
e Experience: dataset D = {(x*,y")} of size N
o defines the empirical distribution

m(x,y)
v = Eay~olley) ()]

p(x,y) =

e Define the experience function
f:= faata(x,y ;D) =logE (x*,y*)~2)[ ﬂ(x*,y*) (x,y) ]
e The similarity measure 1,(b) is too restrictive. Let's enrich it:
o Don't have to be 0/1, we can scale it
f: — fdata—w (x Y D) — lOg E (x*, y")~D [W(x*» y*) ) ]l(x*,y*) (x: y) ]

o Plug faata—w into SE, keep all other configurations the same as supervised MLE,
we recover data re-weighting in the "“student” step

mgmx E¢«wp [w(t™) - log pe(t™)]
35



SE with manipulated data experience

e Input-output variables t = (x,y)
e Experience: dataset D = {(x*,y")} of size N
o defines the empirical distribution

. m(x,y)
p(x,y) = N = [E(x*,y*)~1) [ﬂ(x*,y*) (x,y)]

e Define the experience function
f:= faata(x,y;D) =1ogE (x*,y*)~2)[ ﬂ(x*,y*) (x, y) ]

e The similarity measure 1,(b) is too restrictive. Let's enrich it:
o Don’t have to match exactly, we can relax it
fi= fdata—aug (x,y;D) =logE (x*,y*)~2)[ A(x*y*) (x,y) ]

acx (X, y): assigns non-zero probability to not only the exact (x*, y*) but also other
(x,y) configurations

o Plug faata—aug into SE, keep all other configurations the same as supervised MLE,
we recover data augmentation in the “student” step mgxxEt*ND, trage () L0g Do (E)] .



SE with reward experience -- Policy Gradient
rg)ig — aH(q) —ﬁIqulogpe(x,y)] — IEq[ f(x,y) ]

e Policy gradient

SCORE: 107

f9xy):=logQ%x,y) a=f=1

o Teacher step: q™ (x,¥) = pyo (£, Q%" (x,¥) / Z
o Student step:

Eqm (2,y) [Vologpo(x, y)] + Eqem) (2,4) [V‘)fiward’l(w’ y)] )0:0(70

— 0
=1/Z-) po(x)Vs ) po(ylz)Q’ (2, y) ‘e:ew (log-derivative trick)
x y

(policy gradient theorem)
39

0:0(77')

= 1/Z{3" 1 (@) 3 Q@ y)Vepo(yle) |



(auxiliary) distribution q . 7 loss

... min £L(q,0)
Key Take aways - constrained set

s.t. q € Q./

e The MaxEnt perspective converts learning into a constrained
optimization problem

e The standard equation (SE):
miél — aH(q) + fD (CI(t); Po (t)) — Eq [f(t)]

q,
3 terms:
Uncertainty Divergence Experiences
(self-regularization) (fitness) (exogenous regularizations)
e.g., Shannon entropy e.g., Cross Entropy e.g., data examples, rules

[ J
| Teacher 11 @ Student Textbook
Uncertainty q(t) Ii "ﬁ pe(t) f(®
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