
DSC291: Machine Learning with Few Labels

Unsupervised Learning
Reinforcement Learning

Zhiting Hu
Lecture 20, May 20, 2024

Plan for the rest of the course
● VAEs (today)
● Reinforcement Learning
● Unified Perspective
● Other topics (if time permits):
! Diffusion models
! World models
! …

2

Plan for the rest of the course
● VAEs (today)
● Reinforcement Learning
● Unified Perspective
● Other topics (if time permits):
! Diffusion models
! World models
! …

3

Real-time control of world state:
Action 1: The red car moves along the path
Action 2: Explosion happens
Action 3: The red car continues to move

Plan for the rest of the course
● VAEs (today)
● Reinforcement Learning
● Unified Perspective
● Other topics (if time permits):
! Diffusion models
! World models
! …

4

Action: Turn left

Plan for the rest of the course
● VAEs (today)
● Reinforcement Learning
● Unified Perspective
● Other topics (if time permits):
! Diffusion models
! World models
! …

5

Plan for the rest of the course
● VAEs (today)
● Reinforcement Learning
● Unified Perspective
● Other topics (if time permits):
! Diffusion models
! World models
! …

● Homework:
! To be released on Wed (EM, VI related)
! Due in the final week

6

7

Variational Autoencoders (VAEs)

Variational Auto-Encoders (VAEs)
VAEs are a combination of the following ideas:

● Variational Inference
! ELBO

● Variational distribution parametrized as neural networks

● Reparameterization trick

8[Courtesy: Dhruv, CS 4803]

Variational Auto-Encoders (VAEs)
● Model 𝑝! 𝒙, 𝒛 = 𝑝! 𝒙 𝒛 𝑝(𝒛)
! 𝑝! 𝒙 𝒛 : a.k.a., generative model, generator, (probabilistic) decoder, …
! 𝑝(𝒛): prior, e.g., Gaussian

● Assume variational distribution 𝑞" 𝒛|𝒙
! E.g., a Gaussian distribution parameterized as deep neural networks
! a.k.a, recognition model, inference network, (probabilistic) encoder, …

● ELBO:

9

ℒ 𝜽,𝝓; 𝒙 = E#! 𝒛 𝒙 log	𝑝! 𝒙, 𝒛 + H(𝑞" 𝒛 𝒙)
 = E#! 𝒛 𝒙 log	𝑝! 𝒙|𝒛 	− KL(𝑞" 𝒛 𝒙 	||	𝑝(𝒛))

Reconstruction Divergence from prior
(KL divergence between two Guassians

has an analytic form)

Variational Auto-Encoders (VAEs)
● ELBO:

● Reparameterization:
! [𝝁; 𝝈] = 𝑓"(𝒙) (a neural network)
! 𝒛 = 𝝁 + 𝝈⨀𝝐, 	 𝝐 ∼ 𝑵(𝟎, 𝟏)

10

ℒ 𝜽,𝝓; 𝒙 = E#! 𝒛 𝒙 log	𝑝! 𝒙, 𝒛 + H(𝑞" 𝒛 𝒙)
 = E#! 𝒛 𝒙 log	𝑝! 𝒙|𝒛 	− KL(𝑞" 𝒛 𝒙 	||	𝑝(𝒛))

Variational Auto-Encoders (VAEs)
● ELBO:

● Reparameterization:
! [𝝁; 𝝈] = 𝑓"(𝒙) (a neural network)
! 𝒛 = 𝝁 + 𝝈⨀𝝐, 	 𝝐 ∼ 𝑵 𝟎, 𝟏

11

ℒ 𝜽,𝝓; 𝒙 = E#! 𝒛 𝒙 log	𝑝! 𝒙, 𝒛 + H(𝑞" 𝒛 𝒙)
 = E#! 𝒛 𝒙 log	𝑝! 𝒙|𝒛 	− KL(𝑞" 𝒛 𝒙 	||	𝑝(𝒛))

∇𝝓ℒ	=E"∼$(𝟎,𝟏)[∇𝒛 log	𝑝+ 𝒙, 𝒛 − log	𝑞, 𝒛|𝒙 	∇,𝑧 𝜖, 𝝓]	

∇+ℒ	=E-! 𝒛 𝒙 ∇+log	𝑝+ 𝒙, 𝒛

Example: VAEs for images

12[https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder]

Encoder

Example: VAEs for images

13[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Encoder

Example: VAEs for images

14[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for images

15

Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for images

16

Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for images

17

Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for images

18

Generating samples:
● Use decoder network. Now sample z

from prior!

Data manifold for 2-d z

Vary 𝑧#

Vary 𝑧$ [Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for images

19

Generating samples:
● Use decoder network. Now sample z

from prior!

Data manifold for 2-d z

Vary 𝑧#

Vary 𝑧$

(Degree of smile)

(head pose)[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for text

20

• Latent code interpolation and sentences generation
from VAEs [Bowman et al., 2015].

input we looked out at the setting sun . i went to the kitchen . how are you doing ?
mean they were laughing at the same time . i went to the kitchen . what are you doing ?
samp. 1 ill see you in the early morning . i went to my apartment . “ are you sure ?
samp. 2 i looked up at the blue sky . i looked around the room . what are you doing ?
samp. 3 it was down on the dance floor . i turned back to the table . what are you doing ?

Table 7: Three sentences which were used as inputs to the vae, presented with greedy decodes from the
mean of the posterior distribution, and from three samples from that distribution.

“ i want to talk to you . ”
“i want to be with you . ”
“i do n’t want to be with you . ”
i do n’t want to be with you .
she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .
it was quiet for a moment .
it was dark and cold .
there was a pause .
it was my turn .

Table 8: Paths between pairs of random points in
vae space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

ments). Here we see that the sentences are far less
typical, but for the most part are grammatical and
maintain a clear topic, indicating that the latent
variable is capturing a rich variety of global fea-
tures even for rare sentences.

6.2 Sampling from the posterior

In addition to generating unconditional samples,
we can also examine the sentences decoded from
the posterior vectors p(z|x) for various sentences
x. Because the model is regularized to produce dis-
tributions rather than deterministic codes, it does
not exactly memorize and round-trip the input. In-
stead, we can see what the model considers to be
similar sentences by examining the posterior sam-
ples in Table 7. The codes appear to capture in-
formation about the number of tokens and parts
of speech for each token, as well as topic informa-
tion. As the sentences get longer, the fidelity of
the round-tripped sentences decreases.

6.3 Homotopies

The use of a variational autoencoder allows us to
generate sentences using greedy decoding on con-
tinuous samples from the space of codes. Addi-
tionally, the volume-filling and smooth nature of
the code space allows us to examine for the first
time a concept of homotopy (linear interpolation)
between sentences. In this context, a homotopy be-
tween two codes ~z1 and ~z2 is the set of points on the
line between them, inclusive, ~z(t) = ~z1⇤(1�t)+~z2⇤t
for t 2 [0, 1]. Similarly, the homotopy between two

sentences decoded (greedily) from codes ~z1 and ~z2

is the set of sentences decoded from the codes on
the line. Examining these homotopies allows us to
get a sense of what neighborhoods in code space
look like – how the autoencoder organizes infor-
mation and what it regards as a continuous defor-
mation between two sentences.
While a standard non-variational rnnlm does

not have a way to perform these homotopies, a
vanilla sequence autoencoder can do so. As men-
tioned earlier in the paper, if we examine the ho-
motopies created by the sequence autoencoder in
Table 1, though, we can see that the transition be-
tween sentences is sharp, and results in ungram-
matical intermediate sentences. This gives evi-
dence for our intuition that the vae learns repre-
sentations that are smooth and “fill up” the space.
In Table 8 (and in additional tables in the ap-

pendix) we can see that the codes mostly contain
syntactic information, such as the number of words
and the parts of speech of tokens, and that all in-
termediate sentences are grammatical. Some topic
information also remains consistent in neighbor-
hoods along the path. Additionally, sentences with
similar syntax and topic but flipped sentiment va-
lence, e.g. “the pain was unbearable” vs. “the
thought made me smile”, can have similar embed-
dings, a phenomenon which has been observed with
single-word embeddings (for example the vectors
for “bad” and “good” are often very similar due to
their similar distributional characteristics).

7 Conclusion

This paper introduces the use of a variational
autoencoder for natural language sentences. We
present novel techniques that allow us to train
our model successfully, and find that it can e↵ec-
tively impute missing words. We analyze the la-
tent space learned by our model, and find that it
is able to generate coherent and diverse sentences
through purely continuous sampling and provides
interpretable homotopies that smoothly interpo-
late between sentences.
We hope in future work to investigate factoriza-

tion of the latent variable into separate style and
content components, to generate sentences condi-
tioned on extrinsic features, to learn sentence em-
beddings in a semi-supervised fashion for language

Note: Amortized Variational Inference

22

• Variational distribution as an inference model 𝑞, 𝒛 𝒙 with
parameters 𝝓 (which was traditionally factored over samples)
• Amortize the cost of inference by learning a single data-

dependent inference model
• The trained inference model can be used for quick inference

on new data

Variational Auto-encoders: Summary
● A combination of the following ideas:
! Variational Inference: ELBO
! Variational distribution parametrized as neural networks
! Reparameterization trick

● Pros:
! Principled approach to generative models
! Allows inference of 𝑞(𝑧|𝑥), can be useful feature representation for other tasks

● Cons:
! Samples blurrier and lower quality compared to GANs
! Tend to collapse on text data

23

ℒ 𝜽,𝝓; 𝒙 = log	𝑝! 𝒙|𝒛 	− KL(𝑞" 𝒛 𝒙 	||	𝑝(𝒛))

Reconstruction Divergence from prior

(Razavi et al., 2019)

Summary: Supervised / Unsupervised Learning
● Supervised Learning
! Maximum likelihood estimation (MLE)

● Unsupervised learning
! Maximum likelihood estimation (MLE) with latent variables
§ Marginal log-likelihood

! EM algorithm for MLE
§ ELBO / Variational free energy

! Variational Inference
§ ELBO / Variational free energy
§ Variational distributions

q Factorized (mean-field VI)
q Mixture of Gaussians (Black-box VI)
q Neural-based (VAEs)

25

26

Reinforcement Learning (RL)

Recall: RL for LLMs
● RLHF: Reinforcement Learning with Human Feedback

27

Figure 1: Rather than incorporating an additional proxy model like RLHF, Stable Alignment es-
tablishes direct alignment between LMs and simulated social interactions. Fine-grained interaction
data is collected through a rule-guided simulated society, which includes collective ratings, detailed
feedback, and “step-by-step” revised responses. In contrast to existing methods, Stable Alignment
effectively addresses instability and reward gaming concerns associated with reward-based RL opti-
mization while reducing the need for expensive human labeling in large-scale SFT.

2023). Therefore, optimizing the LM based on this reward model could lead to reward gam-
ing (Krakovna et al., 2020; Lehman et al., 2018) or tampering (Pan et al., 2022; Everitt et al., 2021),
where the LM systematically exploits the misspecified elements of the reward (Kenton et al., 2021).
For instance, the LM may generate nonsensical and prolonged outputs to maximize rewards while
evading direct answers to controversial questions (Steinhardt, 2022).

In contrast to these methods, humans acquire social norms and values through social interac-
tions—we interact, receive feedback, and adjust our behaviors to create positive impressions. How-
ever, LMs are essentially trained in social isolation (Krishna et al., 2022)—they neither experience
actual social activities firsthand nor receive iterative feedback for improvement. Instead, they often
recite predetermined “safe answers” such as “I’m an AI language model, so I refuse to answer.”
without displaying the empathy or understanding typical of genuine social agents (Lee, 2021).

To address these limitations, we introduce a novel alignment learning paradigm that enables LMs to
benefit from simulated social interactions. We create a simulated human society, SANDBOX, com-
prising numerous LM-based social agents interacting and we record their behaviors. The recorded in-
teraction data is distinct from traditional alignment data; it includes not only aligned and misaligned
demonstrations but also collective ratings, detailed feedback, and iteratively revised responses. Com-
pared to the reward modeling method, the use of offline simulation shifts the responsibility of pro-
viding accurate supervision onto autonomous social agents. These agents, guided by an incentive
(i.e., the SANDBOX Rule, as shown in Figure 1 [c]), aim to improve their alignment by refining their

2

So far… Supervised Learning
Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Cat

Classification

28

So far… Unsupervised Learning
Data: x
no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation

29

https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Today: Reinforcement Learning

Problems involving an agent
interacting with an environment,
which provides numeric reward
signals

Goal: Learn how to take actions
in order to maximize reward

30

Overview

- What is Reinforcement Learning?
- Markov Decision Processes
- Q-Learning
- Policy Gradients

31

Agent

Reinforcement Learning

Environment

32

Agent

Environment

State st

Reinforcement Learning

33

Agent

Environment

Action at
State st

Reinforcement Learning

34

Agent

Environment

Action at
State st Reward rt

Reinforcement Learning

35

Agent

Environment

Action a t
State st

Reinforcement Learning

Reward rt
Next state s

t+1

36

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

This image is CC0 public domain37

https://creativecommons.org/publicdomain/zero/1.0/deed.en

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

38

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

39

Go

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Lecture 14 -
40

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Agent

Environment

Action a t
State st

How can we mathematically formalize the RL
problem?

Reward rt
Next state s

t+1

41

Markov Decision Process
- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by:

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

42

Markov Decision Process
- At time step t=0, environment samples initial state s0 ~ p(s0)
- Then, for t=0 until done:

- Agent selects action at
- Environment samples reward rt ~ R(. | st, at)
- Environment samples next state st+1 ~ P(. | st, at)
- Agent receives reward rt and next state st+1

- A policy π is a function from S to A that specifies what action to take in
each state

- Objective: find policy π* that maximizes cumulative discounted reward:

43

A simple MDP: Grid World

★

★

}

Objective: reach one of terminal states (greyed out) in
least number of actions

actions = {

1. right

2. left

3. up

4. down

Set a negative “reward”
for each transition

(e.g. r = -1)

states

44

A simple MDP: Grid World

Random Policy Optimal Policy

★

★

★

★

45

The optimal policy π*
We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

46

The optimal policy π*
We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?
Maximize the expected sum of rewards!

Formally: with

47

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

48

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy
from state s:

49

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy
from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy:

50

Questions?

