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This Lecture
● RL (20mins)

● Presentation #1 (10mins): 
! Xujun Lian, Unpaired Image-to-Image 

Translation using Cycle-Consistent 
Adversarial Networks

● Presentation #2 (10mins): 
! Leo Chen, Learning Transferable Visual 

Models From Natural Language 
Supervision

● Presentation #3 (10mins): 
! Yiming Feng, Image Inpainting 

for Irregular Holes Using Partial 
Convolutions
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Google form for presentation 
questions and feedback:



Putting it together: Deep Q-Learning with Experience Replay
[Mnih et al. NIPS Workshop 2013; Nature 2015]



Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Initialize state 
(starting game 
screen pixels) at the 
beginning of each 
episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Putting it together: Deep Q-Learning with Experience Replay

For each timestep t 
of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]



With small probability, 
select a random 
action (explore), 
otherwise select 
greedy action from 
current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Take the action (at), 
and observe the 
reward rt and next 
state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Store transition in
replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Experience Replay:
Sample a random 
minibatch of transitions 
from replay memory 
and perform a gradient 
descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Policy Gradients
What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair
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Policy Gradients
What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly?
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?
Gradient ascent on policy parameters!

Policy Gradients
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REINFORCE algorithm
Mathematically, we can write:

Where 𝑟(𝜏)	is the reward of a trajectory
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Expected reward:

REINFORCE algorithm
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REINFORCE algorithm

Now let’s differentiate this:

Expected reward:
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REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when 𝑝
depends on θ

Now let’s differentiate this:

Expected reward:
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Question: How to estimate the gradient?



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Now let’s differentiate this:

However, we can use a nice trick:

Expected reward:
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REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Can estimate with 
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick: 
If we inject this back:

Expected reward:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:

And when differentiating:
Doesn’t depend on 

transition probabilities!
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:

And when differentiating:

Therefore when sampling a trajectory 𝜏, we can estimate J(𝜃) with

Doesn’t depend on 
transition probabilities!
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Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen
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Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!
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Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment 
is really hard. 
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More policy gradients: AlphaGo

- Featurize the board (stone color, move legality, bias, …)
- Initialize policy network with supervised training from professional go games, 

then continue training using policy gradient (play against itself from random 
previous iterations, +1 / -1 reward for winning / losing)

- Also learn value network (critic)
- Finally, combine policy and value networks in a Monte Carlo Tree Search

algorithm to select actions by lookahead search

Overview:
- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and 

recent ones (deep RL)

How to beat the Go world champion:

[Silver et al., 
Nature 2016]

This image is CC0 public domain
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Key Takeaways
- Markov Decision Process (MDP)
- Q-learning

- Bellman equation
- Deep Q-learning, experience replay

- Policy gradients

- Guarantees:
- Policy Gradients: Converges to a local minima of J(𝜃), often good enough!
- Q-learning: Zero guarantees since you are approximating Bellman

equation with a complicated function approximator
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Questions?


