DSC291: Machine Learning with Few Lab

Reinforcement Learning

Zhiting Hu
Lecture 23, May 29, 2024

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

This Lecture .
Google form for presentation

e RL (20mins) questions and feedback:

e Presentation #1 (10mins):

o Xujun Lian, Unpaired Image-to-Image
Translation using Cycle-Consistent
Adversarial Networks

e Presentation #2 (10mins):

o Leo Chen, Learning Transferable Visual
Models From Natural Language
Supervision

e Presentation #3 (10mins):

o Yiming Feng, Image Inpainting
for Irregular Holes Using Partial
Convolutions

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)
Store transition (¢y, a;, 74, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S - { Tj for terminal ¢, 1
ety = . _ ’. : .
r; +vmaxy Q(@j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity /N - Initialize replay memory, Q-network
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)
Store transition (¢y, a;, 74, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S - { T for terminal ¢, 1
ety = . _ s : !
r; +vmaxy Q(@j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights

for episode = 1, M do <1 Play M episodes (full games)
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do

With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)
Store transition (¢y, a;, 74, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Setgip=sid T for terminal ¢, 1
J r; + vy max, Q(¢j+1 y a’; 9) for non-terminal ¢j+1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;) <
fort=1,T do

With probability € select a random action a,

otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a, in emulator and observe reward r; and image x; ;

Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)

Store transition (¢y, a;, 74, ¢1+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

g - { T for terminal ¢, 1

ety; = A ; g S : :

r; +vmaxy Q(@j+1,a';0) for non-terminal ¢4

Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Initialize state
(starting game
screen pixels) at the
beginning of each
episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
for iv? thL Tg:bilit s - For each timestep t
ith pro y € select a random action a;,
otherwise select a; = max, Q*(¢(s;),a;0) of the game
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)
Store transition (¢y, a;, 74, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S - { T for terminal ¢, 1
ety = . _ ’. : .
r; +vmaxy Q(@j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do

With probability € select a random action a, <
otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess @yr1 = O(S¢41)

Store transition (¢y, a;, 74, ¢1+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Glppcsd T for terminal ¢, 1
Ji = r; + vy max, Q(¢j+1,a’; 9) for non-terminal ¢j+1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

With small probability,
select a random
action (explore),
otherwise select
greedy action from
current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;

Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1) < Take the action (ay),
Store transition (¢y, a;, 74, ¢1+1) in D and observe the
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D reward r,and next
o { r; for terminal ¢, 4 state s,
ety; = A ; : s : .
r; +vmaxy Q(@j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do

With probability € select a random action a,

otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)

Store transition (¢y, a;, 74, ¢1+1) in D <
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

T for terminal ¢ ;
y] = 'rj + ¥ max,’ Q(¢j+1’a’/; 0) fOI‘ non-tel'nﬁnal ¢J+1

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

Store transition in
replay memory

10

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess @yr1 = O(S¢41)
Store transition (¢y, a;, 74, ¢1+1) in D

Sample random minibatch of transitions (¢;,a;,7j,0;+1) fromD
g . T for terminal ¢, 1
Ct yJ ye— > & .
r; + vy max, Q(¢j+1,a ,9) for non-terminal ¢j+1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

Experience Replay:
Sample a random
minibatch of transitions
from replay memory
and perform a gradient
descent step

11

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

12

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly?

13

Policy Gradients

Formally, let's define a class of parametrized policies: II = {mg,0 € R™}

For each policy, define its value:

J(O) =E Zytrthrg

14

Policy Gradients

Formally, let's define a class of parametrized policies: II = {mg,0 € R™}

For each policy, define its value:

J(O) =E Zytrthrg

>0

We want to find the optimal policy #* = arg mg'LX J(0)

How can we do this?

15

Policy Gradients

Formally, let's define a class of parametrized policies: II = {mg,0 € R™}

For each policy, define its value:

J(O) =E Zytrthrg

>0

We want to find the optimal policy #* = arg mg'LX J(0)

How can we do this?
Gradient ascent on policy parameters!

16

REINFORCE algorithm

Mathematically, we can write:
J(0) = Erep(r;0) 7(7)]

- / r(T)p(r; 0)dr

T

Where r(7) is the reward of a trajectory 7 = (sq, ag, g, S1, -

)

17

REINFORCE algorithm

Expected reward: J(0) = Erp(ri0) 7(T)]

= /T(T)p(’r; 6)dr

T

18

REINFORCE algorithm

Expected reward: J(0) = Erp(ri0) 7(T)]

_ / r(r)p(r; 0)dr

T

Now let's differentiate this: V4.J(6) :/T(T)V@Z)(T;g)d’r

T

19

REINFORCE algorithm

Expected reward: J(0) = Ernp(r;0) r(7)]

= /Tr('r)p(T; 6)dr

e A : . . , Intractable! Gradient of an
Now let's differentiate this: V¢ J () = / r(7)Vep(r;0)dr expectation is problematic when p

T depends on 6

How to estimate the gradient?

20

REINFORCE algorithm

Expected reward: J(0) = Ernp(r;0) r(7)]

= /Tr('r)p('r; 6)dr

expectation is problematic when p

Now let’s differentiate this: VGJ(9) — / T(T)Vgp(’r; H)d’r Intractable! Gradient of an
depends on 6

T

Vop(T;6)

However, we can use a nice trick: y - 0) = p(r: 0
oP\T; pT;
(0 =P 0= o)

= p(7;0)Vglogp(T;0)

21

REINFORCE algorithm

Expected reward: J(0) = Ernp(r;0) r(7)]

= /Tr('r)p('r; 6)dr

expectation is problematic when p

Now let’s differentiate this: VGJ(9) — / T(T)Vgp(’r; H)d’r Intractable! Gradient of an
depends on 6

T

However, we can use a nice trick: Vop(;0) = p(T;0) Vop(7;6)

=p(7;0)Vylo ;0
If we inject this back: p(7;0) p(7;0)Vglogp(T;0)

VoJ(6) = [(+(r)Valoga(r;6)) (r; 0)dr
4 Can estimate with

—]ETNP(T;B) ['r('r)Vg log p(’r; 9)] Monte Carlo sampling

22

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: p(’l‘; 9) =]:[p(SH_llSt, at)7rg(at|st)
t>0

23

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: p(’l‘; 9) _ Hp(3t+1|st, Cl,t)ﬂ'e(at|3t)

t>0

ThUS: logp(’r; 9) — Z logp(st+1|8t, at) -+ log 7T9(at|8t)
t>0

24

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: p(’l‘; 9) _ Hp(3t+1|st, Cl,t)ﬂ'e(at|3t)

t>0
ThUS. logp(’r; 9) — Z logp(st+1|8t, at) -+ log 7T9(at|8t)

t>0 Doesn’t depend on

And when differentiating: Vg logp(1;0) = Z Vologmg(at|s:) transition probabilities!
>0

25

VoJ(6) = [(r(r)Valoga(r;6)) (r; O)d
REINFORCE algorith m = Eyrop(rig) [F(7) Vo log p(7; 0)]

Can we compute those quantities without knowing the transition probabilities?

We have: p(r;8) = [] p(sex1lse, ae)mo(ac|se)

t>0
Thus: log p(7;0) = Zlogp(3t+1|3t,at) + log mo(ast)
t>0 Doesn’t depend on
And When d|ﬂ:erent|at|ng VG logp T, 9 Z VO log 7I-(9((14:'51:) transition probab|||t|esl

t>0

Therefore when sampling a trajectory 7, we can estimate J(8) with

VeJ(0) = Z r(7)Velogmg(at|st)

t>0

26

Intuition
Gradient estimator: VJ(6) ~ Z r(7)Ve log mg(at|st)

t>0

Interpretation:

If r(t) is high, push up the probabilities of the actions seen
If r(t) is low, push down the probabilities of the actions seen

27

Intuition
Gradient estimator: VJ(6) ~ Z r(7)Ve log mg(at|st)

t>0
Interpretation:
- If r(z) is high, push up the probabilities of the actions seen

- Ifr(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

28

Intuition
Gradient estimator: VJ(6) ~ Z r(7)Ve log mg(at|st)

t>0
Interpretation:
- If r(z) is high, push up the probabilities of the actions seen

- Ifr(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment
IS really hard.

29

A B CDEFGH J] KLMNUOUPMOQRST

More policy gradients: AlphaGo: o

. e [@TOTO ‘e
Overview: e ©
- Mix of supervised learning and reinforcement learning s
- Mix of old methods (Monte Carlo Tree Search) and) [l .5&
recent ones (deep RL) :

. b

SRS R
How to beat the Go world champion: % O

- Featurize the board (stone color, move legality, bias, ...) SRR R R R RN el e
- Initialize policy network with supervised training from professional go games,
then continue training using policy gradient (play against itself from random
previous iterations, +1 / -1 reward for winning / losing)
- Also learn value network (critic)
- Finally, combine policy and value networks in a Monte Carlo Tree Search [Silver et al,
algorithm to select actions by lookahead search Nature 2016]

B R R R RERBHRBRB
HNWSRUSON®LY oo wsdo~®@L

N W& U N ®

51

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Key Takeaways

- Markov Decision Process (MDP)

- Q-learning

- Bellman equation

- Deep Q-learning, experience replay
Policy gradients

- Guarantees:
- Policy Gradients: Converges to a local minima of J(8), often good enough!

- Q-learning: Zero guarantees since you are approximating Bellman
equation with a complicated function approximator

52

