DSC291: Machine Learning with Few Labels

"Standard Model" of ML

Zhiting Hu Lecture 24, May 31, 2024

HALICIOĞLU DATA SCIENCE INSTITUTE

This Lecture

- "Standard Model" (20mins)
- Presentation #1 (10mins):
 - Shanglin Zeng, What is important about the No Free Lunch theorems?
- Presentation #2 (10mins):
 - Jiatu Li, TBD
- Presentation #3 (10mins):
 - Jiaxian Xiang, ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

Google form for presentation questions and feedback:

Policy gradients: AlphaGo

Overview:

- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and recent ones (deep RL)

How to beat the Go world champion:

- Featurize the board (stone color, move legality, bias, ...)
- Initialize policy network with supervised training from professional go games, then continue training using policy gradient (play against itself from random previous iterations, +1 / -1 reward for winning / losing)
- Also learn value network (critic)
- Finally, combine policy and value networks in a Monte Carlo Tree Search algorithm to select actions by lookahead search

[Silver et al.,

Nature 2016]

Experience of all kinds

Data examples

Rules/Constraints

Knowledge graphs

Rewards

Auxiliary agents

Adversaries

Master classes

- And all combinations of such
- Interpolations between such

•

Human learning vs machine learning

Type-2 diabetes is 90% more common than type-1

Data examples

Rules/Constraints

Knowledge graphs

Rewards

Auxiliary agents

Adversaries

Master classes

- Interpolations between such
- . . .

The zoo of ML/AI models

- Neural networks
 - Convolutional networks
 - AlexNet, GoogleNet, ResNet
 - Recurrent networks, LSTM
 - Transformers
 - BERT, GPTs
- Graphical models
 - Bayesian networks
 - Markov Random fields
 - Topic models, LDA
 - HMM, CRF

- Kernel machines
 - Radial Basis Function Networks
 - Gaussian processes
 - Deep kernel learning
 - Maximum margin
 - o SVMs
- Decision trees
- PCA, Probabilistic PCA, Kernel PCA, ICA
- Boosting

The zoo of ML/AI algorithms

The zoo of ML/AI algorithms

maximum likelihood estimation reinforcement learning as inference data re-weighting inverse RI active learning policy optimization reward-augmented maximum likelihood data augmentation actor-critic softmax policy gradient label smoothing imitation learning adversarial domain adaptation posterior regularization GANs constraint-driven learning knowledge distillation intrinsic reward generalized expectation prediction minimization regularized Bayes learning from measurements energy-based GANs weak/distant supervision

Standard Model in Physics

Diverse electromagnetic theories

Maxwell's Eq original form	n	S:	Simplified rotational
			symmetry
$e + \frac{df}{dx} + \frac{dg}{dy} + \frac{dh}{dz} = 0$	(1)	Gauss' Law	
$\mu \alpha = \frac{dH}{dy} - \frac{dG}{dz}$ $\mu \beta = \frac{dF}{dz} - \frac{dH}{dx}$ $\mu \gamma = \frac{dG}{dx} - \frac{dF}{dy}$	(2)	Equivalent to Gauss' Law for magnetism	$\nabla \cdot \mathbf{D} =$
$P = \mu \left(\gamma \frac{dy}{dt} - \beta \frac{dz}{dt} \right) - \frac{dF}{dt} - \frac{d\Psi}{dz}$ $Q = \mu \left(\alpha \frac{dz}{dt} - \gamma \frac{dx}{dt} \right) - \frac{dG}{dt} - \frac{d\Psi}{dy}$ $R = \mu \left(\beta \frac{dx}{dt} - \alpha \frac{dy}{dt} \right) - \frac{dH}{dt} - \frac{d\Psi}{dz}$	(3)	Faraday's Law (with the Lorentz Force and Poisson's Law)	$\nabla \cdot \mathbf{B} =$ $\nabla \times \mathbf{E} =$
$\frac{\frac{d\gamma}{dy} - \frac{d\beta}{dz}}{\frac{d\alpha}{dz} - \frac{d\gamma}{dx}} = 4\pi p' \qquad p' = p + \frac{df}{dt}$ $\frac{\frac{d\alpha}{dz} - \frac{d\gamma}{dx}}{\frac{d\beta}{dz} - \frac{d\alpha}{dy}} = 4\pi p' \qquad q' = q + \frac{dg}{dt}$ $\frac{\frac{d\beta}{dx} - \frac{d\alpha}{dy}}{\frac{dy}{dx} - \frac{d\alpha}{dy}} = 4\pi r' \qquad r' = r + \frac{dh}{dt}$	(4)	Ampère-Maxwell Law	$\nabla \times \mathbf{H} =$
$\mathbf{P}=-\xi \boldsymbol{p} \mathbf{Q}=-\xi \boldsymbol{q} \mathbf{R}=-\boldsymbol{p}$		Ohm's Law	-3
P = kf Q = kg R = kh		The electric elasticity equation ($\mathbf{E} = \mathbf{D}/\epsilon$)	3
$\frac{de}{dt} + \frac{dp}{dx} + \frac{dq}{dy} + \frac{dr}{dz} = 0$		Continuity of charge	

Simplified w/ Further rotational simplified w/ symmetry symmetry of special relativity

1910s

 $\nabla \cdot \mathbf{D} = \rho_{V}$ $\nabla \cdot \mathbf{B} = 0$ $\varepsilon^{uvk\lambda} \partial_{v} F_{k\lambda} = 0$ $\mathcal{L}_{gf} = -\frac{1}{2} \operatorname{Tr}(F^{2})$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\partial_{v} F^{uV} = \frac{4\pi}{c} j^{u}$ $= -\frac{1}{4} F^{a\mu\nu} F^{a}_{\mu\nu}$ $\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$

1970s

Standard Model

theory and US(3) forces?

w/ Yang-Mills

symmetry

Unification of

fundamental

1861

[Hu & Xing, Harvard Data Science Review, 2022]: https://arxiv.org/abs/2108.07783

Maximum likelihood estimation (MLE) at a close look:

- The most classical learning algorithm
- Supervised:
 - Observe data $\mathcal{D} = \{(x^*, y^*)\}$
 - Solve with SGD

$$\min_{\theta} - \mathbb{E}_{(\boldsymbol{x}^*, \boldsymbol{y}^*) \sim \mathcal{D}} \left[\log p_{\theta}(\boldsymbol{y}^* | \boldsymbol{x}^*) \right]$$

- Unsupervised:
 - Observe $\mathcal{D} = \{(\mathbf{x}^*)\}, \mathbf{y} \text{ is latent variable}$
 - Posterior $p_{\theta}(\mathbf{y}|\mathbf{x})$
 - Solve with EM:
 - E-step imputes latent variable y through expectation on complete likelihood
 - M-step: supervised MLE

$$\min_{\theta} - \mathbb{E}_{\boldsymbol{x}^* \sim \mathcal{D}} \left[\log \int_{\boldsymbol{y}} p_{\theta}(\boldsymbol{x}^*, \boldsymbol{y}) \right]$$

MLE as Entropy Maximization

- Equivalence between supervised MLE and maximum entropy (when p_{θ} is an exponential family distribution)

MLE as Entropy Maximization

- Unsupervised MLE can be achieved by maximizing the negative free energy:
 - Introduce an auxiliary variational distribution q(y|x) (and then play with its entropy and cross entropy, etc.)

$$\log \int_{\mathbf{y}} p_{\theta}(\mathbf{x}^*, \mathbf{y}) \ge H(q(\mathbf{y}|\mathbf{x}^*)) + \mathbb{E}_{q(\mathbf{y}|\mathbf{x}^*)}[\log p_{\theta}(\mathbf{x}^*, \mathbf{y})]$$

The general expression as a constrained optimization: (auxiliary) distribution q \mathbf{f} \mathbf{f}

MaxEnt perspective

- Supervised MLE and maximum entropy
- Unsupervised MLE and maximum entropy
- Bayesian inference and maximum entropy
 - Bayesian inference as optimization

s.t. $q \in Q$. constrained set

The general expression as a constrained optimization: (auxiliary) distribution $q \min_{q, \theta} \mathcal{L}(q, \theta)$ is a loss MaxEnt perspective s.t. $q \in Q$. so strained set

- Supervised MLE and maximum entropy
- Unsupervised MLE and maximum entropy
- Bayesian inference and maximum entropy

$$\min_{q(\boldsymbol{z})} - H(q(\boldsymbol{z})) + \log p(\mathcal{D}) - \mathbb{E}_{q(\boldsymbol{z})} \left[\log \pi(\boldsymbol{z}) + \sum_{\boldsymbol{x}^* \in \mathcal{D}} \log p(\boldsymbol{x}^* | \boldsymbol{z}) \right]$$

s.t. $q(\boldsymbol{z}) \in \mathcal{P}$

A "Standard Model" of Machine Learning

- Let *t* be the variable of interest
 - E.g., the input-output pair t = (x, y) in a prediction task
 - or t = x in generative modeling
- $p_{\theta}(t)$: the target model to be learned
- q(t): auxiliary distribution
- The SE: $\min_{q,\theta,\xi} \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(t), p_{\theta}(t)\right) + U(\xi)$ $s.t. \mathbb{E}_{q(t)}\left[f_{k}(t)\right] < \xi_{k}, \quad k = 1, \dots, K$
 - $\circ~$ Experience function f~ represents external experiences of different kinds for training the model
 - $f_k(t) \in \mathbb{R}$: measures the goodness of a configuration t in light of any given experiences
 - Data, constraints, reward, adversarial discriminators, etc., can all be formulated as an experience function (later)
- Maximizing $\mathbb{E}_{q(t)}[f_k(t)] \rightarrow q$ is encouraged to produce samples receiving high scores [Hu & Xing, 2021]

- Let *t* be the variable of interest
 - E.g., the input-output pair t = (x, y) in a prediction task
 - or t = x in generative modeling
- $p_{\theta}(t)$: the target model to be learned
- q(t): auxiliary distribution

• The SE:
$$\min_{q,\theta,\xi} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(t), p_{\theta}(t)\right) + U(\xi)$$
$$s.t. - \mathbb{E}_{q(t)}\left[f_{k}(t)\right] < \xi_{k}, \quad k = 1, \dots, K$$

- $\circ~$ Divergence D: measures the distance between the target model $~p_{\theta}$ to be trained and the auxiliary model q
 - E.g., cross entropy

- Let *t* be the variable of interest
 - E.g., the input-output pair t = (x, y) in a prediction task
 - or t = x in generative modeling
- $p_{\theta}(t)$: the target model to be learned
- q(t): auxiliary distribution

• The SE:
$$\min_{q,\theta,\xi} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(t), p_{\theta}(t)\right) + U(\xi)$$
$$s.t. - \mathbb{E}_{q(t)}\left[f_{k}(t)\right] < \xi_{k}, \quad k = 1, ..., K$$

- \circ $\:$ Uncertainty ${\tt H}:$ controls the compactness of the model
 - E.g., Shannon entropy

$$\min_{q, \theta, \xi} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(t), p_{\theta}(t)\right) + U(\xi)$$

s.t. $-\mathbb{E}_{q(t)}\left[f_{k}(t)\right] < \xi_{k}, \quad k = 1, ..., K$

Assuming penalty
$$U = \sum_{k} \xi_{k}$$
, and $f = \sum_{k} f_{k}$:

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(t), p_{\theta}(t)\right) - \mathbb{E}_{q(t)}\left[f(t)\right]$$

3 terms:

Uncertainty (self-regularization) e.g., Shannon entropy **Divergence** (fitness) e.g., Cross Entropy

Experiences (exogenous regularizations) e.g., data examples, rules

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(t), p_{\theta}(t)\right) - \mathbb{E}_{q(t)}\left[f(t)\right]$$

[Note: in SE, experience function f can also depends on θ . See the paper for mor details]

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(t), p_{\theta}(t)\right) - \mathbb{E}_{q(t)}\left[f(t)\right]$$

• Formulates a large space of learning algorithms, which encompasses many wellknown algorithms

SE encompasses many well-known algorithms (more later)

Experience type	Experience function f	Divergence $\mathbb D$	α	β	Algorithm
Data instances	$f_{ ext{data}}(oldsymbol{x};\mathcal{D})$	CE	1	1	Unsupervised MLE
	$f_{ ext{data}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Supervised MLE
	$f_{ ext{data-self}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Self-supervised MLE
	$f_{ ext{data-w}}(oldsymbol{t};\mathcal{D})$	CE	1	ϵ	Data Re-weighting
	$f_{ ext{data-aug}}(oldsymbol{t};\mathcal{D})$	CE	1	ϵ	Data Augmentation
	$f_{ ext{active}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Active Learning (Ertekin et al., 2007)
Knowledge	$f_{rule}(oldsymbol{x},oldsymbol{y})$	CE	1	1	Posterior Regularization (Ganchev et al., 2010)
	$f_{rule}(oldsymbol{x},oldsymbol{y})$	CE	\mathbb{R}	1	Unified EM (Samdani et al., 2012)
Reward	$\log Q^{ heta}(oldsymbol{x},oldsymbol{y})$	CE	1	1	Policy Gradient
	$\log Q^{\theta}(\boldsymbol{x},\boldsymbol{y}) + Q^{in,\theta}(\boldsymbol{x},\boldsymbol{y})$	CE	1	1	+ Intrinsic Reward
	$Q^{ heta}(oldsymbol{x},oldsymbol{y})$	CE	$\rho > 0$	$\rho > 0$	RL as Inference
Model	$f_{ ext{model}}^{ ext{minicking}}(oldsymbol{x},oldsymbol{y};\mathcal{D})$	CE	1	ϵ	Knowledge Distillation (G. Hinton et al., 2015)
Variational	binary classifier	JSD	0	1	Vanilla GAN (Goodfellow et al., 2014)
	discriminator	f-divergence	0	1	f-GAN (Nowozin et al., 2016)
	1-Lipschitz discriminator	W_1 distance	0	1	WGAN (Arjovsky et al., 2017)
	1-Lipschitz discriminator	KL	0	1	PPO-GAN (Y. Wu et al., 2020)
Online	$f_{ au}(oldsymbol{t})$	CE	$\rho > 0$	$\rho > 0$	Multiplicative Weights (Freund & Schapire, 1997)

SE Component: Experience Function *f*

Different choices of experience function f lead to different algorithms:

SE with supervised data experience $\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(t), p_{\theta}(t)\right) - \mathbb{E}_{q(t)}\left[f(t)\right]$

• Input-output variables t = (x, y)

- Experience: dataset $\mathcal{D} = \{(\mathbf{x}^*, \mathbf{y}^*)\}$ of size N
 - defines the empirical distribution

$$\widetilde{p}(\boldsymbol{x},\boldsymbol{y}) = \frac{m(\boldsymbol{x},\boldsymbol{y})}{N} = \mathbb{E}_{(\boldsymbol{x}^*,\boldsymbol{y}^*)\sim\mathcal{D}}[\mathbb{1}_{(\boldsymbol{x}^*,\boldsymbol{y}^*)}(\boldsymbol{x},\boldsymbol{y})]$$

• Define the experience function

$$f := f_{data}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) = \log \mathbb{E}_{(\boldsymbol{x}^*, \boldsymbol{y}^*) \sim \mathcal{D}} \left[\mathbb{1}_{(\boldsymbol{x}^*, \boldsymbol{y}^*)}(\boldsymbol{x}, \boldsymbol{y}) \right]$$

• Let \mathbb{D} cross entropy, \mathbb{H} Shannon entropy, $\alpha = 1, \beta = \epsilon$ (a very small value)

$$\min_{q,\theta} - H(q) - \epsilon \mathbb{E}_q \left[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{y}) \right] - \mathbb{E}_q \left[f_{data}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) \right]$$

SE with supervised data experience

$$f := f_{data}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) = \log \mathbb{E}_{(\boldsymbol{x}^*, \boldsymbol{y}^*) \sim \mathcal{D}} \left[\mathbb{1}_{(\boldsymbol{x}^*, \boldsymbol{y}^*)}(\boldsymbol{x}, \boldsymbol{y}) \right]$$
$$\min_{q, \theta} - H(q) - \epsilon \mathbb{E}_q \left[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{y}) \right] - \mathbb{E}_q \left[f_{data}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) \right]$$

• At each iteration *n*:

Teacher:
$$q^{(n+1)}(t) = \exp\left\{\frac{\beta \log p_{\theta^{(n)}}(t) + f(t)}{\alpha}\right\} / Z \approx \tilde{p}(x, y)$$

Student: $\theta^{(n+1)} = \underset{\theta}{\operatorname{argmax}} \mathbb{E}_{q^{(n+1)}(t)}[\log p_{\theta}(t)],$

Maximizes data log-likelihood

 $q reduces to the empirical distribution$

• Recovers supervised MLE!

SE with unsupervised data experience

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(t), p_{\theta}(t)\right) - \mathbb{E}_{q(t)}\left[f(t)\right]$$

• Input-output variables t = (x, y)

• Experience: dataset $\mathcal{D} = \{(x^*)\}$ of size N, I,e., we only observe the x part

• defines the empirical distribution

$$\tilde{p}(\boldsymbol{x}) = \frac{m(\boldsymbol{x})}{N} = \mathbb{E}_{\boldsymbol{x}^* \sim \mathcal{D}}[\mathbb{1}_{\boldsymbol{x}^*}(\boldsymbol{x})]$$

• Define the experience function

$$f := f_{data}(\mathbf{x}; \mathcal{D}) = \log \mathbb{E}_{\mathbf{x}^* \sim \mathcal{D}}[\mathbb{1}_{\mathbf{x}^*}(\mathbf{x})]$$

• Let \mathbb{D} cross entropy, \mathbb{H} Shannon entropy, $\alpha = 1, \beta = 1$

$$\min_{q,\theta} - H(q) - \mathbb{E}_q \left[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{y}) \right] - \mathbb{E}_q \left[f_{data}(\boldsymbol{x}; \mathcal{D}) \right]$$

• Assume $q(\mathbf{x}, \mathbf{y}) = \tilde{p}(\mathbf{x})q(\mathbf{y}|\mathbf{x})$

Recovers unsupervised

MLE (EM)!

SE with manipulated data experience

- Input-output variables t = (x, y)
- Experience: dataset $\mathcal{D} = \{(x^*, y^*)\}$ of size N
 - defines the empirical distribution

$$\tilde{p}(\boldsymbol{x},\boldsymbol{y}) = \frac{m(\boldsymbol{x},\boldsymbol{y})}{N} = \mathbb{E}_{(\boldsymbol{x}^*,\boldsymbol{y}^*)\sim\mathcal{D}}[\mathbb{1}_{(\boldsymbol{x}^*,\boldsymbol{y}^*)}(\boldsymbol{x},\boldsymbol{y})]$$

• Define the experience function

$$f := f_{data}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) = \log \mathbb{E}_{(\boldsymbol{x}^*, \boldsymbol{y}^*) \sim \mathcal{D}} \left[\mathbb{1}_{(\boldsymbol{x}^*, \boldsymbol{y}^*)}(\boldsymbol{x}, \boldsymbol{y}) \right]$$

- The similarity measure $\mathbb{1}_{a}(b)$ is too restrictive. Let's enrich it:
 - Don't have to be 0/1, we can scale it

 $f := f_{data-w}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) = \log \mathbb{E}_{(\boldsymbol{x}^*, \boldsymbol{y}^*) \sim \mathcal{D}} [w(\boldsymbol{x}^*, \boldsymbol{y}^*) \cdot \mathbb{1}_{(\boldsymbol{x}^*, \boldsymbol{y}^*)}(\boldsymbol{x}, \boldsymbol{y})]$

Plug *f_{data-w}* into SE, keep all other configurations the same as supervised MLE, we recover **data re-weighting** in the "student" step

$$\max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{t}^* \sim \mathcal{D}} \left[w(\boldsymbol{t}^*) \cdot \log p_{\boldsymbol{\theta}}(\boldsymbol{t}^*) \right]$$

SE with manipulated data experience

- Input-output variables t = (x, y)
- Experience: dataset $\mathcal{D} = \{(x^*, y^*)\}$ of size N
 - defines the empirical distribution

$$\tilde{p}(\boldsymbol{x},\boldsymbol{y}) = \frac{m(\boldsymbol{x},\boldsymbol{y})}{N} = \mathbb{E}_{(\boldsymbol{x}^*,\boldsymbol{y}^*)\sim\mathcal{D}}[\mathbb{1}_{(\boldsymbol{x}^*,\boldsymbol{y}^*)}(\boldsymbol{x},\boldsymbol{y})]$$

• Define the experience function

$$f := f_{data}(\boldsymbol{x}, \boldsymbol{y}; \mathcal{D}) = \log \mathbb{E}_{(\boldsymbol{x}^*, \boldsymbol{y}^*) \sim \mathcal{D}} \left[\mathbb{1}_{(\boldsymbol{x}^*, \boldsymbol{y}^*)}(\boldsymbol{x}, \boldsymbol{y}) \right]$$

- The similarity measure $\mathbb{1}_{a}(b)$ is too restrictive. Let's enrich it:
 - Don't have to match exactly, we can relax it

$$f := f_{data-aug}(\mathbf{x}, \mathbf{y}; \mathcal{D}) = \log \mathbb{E}_{(\mathbf{x}^*, \mathbf{y}^*) \sim \mathcal{D}} \left[a_{(\mathbf{x}^*, \mathbf{y}^*)}(\mathbf{x}, \mathbf{y}) \right]$$

- a_(x*,y*)(x, y): assigns non-zero probability to not only the exact (x*, y*) but also other (x, y) configurations
- Plug $f_{data-aug}$ into SE, keep all other configurations the same as supervised MLE, we recover data augmentation in the "student" step $\max_{\theta} \mathbb{E}_{t^* \sim \mathcal{D}, t \sim a_{t^*}(t)} [\log p_{\theta}(t)]$.

SE with reward experience -- Policy Gradient

$$\min_{q,\theta} - \alpha H(q) - \beta \mathbb{E}_q \left[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{y}) \right] - \mathbb{E}_q \left[f(\boldsymbol{x}, \boldsymbol{y}) \right]$$

• Policy gradient

$$f^{\theta}(\mathbf{x}, \mathbf{y}) := \log Q^{\theta}(\mathbf{x}, \mathbf{y}) \qquad \alpha = \beta = 1$$

- Teacher step: $q^{(n)}(\mathbf{x}, \mathbf{y}) = p_{\theta^{(n)}}(\mathbf{x}, \mathbf{y}) Q^{\theta^{(n)}}(\mathbf{x}, \mathbf{y}) / Z$
- Student step:

$$\begin{split} & \mathbb{E}_{q^{(n)}(\boldsymbol{x},\boldsymbol{y})} \left[\nabla_{\theta} \log p_{\theta}(\boldsymbol{x},\boldsymbol{y}) \right] + \mathbb{E}_{q^{(n)}(\boldsymbol{x},\boldsymbol{y})} \left[\nabla_{\theta} f_{\text{reward},1}^{\theta}(\boldsymbol{x},\boldsymbol{y}) \right] \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(n)}} \\ &= 1/Z \cdot \sum_{\boldsymbol{x}} p_{0}(\boldsymbol{x}) \nabla_{\theta} \sum_{\boldsymbol{y}} p_{\theta}(\boldsymbol{y} | \boldsymbol{x}) Q^{\theta}(\boldsymbol{x},\boldsymbol{y}) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(n)}} & (\text{log-derivative trick}) \\ &= 1/Z \cdot \sum_{\boldsymbol{x}} \mu^{\theta}(\boldsymbol{x}) \sum_{\boldsymbol{y}} Q^{\theta}(\boldsymbol{x},\boldsymbol{y}) \nabla_{\theta} p_{\theta}(\boldsymbol{y} | \boldsymbol{x}) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(n)}} & (\text{policy gradient theorem}) \\ & \text{policy gradient} \end{split}$$

39

Key Takeaways

- (auxiliary) distribution $q \min_{q,\theta} \mathcal{L}(q,\theta)$ constrained set $s.t. \ q \in Q$. The MaxEnt perspective converts learning into a constrained optimization problem
- The standard equation (SE):

$$\min_{q,\theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}\left(q(t), p_{\theta}(t)\right) - \mathbb{E}_{q(t)}\left[f(t)\right]$$

3 terms:

Questions?