
DSC291: Machine Learning with Few Labels

Reinforcement Learning

Zhiting Hu
Lecture 21, May 22, 2024

Recall: RL for LLMs
● RLHF: Reinforcement Learning with Human Feedback

2

Figure 1: Rather than incorporating an additional proxy model like RLHF, Stable Alignment es-
tablishes direct alignment between LMs and simulated social interactions. Fine-grained interaction
data is collected through a rule-guided simulated society, which includes collective ratings, detailed
feedback, and “step-by-step” revised responses. In contrast to existing methods, Stable Alignment
effectively addresses instability and reward gaming concerns associated with reward-based RL opti-
mization while reducing the need for expensive human labeling in large-scale SFT.

2023). Therefore, optimizing the LM based on this reward model could lead to reward gam-
ing (Krakovna et al., 2020; Lehman et al., 2018) or tampering (Pan et al., 2022; Everitt et al., 2021),
where the LM systematically exploits the misspecified elements of the reward (Kenton et al., 2021).
For instance, the LM may generate nonsensical and prolonged outputs to maximize rewards while
evading direct answers to controversial questions (Steinhardt, 2022).

In contrast to these methods, humans acquire social norms and values through social interac-
tions—we interact, receive feedback, and adjust our behaviors to create positive impressions. How-
ever, LMs are essentially trained in social isolation (Krishna et al., 2022)—they neither experience
actual social activities firsthand nor receive iterative feedback for improvement. Instead, they often
recite predetermined “safe answers” such as “I’m an AI language model, so I refuse to answer.”
without displaying the empathy or understanding typical of genuine social agents (Lee, 2021).

To address these limitations, we introduce a novel alignment learning paradigm that enables LMs to
benefit from simulated social interactions. We create a simulated human society, SANDBOX, com-
prising numerous LM-based social agents interacting and we record their behaviors. The recorded in-
teraction data is distinct from traditional alignment data; it includes not only aligned and misaligned
demonstrations but also collective ratings, detailed feedback, and iteratively revised responses. Com-
pared to the reward modeling method, the use of offline simulation shifts the responsibility of pro-
viding accurate supervision onto autonomous social agents. These agents, guided by an incentive
(i.e., the SANDBOX Rule, as shown in Figure 1 [c]), aim to improve their alignment by refining their

2

So far… Supervised Learning
Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Cat

Classification

3

So far… Unsupervised Learning
Data: x
no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation

4

https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Today: Reinforcement Learning

Problems involving an agent
interacting with an environment,
which provides numeric reward
signals

Goal: Learn how to take actions
in order to maximize reward

5

Overview

- What is Reinforcement Learning?
- Markov Decision Processes
- Q-Learning
- Policy Gradients

6

Agent

Reinforcement Learning

Environment

7

Agent

Environment

State st

Reinforcement Learning

8

Agent

Environment

Action at
State st

Reinforcement Learning

9

Agent

Environment

Action at
State st Reward rt

Reinforcement Learning

10

Agent

Environment

Action a t
State st

Reinforcement Learning

Reward rt
Next state s

t+1

11

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

This image is CC0 public domain12

https://creativecommons.org/publicdomain/zero/1.0/deed.en

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

13

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

14

Go

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Lecture 14 -
15

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Agent

Environment

Action a t
State st

How can we mathematically formalize the RL
problem?

Reward rt
Next state s

t+1

16

Markov Decision Process
- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by:

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

17

Markov Decision Process
- At time step t=0, environment samples initial state s0 ~ p(s0)
- Then, for t=0 until done:

- Agent selects action at
- Environment samples reward rt ~ R(. | st, at)
- Environment samples next state st+1 ~ P(. | st, at)
- Agent receives reward rt and next state st+1

- A policy π is a function from S to A that specifies what action to take in
each state

- Objective: find policy π* that maximizes cumulative discounted reward:

18

A simple MDP: Grid World

★

★

}

Objective: reach one of terminal states (greyed out) in
least number of actions

actions = {

1. right

2. left

3. up

4. down

Set a negative “reward”
for each transition

(e.g. r = -1)

states

19

A simple MDP: Grid World

Random Policy Optimal Policy

★

★

★

★

20

The optimal policy π*
We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

21

The optimal policy π*
We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?
Maximize the expected sum of rewards!

Formally: with

22

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

23

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy
from state s:

24

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy
from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy:

25

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Bellman equation

26

Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

27

Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy π* corresponds to taking the best action in any state as specified by Q*

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

28

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

29

Qi will converge to Q* as i -> infinity

What’s the problem with this?

Solving for the optimal policy
Value iteration algorithm: Use Bellman equation as an iterative update

30

Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solving for the optimal policy
Value iteration algorithm: Use Bellman equation as an iterative update

31

Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Question: how would you solve the issue?

Solving for the optimal policy
Value iteration algorithm: Use Bellman equation as an iterative update

32

Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Solving for the optimal policy
Value iteration algorithm: Use Bellman equation as an iterative update

33

Q-learning: Use a function approximator to estimate the action-value function

Solving for the optimal policy: Q-learning

34

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

If the function approximator is a deep neural network => deep q-learning!

35

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

36

Remember: want to find a Q-function that satisfies the Bellman Equation:

Solving for the optimal policy: Q-learning

37

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass
Loss function:

where

Solving for the optimal policy: Q-learning

38

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass
Loss function:

where

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Solving for the optimal policy: Q-learning

39

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass
Loss function:

where

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Solving for the optimal policy: Q-learning

close to the target value (y) it
should have, if Q-function
corresponds to optimal Q*
(and optimal policy π*)

40

Questions?

