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This Lecture
● Variational Autoencoders (30mins)

● Presentation #1 (10mins): 
! Zehan Li, Dense Passage Retrieval for 

Open-Domain Question Answering

● Presentation #2 (10mins): 
! Zhaoyang Li, BLINK : Multimodal Large 

Language Models Can See but Not 
Perceive
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Google form for presentation 
questions and feedback:



Recap: Computing Gradients of Expectations
● Loss: 

● Score gradient

! Pros: generally applicable to any distribution 𝑞 𝑧 𝜆
! Cons: empirically has high variance → slow convergence

● Reparameterization gradient

! Pros: empirically, lower variance of the gradient estimate
! Cons: Not all distributions can be reparameterized
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ℒ = 𝔼!𝝀(𝒛) 𝑓%(𝒛)

∇%ℒ = 𝔼!𝝀(𝒛) 𝑓% 𝒛 ∇%log	𝑞% 𝒛 + ∇%𝑓%(𝒛)

∇%ℒ = 𝔼𝝐∼𝒔(𝝐) ∇𝒛𝑓% 𝒛 	∇%𝑡 𝜖, 𝜆



Recap: Black-box Variational Inference (BBVI)

● Easily use variational inference with any model 
● No mathematical work beyond specifying the model 
● Perform inference with massive data
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Black Box Variational Inference (BBVI)
Black box variational inference

REUSABLE 
VARIATIONAL 

FAMILIES

BLACK BOX 
VARIATIONAL 
INFERENCE

p.ˇ; z j x/
ANY MODEL

REUSABLE 
VARIATIONAL 

FAMILIES

REUSABLE 
VARIATIONAL 

FAMILIES

MASSIVE
DATA

� Sample from q.�/
� Form noisy gradients without model-specific computation

� Use stochastic optimization

(Courtesy: Blei et al., 2018)

variational posterior 
𝑞(𝒛|𝒙)



BBVI with the score gradient 
● ELBO:

● Question: what’s the score gradient w.r.t. 𝜆 ? 

6[Ranganath et al.,14]

ℒ 𝜆 = 𝔼!(𝒛|𝝀) log	𝑝 𝒙, 𝒛 − 𝔼!(𝒛|𝝀) 	log	𝑞 𝒛 𝜆 	

Rajesh Ranganath, Sean Gerrish, David M. Blei

Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and ht .x/ be the realization of a ran-
dom variable H.x/ whose expectation is the gradient of
f .x/. Finally, let ⇢t be a nonnegative scalar. Stochastic
optimization updates x at the tth iteration with

xtC1  xt C ⇢t ht .xt /:

This converges to a maximum of f .x/ when ⇢t , the
learning rate, follows the Robbins-Monro conditions,

P1

tD1 ⇢t D 1P1

tD1 ⇢
2
t < 1:

Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
ational family q.
Initialize � randomly, t D 1.
repeat
// Draw S samples from q

for s D 1 to S do
zŒsç ⇠ q

end for
⇢ = tth value of a Robbins Monro sequence
� = �C ⇢

1
S

PS
sD1 r� log q.zŒsç j�/.logp.x; zŒsç/�

log q.zŒsç j�//

t D t C 1

until change of � is less than 0.01.

be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,

r�L D EqŒr� log q.zj�/.logp.x; z/ � log q.zj�//ç:

(2)

The derivation of Eq. 2 can be found in the appendix.
Note that in statistics the gradient r� log q.zj�/ of the
log of a probability distribution is called the score func-
tion (Cox and Hinkley, 1979). The joint p.x; z/ can be
replaced by its unnormalized version (see the appendix
for details). For subsequent sections, any appearance
of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,

r�L ⇡
1

S

SX
sD1

r� log q.zsj�/.logp.x; zs/ � log q.zsj�//;

where zs ⇠ q.zj�/:

(3)

With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; zs/. This algorithm
significantly reduces the e↵ort needed to implement
variational inference in a wide variety of models.

ℒ = 𝔼!𝝀(𝒛) 𝑓%(𝒛)

∇%ℒ = 𝔼!𝝀(𝒛) 𝑓% 𝒛 ∇%log	𝑞% 𝒛 + ∇%𝑓%(𝒛)



BBVI with the score gradient 
● ELBO:

● Question: what’s the score gradient w.r.t. 𝜆 ? 

● Compute noisy unbiased gradients of the ELBO with Monte Carlo samples 
from the variational distribution

7[Ranganath et al.,14]

ℒ 𝜆 = 𝔼!(𝒛|𝝀) log	𝑝 𝒙, 𝒛 − 𝔼!(𝒛|𝝀) 	log	𝑞 𝒛 𝜆 	

Rajesh Ranganath, Sean Gerrish, David M. Blei

Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and ht .x/ be the realization of a ran-
dom variable H.x/ whose expectation is the gradient of
f .x/. Finally, let ⇢t be a nonnegative scalar. Stochastic
optimization updates x at the tth iteration with

xtC1  xt C ⇢t ht .xt /:

This converges to a maximum of f .x/ when ⇢t , the
learning rate, follows the Robbins-Monro conditions,

P1

tD1 ⇢t D 1P1

tD1 ⇢
2
t < 1:

Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can
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With Eq. 3, we can use stochastic optimization to
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note that the score function and sampling algorithms
depend only on the variational distribution, not the
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BBVI with the 
reparameterization gradient 

● ELBO:

● Question: what’s the reparamerization gradient w.r.t. 𝜆 ?
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ℒ 𝜆 = 𝔼!(𝒛|𝝀) log	𝑝 𝒙, 𝒛 − 𝔼!(𝒛|𝝀) 	log	𝑞 𝒛 𝜆 	

∇!ℒ	=E"∼$(")[	∇' log	𝑝 𝑥, 𝑧 − log	𝑞 𝑧 	∇!𝑡 𝜖, 𝜆 ]	

𝜖 ∼ 𝑠 𝜖
𝑧 = 𝑡 𝜖, 𝜆

⇔ 𝑧 ∼ 𝑞 𝑧|𝜆

ℒ = 𝔼!𝝀(𝒛) 𝑓%(𝒛)

∇%ℒ = 𝔼𝝐∼𝒔(𝝐) ∇𝒛𝑓% 𝒛 	∇%𝑡 𝜖, 𝜆
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Variational Autoencoders (VAEs)



Variational Auto-Encoders (VAEs)
VAEs are a combination of the following ideas: 

● Variational Inference
! ELBO

● Variational distribution parametrized as neural networks 

● Reparameterization trick

10[Courtesy: Dhruv, CS 4803]



Variational Auto-Encoders (VAEs)
● Model 𝑝- 𝒙, 𝒛 = 𝑝- 𝒙 𝒛 𝑝(𝒛)
! 𝑝! 𝒙 𝒛 : a.k.a., generative model, generator, (probabilistic) decoder, …
! 𝑝(𝒛): prior, e.g., Gaussian

● Assume variational distribution 𝑞. 𝒛|𝒙
! E.g., a Gaussian distribution parameterized as deep neural networks  
! a.k.a, recognition model, inference network, (probabilistic) encoder, …

● ELBO:
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ℒ 𝜽,𝝓; 𝒙 = E!" 𝒛 𝒙 log	𝑝- 𝒙, 𝒛 + H(𝑞. 𝒛 𝒙 )
                              = E!" 𝒛 𝒙 log	𝑝- 𝒙|𝒛 	− KL(𝑞. 𝒛 𝒙 	||	𝑝(𝒛))

Reconstruction Divergence from prior
(KL divergence between two Guassians 

has an analytic form)



Variational Auto-Encoders (VAEs)
● ELBO:

● Reparameterization:
! [𝝁; 𝝈] = 𝑓"(𝒙) (a neural network)
! 𝒛 = 𝝁 + 𝝈⨀𝝐, 	 𝝐 ∼ 𝑵(𝟎, 𝟏)
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ℒ 𝜽,𝝓; 𝒙 = E!" 𝒛 𝒙 log	𝑝- 𝒙, 𝒛 + H(𝑞. 𝒛 𝒙 )
                              = E!" 𝒛 𝒙 log	𝑝- 𝒙|𝒛 	− KL(𝑞. 𝒛 𝒙 	||	𝑝(𝒛))



Variational Auto-Encoders (VAEs)
● ELBO:

● Reparameterization:
! [𝝁; 𝝈] = 𝑓"(𝒙) (a neural network)
! 𝒛 = 𝝁 + 𝝈⨀𝝐, 	 𝝐 ∼ 𝑵 𝟎, 𝟏
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ℒ 𝜽,𝝓; 𝒙 = E!" 𝒛 𝒙 log	𝑝- 𝒙, 𝒛 + H(𝑞. 𝒛 𝒙 )
                              = E!" 𝒛 𝒙 log	𝑝- 𝒙|𝒛 	− KL(𝑞. 𝒛 𝒙 	||	𝑝(𝒛))

∇𝝓ℒ	=E"∼)(𝟎,𝟏)[	∇𝒛 log	𝑝. 𝒙, 𝒛 − log	𝑞/ 𝒛|𝒙 	∇/𝑧 𝜖, 𝝓 ]	

∇.ℒ	=E0! 𝒛 𝒙 ∇.log	𝑝. 𝒙, 𝒛



Example: VAEs for images

14[https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder]



Encoder

Example: VAEs for images

15[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Encoder

Example: VAEs for images

16[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Generating samples:
● Use decoder network. Now sample z 

from prior! 

Data manifold for 2-d z 

Vary 𝑧# 

Vary 𝑧$ [Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images

21

Generating samples:
● Use decoder network. Now sample z 

from prior! 

Data manifold for 2-d z 

Vary 𝑧# 

Vary 𝑧$ 

(Degree of smile)

(head pose)[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for text

22

• Latent code interpolation and sentences generation 
from VAEs [Bowman et al., 2015]. 

input we looked out at the setting sun . i went to the kitchen . how are you doing ?
mean they were laughing at the same time . i went to the kitchen . what are you doing ?
samp. 1 ill see you in the early morning . i went to my apartment . “ are you sure ?
samp. 2 i looked up at the blue sky . i looked around the room . what are you doing ?
samp. 3 it was down on the dance floor . i turned back to the table . what are you doing ?

Table 7: Three sentences which were used as inputs to the vae, presented with greedy decodes from the
mean of the posterior distribution, and from three samples from that distribution.

“ i want to talk to you . ”
“i want to be with you . ”
“i do n’t want to be with you . ”
i do n’t want to be with you .
she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .
it was quiet for a moment .
it was dark and cold .
there was a pause .
it was my turn .

Table 8: Paths between pairs of random points in
vae space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

ments). Here we see that the sentences are far less
typical, but for the most part are grammatical and
maintain a clear topic, indicating that the latent
variable is capturing a rich variety of global fea-
tures even for rare sentences.

6.2 Sampling from the posterior

In addition to generating unconditional samples,
we can also examine the sentences decoded from
the posterior vectors p(z|x) for various sentences
x. Because the model is regularized to produce dis-
tributions rather than deterministic codes, it does
not exactly memorize and round-trip the input. In-
stead, we can see what the model considers to be
similar sentences by examining the posterior sam-
ples in Table 7. The codes appear to capture in-
formation about the number of tokens and parts
of speech for each token, as well as topic informa-
tion. As the sentences get longer, the fidelity of
the round-tripped sentences decreases.

6.3 Homotopies

The use of a variational autoencoder allows us to
generate sentences using greedy decoding on con-
tinuous samples from the space of codes. Addi-
tionally, the volume-filling and smooth nature of
the code space allows us to examine for the first
time a concept of homotopy (linear interpolation)
between sentences. In this context, a homotopy be-
tween two codes ~z1 and ~z2 is the set of points on the
line between them, inclusive, ~z(t) = ~z1⇤(1�t)+~z2⇤t
for t 2 [0, 1]. Similarly, the homotopy between two

sentences decoded (greedily) from codes ~z1 and ~z2

is the set of sentences decoded from the codes on
the line. Examining these homotopies allows us to
get a sense of what neighborhoods in code space
look like – how the autoencoder organizes infor-
mation and what it regards as a continuous defor-
mation between two sentences.
While a standard non-variational rnnlm does

not have a way to perform these homotopies, a
vanilla sequence autoencoder can do so. As men-
tioned earlier in the paper, if we examine the ho-
motopies created by the sequence autoencoder in
Table 1, though, we can see that the transition be-
tween sentences is sharp, and results in ungram-
matical intermediate sentences. This gives evi-
dence for our intuition that the vae learns repre-
sentations that are smooth and “fill up” the space.
In Table 8 (and in additional tables in the ap-

pendix) we can see that the codes mostly contain
syntactic information, such as the number of words
and the parts of speech of tokens, and that all in-
termediate sentences are grammatical. Some topic
information also remains consistent in neighbor-
hoods along the path. Additionally, sentences with
similar syntax and topic but flipped sentiment va-
lence, e.g. “the pain was unbearable” vs. “the
thought made me smile”, can have similar embed-
dings, a phenomenon which has been observed with
single-word embeddings (for example the vectors
for “bad” and “good” are often very similar due to
their similar distributional characteristics).

7 Conclusion

This paper introduces the use of a variational
autoencoder for natural language sentences. We
present novel techniques that allow us to train
our model successfully, and find that it can e↵ec-
tively impute missing words. We analyze the la-
tent space learned by our model, and find that it
is able to generate coherent and diverse sentences
through purely continuous sampling and provides
interpretable homotopies that smoothly interpo-
late between sentences.
We hope in future work to investigate factoriza-

tion of the latent variable into separate style and
content components, to generate sentences condi-
tioned on extrinsic features, to learn sentence em-
beddings in a semi-supervised fashion for language



Note: Amortized Variational Inference

24

• Variational distribution as an inference model 𝑞/ 𝒛 𝒙  with 
parameters 𝝓 (which was traditionally factored over samples)
• Amortize the cost of inference by learning a single data-

dependent inference model
• The trained inference model can be used for quick inference 

on new data



Variational Auto-encoders: Summary
● A combination of the following ideas: 
! Variational Inference: ELBO
! Variational distribution parametrized as neural networks 
! Reparameterization trick

● Pros:
! Principled approach to generative models 
! Allows inference of 𝑞(𝑧|𝑥), can be useful feature representation for other tasks 

● Cons:
! Samples blurrier and lower quality compared to GANs
! Tend to collapse on text data
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ℒ 𝜽,𝝓; 𝒙 = log	𝑝- 𝒙|𝒛 	− KL(𝑞. 𝒛 𝒙 	||	𝑝(𝒛))

Reconstruction Divergence from prior

(Razavi et al., 2019)



Summary: Supervised / Unsupervised Learning
● Supervised Learning
! Maximum likelihood estimation (MLE)

● Unsupervised learning
! Maximum likelihood estimation (MLE) with latent variables
§ Marginal log-likelihood

! EM algorithm for MLE
§ ELBO / Variational free energy

! Variational Inference
§ ELBO / Variational free energy
§ Variational distributions

q Factorized (mean-field VI)
q Mixture of Gaussians (Black-box VI)
q Neural-based (VAEs)
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Questions?


