DSC291: Machine Learning with Few Lab

Reinforcement Learning

Zhiting Hu
Lecture 21, May 22, 2024

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE




Recall: RL for LLMs

e RLHF: Reinforcement Learning with Human Feedback
S VAV

Questions + Aligned Responses + Ratings [b]

=
‘ +[8.0,10.0, 9.0, ...] Online Interaction by RL

\

Reward Model
f +[1.0, 2.0, 1.0, ...] (Proxy of Social Judegment)

Questions + Misaligned Responses + Ratings

SFT + RLHF
(Inverse Reinforcement Learning)



So far... Supervised Learning

Data: (x, y
X is data,ly is labe

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image Classification
captioning, efc.



So far... Unsupervised Learning

Data: x

no labels! ]

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

1-d density estimation



https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Today: Reinforcement Learning

Problems involving an agent
iInteracting with an environment, Rl
which provides numeric reward

signals ﬂ

Goal: Learn how to take actions
In order to maximize reward

Reward r
Next state 8

Action a,

Environment

Atari games figure copyright Volodymyr Mnih et al., 2013. Repr05uced with permission.



Overview

What is Reinforcement Learning?
Markov Decision Processes
Q-Learning

Policy Gradients

ﬂm]m//}/
'074/ ”f?/»‘o//
]WO/M?/ bﬂrfo%

Vol yo — bage,



Reinforcement Learning

Environment




Reinforcement Learning

State s,

Environment




Reinforcement Learning

State s,

Environment

Action a,



Reinforcement Learning

State s,

Reward r,

Environment

Action a,

10



Reinforcement Learning

State s,

Reward r,

Next state S..,

Environment

Actionat

11



Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal veI00|ty
Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright

M Yo RN

L1777 777777777777 7777777777777

12


https://creativecommons.org/publicdomain/zero/1.0/deed.en

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action:_Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.



Atari Games

i 8§ =3 — )

Jective: Complete the game with the highest score

State;_Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

14
Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.



19
18
17
16
15
14
13
12
11
10

o

= N W s U N @

Go

A BCDETFGH )] KLMNUOPOQRST

5
@70 %@%’
.
°

o°

%

b 4

=

QE

e
&

\[/

A'B €CDEFGH ] KLMNDOFPQR'S T

= N W A Uy N @

/Jé/) Zbl/t Q@ (

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

15


https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

How can we mathematically formalize the RL
problem?

State s, Reward r,

Next state s
- 1+1

O ———t,

Environment

Actionat

16



W[

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

|d :
wor . ‘S;’Z“ . ’2%/ ) S—f, N ﬁt
sy A

Defined by: (S, .A, R) ]P)a /7)

arkaov Decision Process

c—

S : set of possible states

A : set of possible actions 7’( a,S) é//{

R : distribution of reward given (state, action) pair

P: transition probability i.e. distribution over next state given (state, action) pair
7Y :discount factor Q

- ’ v




Markov Decision Process

- At time step t=0, environment samples initial state s, ~ p(so)@
- Then, for t=0 until done: -
—-2Agent selects action a, @
- Environment samples reward r, ~ R( . | s;, a)
- Environment samples next state s,,, ~ P( . | Sy, 8,
- Agent receives reward r, and ne?t‘state'?—”

RS

e 10 (ﬁt/ S¢ /ﬁ mew/ﬂ
- A policx T1js a function from S 16 A that specifies what action to take in

each state .
- Objective: find policy 11 that maximizes cumulative discounted reward: Z’L Tt

y=1 =

18




A simple MDP: Grid World

states (/

actions = {

1. right — }

2. left <— Set a negative “reward”
3 *,' for each Transition
] et

(e.g. 1 Ql
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions

19



C
b
ERsaaRs

Random Policy

A simple MDP: Grid World

o

Optimal Policy

20



The optimal policy 1r*

We want to find optimal policy 1 that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

21



The optimal policy 1r*
We want to find optimal policy 1 that maximizes the sum of rewaras:.

How do we han
Maximize the :

dlethe randomness (initial state, transition probability...)?
T — e ———

Formally: 7* = argmaxE | ) "~'ry|m| with sg ~ p(s0);a: ~ 7(:[8¢), Se41 ~ D(:|5¢, ar)
‘ w A~ - e~ c—

- Bzl - 2

40 p—> T2 T

22



Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s, ay, o, S4, a4, Iy, ..

- P e

23



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S, a;, Iy, ...

How good is a state?
The value function at state s, is the expected cumulative rewardl‘rom following the policy

from state s: q N
VT(s) =E | ) A'rilso=s,m (/
e fzo/ =

24



S o svp@lsw) QG a)D (9

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S, a4, Iy, ... \/ (
A 5)
How good is a state? <p QCS a) r + §4//365 3 y
The value function at state s, is the expected cumulative reward from followi e policy
from state s: C ~
V7(s) =E Z’Yt?‘dso =8, \/ (SW{/) 1 /<L 6&/&_”&
- t>0 o e

Stuce— Octvy Liply, 7/
How good is a state-action pair? Wetioy,
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a In state s and then following the policy:

Q" (s,a) =E nyt'rt|so =8,ay) =Q,T
‘K tZO/ CraEE——

25



s
Bellman equation Q) o) = }’%ﬂ%
The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

R*(s,a) = max]E Z'y’rﬂso:s ap = a,m

— t>0

at ”@W @*@ﬁ)

26



Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

R*(s,a) = mgx]E

¢
E Y1re|so = s,a0 = a,

>0

Q* satisfies the following Bellman equation:

Q*(s,a) =Egne [7' +ymax Q*(s’,a’)|s, a]
8¢ - Y -9

b -

Intuition: if the optimal state-action values for the next time-step Q*

then the optimal strategy is to take the action that maximizes the

r+vQ*(s',a)
\M

\S/

OtrS//OL/

£

(s’,a’) are known,

E)?b’é’é'téd value of

27



Bellman equation (%, WV\O

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) =maxE | ¥ 4're|so = 5,00 = a,m
>0

@atisfies the following Bellman equation:
Q* (3, CL) = Es/Ng [’f’ —|— f)/ n}la,‘x Q*(S,, a/)ls, a] Q

-

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+yQ*(s',a’)

The optimal policy T corresponds to taking the best action in any state as specified by Q*

28



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
! !
Ritr1(s,a) =E [’r + 'yma&}xQz-(s ,a’)|s, a]

Q, will converge to Q* as i -> infinity

29



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
! !
Ritr1(s,a) =E [’r + 'yma&}xQz-(s ,a’)|s, a]

Q, will converge to Q* as i -> infinity

What's the problem with this?

30



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
! !
Rit1(s,a) =E [7’ + 'ymae}xQz-(s ,a’)|s, a]

Q, will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

31



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
! !
Rit1(s,a) =E [7’ + 'ymae}xQz-(s ,a’)|s, a]

Q, will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

32



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
! !
Rit1(s,a) =E [7’ + 'ymae}xQz-(s ,a’)|s, a]

Q, will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

33



Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) ~ Q*(s,a)

34



Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) ~ Q*(s,a)

If the function approximator is a deep neural network => deep g-learning!

35



Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Qe ai0) ¥ @"(s:0)

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

36



Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Eg~¢ [7’ + v max Q*(s',a’)ls, a,]

37



Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

R*(s,a) =Eg~¢ ['r' + v max Q*(s',a’)ls, a,]
Forward Pass

Loss function:  [,(6;) = Es a~p() [(yz — Q(s,a; 91’))2]

where ¥;i = Egneg [7“ + v max Q(s',a";0;_1)|s, a]

38



Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:

R*(s,a) =Eg g [7’ +ymaxQ*(s’,a’)|s, a,]
Forward Pass "

Loss function:  [,(6;) = Es a~p() [(yz — Q(s,a; 91'))2]

where ¥;i = Egneg [7“ + 7 max Q(s',a";0;_1)|s, a]

Backward Pass
Gradient update (with respect to Q-function parameters 6}

Vesz(Hz) — Es,awp(-);S’Ng [’I" + 7y nf’lx Q(S’7 CL,; 9'&'—1) o Q(Sa a, 9%))V91Q(57 a, 9%)]

39



Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Eg~¢ ['r' + v max Q*(s',a’)ls, a,]

Forward Pass
Loss function:  [,(6;) = Es a~p() [(yz w

where Y; = Eg g [7‘ + ymax Q(s’, a’; 9z'—1)|8, a] close to the target value (y) it
@ should have, if Q-function
corresponds to optimal Q*
Backward Pass (and optimal policy 11%)

Gradient update (with respect to Q-function parameters 6}

Vesz(gz) — Es,awp(-);S’Ng [’I" + 7y nffx Q(S’7 CL,; 9'&'—1) o Q(Sa a, &J)ngQ(S, a, 9%)]

40






