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e VAEs (today)
e Reinforcement Learning
e Unified Perspective

e Other topics (if time permits):

o Diffusion models
o World models
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Real-time control of world state:

Action 1: The red car moves along the path
Action 2: Explosion happens

Action 3: The red car continues to move
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Action: Turn left
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Plan for the rest of the course

e VAEs (today)
e Reinforcement Learning
e Unified Perspective

e Other topics (if time permits):

o Diffusion models
o World models

o ...

e Homework:
o To be released on Wed (EM, VI related)

o Due in the final week



Variational Autoencoders (VAES)



Variational Auto-Encoders (VAEs)

VAEs are a combination of the following ideas:

e Variational Inference
o ELBO

e Variational distribution parametrized as neural networks

e Reparameterization trick

[Courtesy: Dhruv, CS 4803]



Variational Auto-Encoders (VAEs)

e Model py(x,2z) = pg(x|2)p(2)
o pe(x|2):
o p(z): prior, e.g., Gaussian
e Assume variational distribution g4 (z|x)
o E.g., a Gaussian distribution parameterized as deep neural networks

O

e ELBO:

L(6, ¢; x) = Eq,z1x)[log po(x, 2)| + H(qyp (z]x))
= Eq,(z1x) 108 pe(x|2)] —KL(q4(z|x) || p(2))

</ ‘l'

Reconstruction Divergence from prior
(KL divergence between two Guassians
has an analytic form)



Variational Auto-Encoders (VAESs)

 ELBO:
L(6,¢; x) = Eq,(z|x)llog po(x, 2)| + H(gy(2]x))

= Eq,(z1x) [10g pe(x|2)] —KL(q4(z|x) || p(2))

e Reparameterization:
o [u; 0] = fp(x) (a neural network)
o z=u+0o0®¢, €~N(0,1)

decoder model decoder model

Deterministic node I

: Q ~q(z|x) reparameterization 0 z=pu+oQe¢
Random node
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encoder model encoder model 10




Variational Auto-Encoders (VAEs)

« ELBO:
L(6, $; x) = Eq,z1x)[log po(x, 2)| + H(qyp (z]x))

= Eq,zix) [log pe(x|2)] — KL(qy(z|x) || p(2))

e Reparameterization:
o [u; 0] = fp(x) (a neural network)
o Zz=u+0o0®€ €~ N(0,1)

VoL =Ec_no1)[ Vz|log pe(x, 2) —log q4 (z]x)| V2 (€, $)]

VoL =Eq, (zix)[Volog pe(x, 2)]
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Example: VAEs for images

encode > decode >
Inference Generative

Reconstructed
Image

B

=0

Latent
Distribution

[https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder]
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Example: VAEs for images

encode > decode >
Inference Generative

Reconstructed
Image

B

=

Latent
Distribution

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Input Data
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Example: VAEs for images

decode >
Generative

encode >
Inference

Reconstructe
Image
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Input Data

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]
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Example: VAEs for images

encode > decode >
Inference Generative

=

<

Sample z from z|zc ~ N(uz|a;, Zz|:1:)

T

e Hz|x Zz|sc
pistribution Encoder network \/
q¢(2|)
Input Data h
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[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images

encode > decode >
Inference Generative

ﬂ’:z:|z’ Zazl pe
Decoder network \/
input hidden output Po (LU | Z) A
4 (z|x) /; ‘ po(z|2) Sample z from Z|.CL' ~ N(}Lzm, Zz|m)

T

Hz|x

T > 4 > x
Latent
pistribution Encoder network
q¢(2|z)
Input Data

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Zz|sc
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Example: VAEs for images

h
de > decode >
s conaronive Sample x(z f"}l NvN\(“x'm Yaz)
M|z Za:|z
Decoder network \/
po(z|2)
input hidden output Z
4 (z|x) po(z|2) Sample z from Z|.CL' ~ N(}Lzm, Zz|m)
_ Lat.'.ent. MZ':L‘ 22":13
pistribution Encoder network \/
q¢(2|z)
Input Data b

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n] 17



Data manifold for 2-d z

: VAEs for images

Example
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Vary z,

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images Data manifold for 2-d z

Generating samples:

e Use decoder network. Now sample z
from prior!
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[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n] ary z (head p]gse)



Example: VAEs for text

Latent code interpolation and sentences generation
from VAEs [Bowman et al., 2015].

14 %9

i want to talk to you .
“o want to be with you . ”
“o do n’t want to be with you .

1 do n’t want to be with you .
she did n’t want to be with him .

vy




Note: Amortized Variational Inference

- Variational distribution as an inference model g4 (z|x) with
parameters ¢ (which was traditionally factored over samples)

* Amortize the cost of inference by learning a single data-
dependent inference model

 The trained inference model can be used for quick inference
on new data
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Variational Auto-encoders: Summary

e A combination of the following ideas:
o Variational Inference: ELBO
o Variational distribution parametrized as neural networks
o Reparameterization trick

L(O,¢; x) = [logpg(x|z)] — KL(qe(z|x) || p(2))

</ ‘l'

Reconstruction Divergence from prior

e Pros: (Razavi et al., 2019)
o Principled approach to generative models

o Allows inference of q(z|x), can be useful teature representation for other tasks

e Cons:
o Samples blurrier and lower quality compared to GANs

o Tend to collapse on text data
23



Summary: Supervised / Unsupervised Learning

e Supervised Learning
o Maximum likelihood estimation (MLE)

e Unsupervised learning
o Maximum likelihood estimation (MLE) with latent variables
= Marginal log-likelihood
o EM algorithm for MLE
= ELBO / Variational free energy
o Variational Inference
= ELBO / Variational free energy

= Variational distributions
o Factorized (mean-field VI)
o Mixture of Gaussians (Black-box VI)

o Neural-based (VAES)

p@lx)

S KL(g(v*) || p(z] %))

encode > decode >
Inference Genera tive

~
\/
7
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Reinforcement Learning (RL)



Recall: RL for LLMs

e RLHF: Reinforcement Learning with Human Feedback

Questions + Aligned Responses + Ratings [b]
=
‘ +[8.0,10.0, 9.0, ...] Online Interaction by RL
Questions + Misaligned Responses + Ratings
Reward Model e L
(Proxy of Social Judegment) *
f +[1.0,2.0,10, ..] i 2 (Inverse Reinforcement Learning)

27



So far... Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, efc.

Classification

28



So far... Unsupervised Learning

Data: x oo e - e "l lie g

no labels!

1-d density estimation

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

2-d density estimation

29


https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Today: Reinforcement Learning

Problems involving an agent

iInteracting with an environment, Rl
which provides numeric reward

signals

Reward r
Next state 8

Action a,

Environment

Goal: Learn how to take actions
In order to maximize reward

Atari games figure copyright Volodymyr Mnih et al., 2013. Rep@@uced with permission.



Overview

What is Reinforcement Learning?
Markov Decision Processes
Q-Learning

Policy Gradients

31



Reinforcement Learning

Environment

32



Reinforcement Learning

State s,

Environment

33



Reinforcement Learning

State s,

Environment

Action a,
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Reinforcement Learning

State s,

Reward r,

Environment

Action a,

35



Reinforcement Learning

State s,

Reward r,

Next state S..,

Environment

Actionat

36



Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

_’
M %

L1777 777777777777 7777777777777
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https://creativecommons.org/publicdomain/zero/1.0/deed.en

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.



Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

3
Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.
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Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

40


https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

How can we mathematically formalize the RL
problem?

State s, Reward r,

Action a
Next state S... t

Environment

41



Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by: (S, .A, R) ]P)a /7)

. set of possible states

. set of possible actions

. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

LF A X O

42



Markov Decision Process

At time step t=0, environment samples initial state s, ~ p(s)
Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r, ~ R( . | s,, a,)

- Environment samples next state s,,, ~ P(. | s, a,)

- Agent receives reward r, and next state s,

A policy TTis a function from S to A that specifies what action to take in
each state

Objective: find policy 1T that maximizes cumulative discounted reward: Z’YtTt
t>0

43



A simple MDP: Grid World

actions = { states
1. right «— *
2. left <~— Set a negative “reward”
3. u I * for each transition
i (e.9.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions

44



A simple MDP: Grid World

*

+

+

+

+

+

+

*

+

+

+

+

Random Policy

Optimal Policy
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The optimal policy 1r*

We want to find optimal policy 1 that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

46



The optimal policy 1r*

We want to find optimal policy 1 that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Forma”y: T = argmfrl,x]E Z'Y re|T with sg ~ p(SO)a ap ~ 7r(°|3t)a St+1 ™ p(°|3ta at)
t>0

47



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S, a4, Iy, ...
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S, a;, Iy, ...

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s)=E Z'ytrt|so =8,

>0
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S, a;, Iy, ...

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s) = Z'y r¢|so = 8, T

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E |:Z fytrt|so = 8,ap = a, 71':|

t>0
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