DSC291: Machine Learning with Few Lab

Reinforcement Learning

Zhiting Hu
Lecture 22, May 23, 2024

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

This Lecture .
Google form for presentation

e RL (30mins) questions and feedback:

e Presentation #1 (10mins):

o Samuel Zhang, Chameleon: Mixed-
Modal Early-Fusion Foundation Models

e Presentation #2 (10mins):

o Jiacheng Qiu, Do Transformers Really
Perform Bad for Graph
Representation?

Reward r,
Recap: Markov Decision Process Q >
Environment !

At time step t=0, environment samples initial state s, ~ p(s)
Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r, ~ R(. | s,, a,)

- Environment samples next state s,,, ~ P(. | s, a,)

- Agent receives reward r, and next state s,

A policy TTis a function from S to A that specifies what action to take in
each state

Objective: find policy 1T that maximizes cumulative discounted reward: E’Ytrt
t>0

Recap: The optimal policy 11*

We want to find optimal policy 1 that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: 7* = argmaxE ny relm| with sg ~ p(sg), az ~ m(+|8¢), Sta41 ~ p(+|8¢, at)

(\/\t/>0/-/ (-

Recap: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S, a;, Iy, ...

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

f ;
rom state s Vre) B {Z o= 8 w} Vﬂ/(g 0)

>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

t>0

Q" (s,a) =E |:Z fytrt|30 = 8,ap = a, 7'I':|

(;WM CizO :
Recap: Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) =maxE | ¥ 4're|so = 5,00 = a,m
>0

~tem JD@}”M) L
] @QWQ O \7”[("/1

Q* satisfies the following Bellman equation:

R*(s,a) =Eg g ['r' +ymaxQ*(s',a’)|s,a
o a —
Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,

then the optimal strategy is to take the action that maximizes the expected value of
r+7Q*(s',a)

The optimal policy T corresponds to taking the best action in any state as specified by Q*

&, Sw
Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

&{4_1(8, a)=E [’r' + v max %s', a')s, a]

Qa

Q, will converge to Q* as i -> infinity

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
! !
Ritr1(s,a) =E [’r + 'yma&}xQz-(s ,a’)|s, a]

Q, will converge to Q* as i -> infinity

What's the problem with this?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
! !
Qit1(s,0) = E [’f'-l-’YmaXQz'(S ,a')|s a]
a

Q, will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s.a) for every state-action pair. If statg is e.g. current game state

pixels, computationally infeasible to compute for entire state space!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
! !
Rit1(s,a) =E [7’ + 'ymae}xQz-(s ,a’)|s, a]

Q, will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

10

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
! !
Rit1(s,a) =E ['r' + 'ymae}xQz-(s ,a’)|s, a]

Q, will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

11

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) ~ Q*(s,a)

12

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) =~ Q*(s,a)
PARN

If the function approximator is a deep neural network => deep g-learning!

13

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,aQ*(s,a)

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

14

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Eg~¢ [7’ + v max Q*(s',a’)ls, a,]

15

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

@ Es/Ng r—l—’ymaxQ (s a')ls, a][/

Forward Pass

where ¥;i = Egneg [7“ + 7 max Q(s',a";0;_1)|s, a]

M—/\/\M

16

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:

R*(s,a) =Eg g [7’ +ymaxQ*(s’,a’)|s, a,]
Forward Pass "

Loss function: [,(6;) = Es a~p() [(yz — Q(s,a; 91'))2]

where ¥;i = Egneg [7“ + 7 max Q(s',a";0;_1)|s, a]

Backward Pass
Gradient update (with respect to Q-function parameters 6}

Vesz(Hz) — Es,awp(-);S’Ng [’I" + 7y nf’lx Q(S’7 CL,; 9'&'—1) o Q(Sa a, 9%))V91Q(57 a, 9%)]

17

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Eg~¢ ['r' + v max Q*(s',a’)ls, a,]
a

Forward Pass
Loss function: [, Es.anp(y | (¥ — Q(s,a;6;))?]
where yz Es ga‘r’)’maXQ S a ;05— 1)|3 0«] close to the target value (y) it

should have, if Q-function
£,
Backwa/ d Pass Aﬂot%&ﬂ

corresponds to optimal Q*
Q (and optimal policy Tr*)
Gradient update (with respect to Q-function parameters 6}
Vo,Li(03) = Eqamp(yne |7+ 7max Q(s',0;0i1) — Q(s,a;6:)) Vo, Q(s, 0: 63)|

18

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Case Study: Playing Atari Games

™ ™ ~r ™ ~ ~
(=) M ™

Objective: Complete the game with the highest score

State: Raw pixel inputs,of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Repﬂozuced with permission.

Q-network Architecture

Q(s, a:0):

neural network
with weights @

FC-4 (Q-values)

FC-256

1

[Mnih et al. NIPS Workshop 2013; @%@5]

Current state s,: 84x84x4 stack K of last 4 frames

(after RGB->grayscale conversion, downsarmpling, and cropping)

20

Q-network Architecture

Q(s,a;0):
neural network
with weights @

FC-4 (Q-values)

FC-256

1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

- Input: state s,

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

21

Q-network Architecture

Q(s,a;0):
neural network
with weights @

FC-4 (Q-values)

FC-256

1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

< Familiar conv layers,

FC layer

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

22

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Archltectui;/ (% o,

Q(S, a, 9) : < Last FC layer has 4-d

neural network Q(S’ output (if 4 actions),

with weights @ é 4) FC-256 corresponding fo Q(s,,
ay), Q(s,, ay), Q(s;, a3),
Q(sa,)

1

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

23

Q-network Architecture

Q(s,a;0): —

(L FC-4 (Q-values))

neural network

;_4

with weights @

FC-256

1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

< Last FC layer has 4-d

output (if 4 actions),
corresponding to Q(s,,
ay), Q(sy, ay), Q(sy, ay),
Q(sy.a,)

Number of actions between 4-18
depending on Atari game

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

24

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S ,a; 0) : FC-4 (Qvalues) < Last FC layer has 4-d

neural network output (if 4 actions),

with weights @ FC-256 CO)rrES(pondi)n% t(o Q(S)t,
a,), Q(s,, a,), Q(s,, a,),
Q(sa,)

A single feedforward pass
to compute Q-values for all

actions from the current Number of actions between 4-18

state => efficient! 110 — depending on Atari game

11—

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

25

Recap: Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Eg~¢ [7’ + v max Q*(s',a’)ls, a,]

Forward Pass S A
- _ C 0.2
Loss function: [,(6;) = Es a~p() [(yz — Q(s,a;0;))]

where Y; = Eg g [7‘ + ymax Q(s’, a’; 9z'—1)|8, a] close to the target value (y) it
@ should have, if Q-function
corresponds to optimal Q*
Backward Pass (and optimal policy 11%)

Gradient update (with respect to Q-function parameters 6}

Vesz(Hz) — Es,awp(-);S’Ng [’I" + 7y nf’lx Q(S’7 CL,; 9'&'—1) o Q(Sa a, 9%))V91Q(57 a, 9%)]

26

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

27

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a replay memory table of transitiong

(S, @y, Iy Siiq)
(experience) episodes are played S——

- Train Q-network on random minibatches of transitions from

instead of consecutive samples
A T P Yl O O

e Teplay memory,

28

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute

to multiple weight updates
=> greater data efficiency

29

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,Tdo
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)
Store transition (¢y, a;, 74, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S - { Tj for terminal ¢, 1
ety = . _ ’. : .
r; +vmaxy Q(@j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity /N - Initialize replay memory, Q-network
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)
Store transition (¢y, a;, 74, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S - { T for terminal ¢, 1
ety = . _ s : !
r; +vmaxy Q(@j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights

for episode = 1, M do <1 Play M episodes (full games)
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do

With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)
Store transition (¢y, a;, 74, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Setgip=sid T for terminal ¢, 1
J r; + vy max, Q(¢j+1 y a’; 9) for non-terminal ¢j+1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;) <
fort=1,T do

With probability € select a random action a,

otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a, in emulator and observe reward r; and image x; ;

Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)

Store transition (¢y, a;, 74, ¢1+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

g - { T for terminal ¢, 1

ety; = A ; g S : :

r; +vmaxy Q(@j+1,a';0) for non-terminal ¢4

Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Initialize state
(starting game
screen pixels) at the
beginning of each
episode

33

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
for iv? thL Tg:bilit s - For each timestep t
ith pro y € select a random action a;,
otherwise select a; = max, Q*(¢(s;),a;0) of the game
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)
Store transition (¢y, a;, 74, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S - { T for terminal ¢, 1
ety = . _ ’. : .
r; +vmaxy Q(@j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do

With probability € select a random action a, <
otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess @yr1 = O(S¢41)

Store transition (¢y, a;, 74, ¢1+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Glppcsd T for terminal ¢, 1
Ji = r; + vy max, Q(¢j+1,a’; 9) for non-terminal ¢j+1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for

With small probability,
select a random
action (explore),
otherwise select
greedy action from
current policy

35

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;

Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1) < Take the action (ay),
Store transition (¢y, a;, 74, ¢1+1) in D and observe the
Sample random minibatch of transitions (¢;,a;, 7, ¢;+1) from D reward r,and next
o { r; for terminal ¢, 4 state s,
ety; = A ; : s : .
r; +vmaxy Q(@j+1,a';0) for non-terminal ¢4
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

36

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do

With probability € select a random action a,

otherwise select a; = max, Q*(¢(s;),a;0)

Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess ¢yr1 = O(S¢+1)

Store transition (¢y, a;, 74, ¢1+1) in D <
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

T for terminal ¢ ;
y] = 'rj + ¥ max,’ Q(¢j+1’a’/; 0) fOI‘ non-tel'nﬁnal ¢J+1

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

Store transition in
replay memory

37

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a, in emulator and observe reward r; and image x; ;
Set 8411 = 8¢, ay, Ty41 and preprocess @yr1 = O(S¢41)
Store transition (¢y, a;, 74, ¢1+1) in D

Sample random minibatch of transitions (¢;,a;,7j,0;+1) fromD
g . T for terminal ¢, 1
Ct yJ ye— > & .
r; + vy max, Q(¢j+1,a ,9) for non-terminal ¢j+1
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for
end for

Experience Replay:
Sample a random
minibatch of transitions
from replay memory
and perform a gradient
descent step

38

