DSC291: Machine Learning with Few Labels

Unsupervised Learning Reinforcement Learning

Zhiting Hu Lecture 20, May 20, 2024

- VAEs (today)
- Reinforcement Learning
- Unified Perspective
- Other topics (if time permits):
 - Diffusion models
 - World models
 - O ...

- VAEs (today)
- Reinforcement Learning
- Unified Perspective
- Other topics (if time permits):
 - Diffusion models
 - World models
 - O ...

Real-time control of world state:

Action 1: The red car moves along the path

Action 2: Explosion happens

Action 3: The red car continues to move

- VAEs (today)
- Reinforcement Learning
- Unified Perspective
- Other topics (if time permits):
 - Diffusion models
 - World models
 - O ...

Action: Turn left

- VAEs (
- Reinfo
- Unified
- Other
 - o Diffu
 - World
 - 0 ..

- VAEs (today)
- Reinforcement Learning
- Unified Perspective
- Other topics (if time permits):
 - Diffusion models
 - World models
 - 0 ...
- Homework:
 - To be released on Wed (EM, VI related)
 - Due in the final week

VAEs are a combination of the following ideas:

- Variational Inference
 - ELBO
- Variational distribution parametrized as neural networks

Reparameterization trick

- Model $p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})$
 - $p_{\theta}(x|z)$: a.k.a., generative model, generator, (probabilistic) decoder, ...
 - o $p(\mathbf{z})$: prior, e.g., Gaussian
- Assume variational distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$
 - E.g., a Gaussian distribution parameterized as deep neural networks
 - o a.k.a, recognition model, inference network, (probabilistic) encoder, ...
- ELBO:

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = \mathbf{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})] + \mathbf{H}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}))$$

$$= \mathbf{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})] - \mathbf{KL}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}))$$

Reconstruction

Divergence from prior (KL divergence between two Guassians has an analytic form)

• ELBO:

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = E_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})] + H(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}))$$

$$= E_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})] - KL(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}))$$

- Reparameterization:
 - $[\mu; \sigma] = f_{\phi}(x)$ (a neural network)
 - $\circ \quad z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim N(0, 1)$

ELBO:

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) &= \mathrm{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})] + \mathrm{H}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})) \\ &= \mathrm{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})}\left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})\right] - \mathrm{KL}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \mid\mid p(\boldsymbol{z})) \end{split}$$

- Reparameterization:
 - $[\mu; \sigma] = f_{\phi}(x)$ (a neural network)
 - $\circ \quad z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim N(0, 1)$

$$\nabla_{\boldsymbol{\phi}} \mathcal{L} = \mathbf{E}_{\epsilon \sim N(\mathbf{0}, \mathbf{1})} \left[\nabla_{\mathbf{z}} \left[\log p_{\theta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z} | \mathbf{x}) \right] \nabla_{\boldsymbol{\phi}} z(\epsilon, \boldsymbol{\phi}) \right]$$

$$\nabla_{\theta} \mathcal{L} = \mathbf{E}_{q_{\phi}(\mathbf{Z}|\mathbf{X})} [\nabla_{\theta} \log p_{\theta}(\mathbf{X}, \mathbf{Z})]$$

Input Data $oldsymbol{x}$

Generating samples:

 Use decoder network. Now sample z from prior!

Sample z from $\,z \sim \mathcal{N}(0,I)\,$

Data manifold for 2-d z

Generating samples:

Use decoder network. Now sample z from prior!

Data manifold for 2-d z

Vary z_2 (head pose)

Example: VAEs for text

 Latent code interpolation and sentences generation from VAEs [Bowman et al., 2015].

"i want to talk to you." "i want to be with you." "i do n't want to be with you." i do n't want to be with you. she did n't want to be with him.

Note: Amortized Variational Inference

- Variational distribution as an inference model $q_{\phi}(\mathbf{z}|\mathbf{x})$ with parameters ϕ (which was traditionally factored over samples)
- Amortize the cost of inference by learning a single datadependent inference model
- The trained inference model can be used for quick inference on new data

Variational Auto-encoders: Summary

- A combination of the following ideas:
 - Variational Inference: ELBO
 - Variational distribution parametrized as neural networks
 - Reparameterization trick

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = [\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})] - \mathrm{KL}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \mid\mid p(\boldsymbol{z}))$$
 Reconstruction Divergence from prior

• Pros:

(Razavi et al., 2019)

- Principled approach to generative models
- \circ Allows inference of q(z|x), can be useful feature representation for other tasks
- Cons:
 - Samples blurrier and lower quality compared to GANs
 - Tend to collapse on text data

Summary: Supervised / Unsupervised Learning

- Supervised Learning
 - Maximum likelihood estimation (MLE)
- Unsupervised learning
 - Maximum likelihood estimation (MLE) with latent variables
 - Marginal log-likelihood
 - EM algorithm for MLE
 - ELBO / Variational free energy
 - Variational Inference
 - ELBO / Variational free energy
 - Variational distributions
 - Factorized (mean-field VI)
 - Mixture of Gaussians (Black-box VI)
 - Neural-based (VAEs)

Reinforcement Learning (RL)

Recall: RL for LLMs

• RLHF: Reinforcement Learning with Human Feedback

Questions + Aligned Responses + Ratings

+ [8.0, 10.0, 9.0, ...]

Questions + Misaligned Responses + Ratings

Reward Model

(Proxy of Social Judegment)

(Inverse Reinforcement Learning)

So far... Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

So far... Unsupervised Learning

Data: x

no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Figure copyright Ian Goodfellow, 2016. Reproduced with permission.

1-d density estimation

2-d density estimation

Today: Reinforcement Learning

Problems involving an **agent** interacting with an **environment**, which provides numeric **reward** signals

Goal: Learn how to take actions in order to maximize reward

Overview

- What is Reinforcement Learning?
- Markov Decision Processes
- Q-Learning
- Policy Gradients

Agent

Environment

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity

Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints

Action: Torques applied on joints

Reward: 1 at each time step upright +

forward movement

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Go

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

How can we mathematically formalize the RL problem?

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the world

```
Defined by: (\mathcal{S},\mathcal{A},\mathcal{R},\mathbb{P},\gamma)
```

 ${\mathcal S}$: set of possible states

 \mathcal{A} : set of possible actions

 ${\cal R}\,$: distribution of reward given (state, action) pair

P: transition probability i.e. distribution over next state given (state, action) pair

 γ : discount factor

Markov Decision Process

- At time step t=0, environment samples initial state $s_0 \sim p(s_0)$
- Then, for t=0 until done:
 - Agent selects action a_t
 - Environment samples reward $r_t \sim R(. | s_t, a_t)$
 - Environment samples next state $s_{t+1} \sim P(. | s_t, a_t)$
 - Agent receives reward r_t and next state s_{t+1}

- A policy π is a function from S to A that specifies what action to take in each state
- **Objective**: find policy π* that maximizes cumulative discounted reward:

A simple MDP: Grid World

```
actions = {

1. right →

2. left →

3. up  

4. down  

}
```


Set a negative "reward" for each transition (e.g. r = -1)

Objective: reach one of terminal states (greyed out) in least number of actions

A simple MDP: Grid World

Random Policy

Optimal Policy

The optimal policy π*

We want to find optimal policy π^* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

The optimal policy π*

We want to find optimal policy π^* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)? Maximize the **expected sum of rewards!**

Formally:
$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | \pi\right]$$
 with $s_0 \sim p(s_0), a_t \sim \pi(\cdot|s_t), s_{t+1} \sim p(\cdot|s_t, a_t)$

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s₀, a₀, r₀, s₁, a₁, r₁, ...

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy

from state s:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from following the policy from state s:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

How good is a state-action pair?

The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Questions?