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Recap: Expectation Maximization (EM)

e Supervised MLE is easy: max €.(0;x,z)<= logp(x,z|6
7]
O QObserve both x and z

max £(0; x) =logp(x|0) = logz: p(x,z|0)
Z

a—

e Unsupervised MLE is hard:
0 Observe only x

e EM, intuitively:

We don’t actually observe q, let’s

E-step: qg(z|x) = p(z|x,0)

c——— estimate it

M-step: max Eq(z|x)[ log p(x,z|6) ] Lc?fs. pr?fend we also observe Z (its
= 0 e——— distribution)



Recap: Expectation Maximization (EM)

e Supervised MLE is easy: max £.(0;x,z) =logp(x,z|0)
7]
O QObserve both x and z

e Unsupervised MLE is hard: max £(0; x) = logp(x]0) = 1082 p(x,z|0)
Z

0 Observe only x

e EM, intuitively:
We don’t actually observe q, let’s

—> E-step: t+1 = t
P _%.— (z]%) p(zlx’i) estimate it

Let’s “pretend” we also observe Z (its

__ M-step: max E lo X, Z|6
m_f Z qt+1(zlx)[ gp(x210) ] distribution)

This is an iterative
process



Recap: Expectation Maximization (EM)

e The EM algorithm is coordinate-decent on F(q, 0)

o E-step: th = argmin [ (Qagt) = p(z|x, Ht)
q

—

= the posterior distribution over the latent variables given the data and the current
parameters

o M-step: 'l = arg mmF ( t+1 975) = argmaxy Z gtt1(z|x) log p(x, z|6)
= < -

o p(x,2]6)
gﬁ f(@,x) - IEq(z|x) [log q(zlx) KL(CI(le) || p(le 9))

-=p
%/

= —F(q.6) + KL(q(zl) || p(zlx, 0))




Recap: Learning pLSA with EM

e Likelihood function of a word w:

pWwld,0.8) = ) p(w,z = kld,0, )
k

— Zp(w|z =k,d, Bp(z=k|d, 0, )= Z,Bkwgdk
7 K

e Learning by maximizing the log likelihood:
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Recap: Learning pLSA with EM t

o E-step:

p(wlz,d, B)p(z|d,0") BiwBa,

(zlw,d, 0% BY) = ; , =
P g er p(le ,d, ﬁt)p(z d, Ht) ZZI :Bglwgglm

o M-step:



Another Example: Gaussian Mixture Models (GMM:s)

e Consider a mixture of K Gayssian components:

GRS IEAUCAVTEN
- A

mixture proportion  mixture component

- X<
G a@{g

r/,-%f

e This model can be used for unsupervised clustering.

o This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.



Example: Gaussian Mixture Models (GMMs) @

e Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) =multi(z, : 7) = H(irk) @
e, --_.‘ k

p(x, |Z: =L uI) )m/2’2 ‘1/2 exp{ 5 (x, - ﬂk) 2, (x /Uk E/{///
\__-L\_—_/__ﬂ-_t"’_\ i /g

o The likelihood of a sample:

N
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Example: Gaussian Mixture Models (GMMs)

o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ (=, )"

e Consider a mixture of K Gaussian components: l

o X is a conditional Gaussian variable with a class-specific mean/covariance

1
(Zﬂ_)m/Z ’Zk’

p(x, |25 =1,1,5) = expli(x, - 1) T (x, - 1)

o The likelihood of a sample:

w2 =Y p(z" =1|7)p(x,| 2" =1, 1, %)
- Zzn Hk ((”k )Zg N(x,: zukﬂEk)z:: ): Zk TN (x| 1y, 2 )

p(x,
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Example: Gaussian Mixture Models (GMMs)

o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ (=, )"

e Consider a mixture of K Gaussian components: l

o X is a conditional Gaussian variable with a class-specific mean/covariance

1

1
27)"? ’Zk’yz exp{- 7 (x, - 1) 2 (x, 'ﬂk)}

p(xn |Z: zl,ﬂ,Z):

Parameters to be learned:

o The likelihood of a sample: .
mixture component

mixture proportion

w2 =Y p(z" =1|7)p(x,| 2" =1, 1, %) —
- Zzn Hk ((ﬂ.k )Zg N(x,: zukﬂEk)z:: ): Zk TN (x| 1y, 2 )

p(x,
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Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components

e E-step: computing the posterior of z,, given the current estimate of the parameters

(i.e., T, U, X)

Z(‘? )hﬁ@ﬂj}-— f)(g / (1@;7&(9
(2 @) ﬂ(ﬁi@ﬁ@
2 Pl




Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components

e E-step: computing the posterior of z,, given the current estimate of the parameters

i.e., T,U 2
( . p(zr = 1,x,1,20)

t)N(xn,|#(t) Z(f)) /
Zﬂ(t)N(xna|ﬂ(t) Zl(t))\ p(x,,u(t),Z(t))

p(zi =1|x,u,29) =

13



Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components

e E-step: computing the posterior of z,, given the current estimate of the parameters

(i.e., T,U, 2
3 ) p(zf’f — 1,X, ‘u(t)’z(t))

TON(x, | 4, 20) /!

p(z, =1]x,u",2) =
ZﬂmN(an A7, Z0) p(x, u®, 50

e M-step: the expected complete log likelihood

7 f‘j @(gﬂ(ﬂ@z@ Z@[éj @%/K/Z//
L)



Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components

e E-step: computing the posterior of z,, given the current estimate of the parameters
(e 1T, 1, 2) / p(zF =1, x, uo, %)
(t t t
JU(CHPTIRNY

® O 30
Zﬂ' INCe 47T 0 5oy

p(zi =1|x,u,29) =

e M-step: the expected complete log likelihood

Eq [(c(0; 2, 2)] =ZE logp (2, | )] +ZE logp (x| 2n, 1, )]

_ZZE logﬂ'k——ZZE ( — )t o (xn—ﬂk)+10g|zk|+c)
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Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

7, = argmax(/,(0)), = ;2-(.(0))=0,Vk, s.t. Z;rk =1

— 71';: :Zn<zr];>q(z) " _ nf,f(%:<nk%v

k(1)
i —argmax (@), = ="

Fact:
>

610g‘A’1‘ .
k(t) (:+1) (:+1) oAl
, T, (X, — )(x, — )"
z“k =arg max<l (9)>’ = Z'SCHD - " Z z'k(t) ox’ Ax = xx’

OA
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Example: Gaussian Mixture Models (GMMs)

e Start: “guess” the centroid U and covariance X, of each of the K clusters

e Loop:

=0

@ L=1 e " L=4 . ®
At ( . Y °-@.
e e A ﬂﬂ ﬂ '
..:'h Q/ o U
(a) (c) (d) (e)
L=6 e L=8 e L=10 L=12 e
..@_ '{3 . ..(5 . ..@
. . ' . Sy . e .
o & ok I8 '. '@
—
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Text Embedding
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Word Embedding
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0177750

-0.094953

0 1
o) fox! -0.% -0.077720

ham -0.773320 -0.282540
brown -0.374120 -0.076264
boautiful 0.534390
0.215990
-0.035192
-0.264500
-0.303080
-0.016025
0.227670
-0.193730
0.594890
0.036518
0.233200
-0.854690
0.052685
-0.064869
-0.299710
0.534530
0.191510

e Conventional word
embedding:

0.471200
-0.334840
-0.417810
-0.423290
0.312550
-0.430730
0.073378
0.130740
-0.156570

jumps
eqggs
beans

sky
bacon

ove

pre-frained matrix, each
row is an embedding vector

broakfast
toast

today

blue 0.129450
-0.072368

0.259230
-0.057120
-0.174290
-0.353320

0.139490

-0.445630

green
kings
dog
sausages
lazy

love
quick

2o/3

20 rows x 300 columns

0.580760
0.109260
-0.348540
-0.350440
-0.126150
0.200870
0.019587
0.484620
0.208420
0.253270
-0.031445
0.032298
0.137260
0.360010
0.003026
-0.046976
-0.176230
-0.252470
-0.249210

0.841480
0.186620
-0.097234
-0.260020
-0.215930
0.082187
-0.354940
0.101390
-0.456790
0.090102
-0.077586
-0.060034
-0.156630
-0.642000
-0.048517
0.287420
-0.321940
-0.125650
0.465900

0.029943
0.101800
0.411070
-0.669740
0.066944
0.100180
-0.299200
-0.078219
-0.272580
0.278630
0.399840
0.248440
0.568530
0.007043
-0.128150
-0.385640
0.048748
0.161950

0.182700
-0.170860
0.154010
0.513250
1.027600
-0.141530
0.761820
0.601960
-0.030571
-0.509210
-0.103020
0.349870
-0.321420
0.041856
0.647630
0.586110
0.152440
0.212780

-0.631980
0.295650
-0.386110
-0.797090
-0.989140
-0.514270
-0.353130
-0.024494
0.096945
-0.066350
-0.507880
-0.241700
0.173250
-0.024704
0.056315
0.411160
0.199060
-0.046480

0.206380
-0.068611
-0.259950

0.886110
-0.325290
-0.467980
-0.115060
-0.081890

0.076630
-0.091426

0.133030
-0.039783
-0.240440
-0.418680
-0.065970

0.021170

-0.128980

-0.516550
0.386700
0.634660
0.145960

-0.530540
0.156730
0.054627
0.484000

-0.047986

-0.422920

-0.530150

-0.089720
0.009614

-0.025094
0.073093
0.128830
0.417660

1.556600
0.873210
2.283700
0.848380
2.803600
0.815730
1.341300
1.528600
0.308416
0.502220
1.486500
2.055900
1.686900


http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Word Embedding

e Conventional word
embedding:

o Word2vec, Glove

O A pre-trained matrix, each
row is an embedding vector

of a word

[Image source: Va

English Wikipedia Corpus
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The Annuzl Reminder continued through luby 4, 1383, This final
Annual Reminder tock place less than a week after the June

28 Stonewzll riots, in which the patrons of the Stonewall Inn, a gay
bar in Greenwich Village, fought agzinzt police who raided the

bar. Rodwell received several telephone calls threatening him and
the other New York participants, but he was able to arrange for
police protection for the chartered bus zll the way to Philadelphia.
About 45 people participated, including the deputy mayor of
Philadelphiz and hiz wife. The dress code was still in effect at the
Reminder, but two women from the New York contingent broke
from the single-file picket line and held hands. When Kameny tried
to break them zpart, Rodwell furiously denounced him to onlocking
members of the press.

Following the 1565 Annual Reminder, thers was a sense, particularky
among the younger and meore radical participants, that the time for
silent picketing had passed. Dissent and dissatisfaction had begun to
tzke new =nd more emphatic forms in society."The conference
passed a resolution drafted by Rodwell, his partner Fred Sargeant,
Broidy and Lindz Rhodes to move the demonstration from July 4in
Philadelphia to the last weekend in June in Mew York City, as well as
proposing to "other organizations throwghout the country...
suggesting that they hold parallel demonstrations on that day" to
commemarate the Stonewzll rict. ........
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Embedding Matrix
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-0.041816
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-0.259950
0.886110
-0.325290
-0.467980
-0.115060
-0.081890
0.076630
-0.091426
0.133030
-0.039783
-0.240440
-0.418680
-0.065970
0.021170

0.035064
0.139070
-0.128980
-0.516550
0.386700
0.634660
0.145960
-0.530540
0.156730
0.054627
0.484000
-0.047986
-0.422920
-0.530150
-0.089720
0.009614
-0.025094
0.073093
0.128830
0.417660

0.899010
0.658720
0.603430
2117200
1.460500
1.256300
0.766450
1.556600
0.873210
2.283700
0.848380
2.803600
0.815730
1.341300
1.528600
0.308416
0.502220
1.486500
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1.686900


http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Word Embedding

e Problem: word embeddings are applied in a con(ex’r free manngr

open a bank account on the river bank
.

/
(0.3, 0.2, -0.8, ..]

- - —

Courtesy: Devlin 2019



Word Embedding

e Problem: word embeddings are applied in a context free manner
open a bank account on the river bank

(-\ /
(0.3, 0.2, -0.8, ..]

e Solution: Train contextual representations on text corpus

0.9, -0.2, 1.0, ..] [-1.9, -0.4, Ofl,
open a bank account on the river bank
—_— — — — ‘_-—-::r—‘-

Courtesy: Devlin 2019



Contextual Representations
L e .

= G T g

o Improving Language Understanding by Generative Pre-Training,

OpenAl, 2018 -
."—"
Train Deep (12-layer) Fine-tune on
Transformer LM Classification Task
POSITIVE
open ..,;: a
; L Transformer [—* Transformer
Transformer [—*| Transformer —
f - l [
<s> open
<s> open —
_— -
)

Courtesy: Devlin 2019



Problem with Previous Methods

& - o =
e Problem: Language models only use left contexp or right context, but

language understanding is bidirectional.
T ———

courtesy: Devlin 2019
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BERT

Fresy, .

e BERT: A bidirectional model to extract contextual %&eZbedding

51ZI

RSN

/&5\},_\\@
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C Help  Princ

—_—
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BERT: Pre-training Procedure

e Dataset:
o Wikipedia (2.5B words) + a collection of free ebooks (800M words)



BERT: Pre-training Procedure

e Dataset:
o Wikipedia (2.5B words) + a collection of free ebooks (800M words)

e Training procedure
0 masked language model (masked LM)

"  Masks some percent of words from the input and has to reconstruct those words from context



BERT: Pre-training Procedure

e Masked LM

Use the output of the 0.1% ' Aardvark

, " Possible classes:
masked word’s position

All English words 10% Improvisation

to predict the masked word s — )
0% | Zyzzyva 4\,
b F RN

FFNN + Softmax ]1

Randoml K coo
16% of tokens. Pof sf o st oF o o T
S — [CLS] Let's stick to [‘I\ﬂ‘ﬁEK] in this 7

J

nput rtrT 111111

H Let's stick toim sation in this skit
— [CLs] pulslee



BERT: Pre-training Procedure

e Masked LM

e 15% masking:

o Too little masking: Too expensive to train (few supervision signals per example)

0 Too much masking: Not enough context

e Problem: Mask token never seen at fine-tuning

e Solution: don’t replace with [MASK] 100% of the time. Instead:
e 80% of the time, replace with [MASK]
o went to the store - went to the [MASK]

e 10% of the time, replace random word

o went to the store - went to the running

e 10% of the time, keep same

o went to the store - went to the store



BERT: Pre-training Procedure

e Dataset:
o Wikipedia (2.5B words) + a collection of free ebooks (800M words)

e Training procedure
0 masked language model (masked LM)
"  Masks some percent of words from the input and has to reconstruct those words from context
o Two-sentence task
=  To understand relationships between sentences

m Conca’rencﬁr_e_’rM@s A and B and predict whether B actually comes after A in the
original text

32



BERT: Pre-training Procedure

Predict likelihood
that sentence B

e Two sentence belongs after
task sentence A

1% | IsNext

99% MNotNext

t

FFNN + Softmax

LC¢s oo™ ARSI N A
<JA ¢

|WZtB [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Sentence A Sentence B




BERT: Downstream Fine-tuning

e Use BERT for sentence classification

85% Spam

16% Not Spam

[ Classifier ]

R 1

BERT

1 2 3 4 e 512

[CLS] Help  Prince Mayuko



BERT: Downstream Fine-tuning

N T
STS

/F B

Class
Label

050 e &

BERT

[eafle ] (o lesm]le ]~ (&)
Ll_l I_'_l

Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:

&= MNTT, OGP, UNIT STS-B, MRPC,
) RTE, SWAG -

Start/End Span

BERT

[alle - & [ Eenll e ]~ (0]

o - /( /C:f@

i © I T1 I T! ] B =

BERT

Eh:\_lu E, E By
i [EL%] f| Tok1 Tok 2
l
|
Single Sentence

(b) Single Sentence Classification Tasks:
55T-2, CoLA =

B-PER o

@90
- G- G

FE- AEE- [
\_I_I ‘—|—/

Question Paragraph

(c) Question Answering Tasks:
SQuAD v1.1

ELL - G @\%f [dvog .

CLas) |
BERT ( D>

[lm ]I Tok 1 " Tok 2 I Tok N

| [
Single Sentence R/-

id) Single Sentence Tagging Tasks:
CoNLL-2003 NER 85




BERT Results

« Huge improvements over SOTAon 12 NLP ta

v

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE |Average
392k 363k 108k 67k 85k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 810 860 61.7| 740
BiLSTM+ELMo+Attn 76.4/76.1 64.8 799 904 360 733 849 56.8| 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 91.3 454 800 823 56.0| 752
BERTgASE 84.6/83.4 71.2 90.1 935 52.1 85.8 88.9 664 79.6
BERT ARGE 86.7/85.9 72.1 91.1 60.5 865 893 70.1| 81.9
Pae—— — = _—

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the
number of training examples. The “Average” column is slightly different than the official GLUE score, since
we exclude the problematic WNLI set. OpenAl GPT = (L=12, H=768, A=12); BERTgssg = (L=12, H=768,
A=12); BERT arge = (L=24, H=1024, A=16). BERT and OpenAl GPT are single-model, single task. All
results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.

com/language-unsupervised/.
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Similar idea for image embedding: masked autoencoder (MAE)

[]
]
= | O
— W []
Vi (]
ImE = -
EuEEE =
W MR > gy encoder —> g |decoder| o >
enae— M =
EEEEE [ g
input . ]
- E—— ;
. [] Figure 1. Our MAE architecture. During pre-training, a large
— [] random subset of image patches (e.g., 75%) is masked out. The
| | encoder is applied to the small subSet or<isible patches. Mask
— tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
’5) 6_” ﬁ C the decoder is discarded and the encoder is applied to uncorrupted
7 . h images (full sets of patches) for recognition tasks.

[He et aI.,{OZ_]PI\/Iasked Autoencoders Are Sta 1Sion Learners] 37



Similar idea for image embedding: masked autoencoder (MAE)

J

encoder

[

. |

—>

decoder

-

Figure 1. Our MAE architecture.

Why is this (75%)
much larger than the mask rate
in BERT (15%)¢

~

/

ring pre-training, a

large

random subset of image patches (e.g., 75%) is masked out. The

encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder

that reconstructs the original image in pixels. After pre-training,

the decoder is discarded and the encoder is applied to uncorrupted

images (full sets of patches) for recognition tasks.

[He et al.@\/lasked Autoencoders Are Scalable Vision Learners]
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More general idea: S(elf-Su;ervis_edD:rning

» Predict any part of th from any

other part.
» Predict the future from the past.

» Predict the future from the recent past.
» Predict the past from the present.

» Predict the top from the bottom.

(g )
S

[Courtesy: Legun “Self-supervised Learning’]

«— Past Future —
resent

‘Hadll
i



More general idea: Self-Supervised Learning

» Predict any part of the input from any
other part.

» Predict the future from the past.

» Predict the future from the recent past.

» Predict the past from the present.

_)
» Predict the top from the bottom. ?
Predict the occluded from-the-visihle A
Pretend there is a part of the input you < Past Present Future —
don’t know and predict that.

vy

[Courtesy: Lecun “Self-supervised Learning”] 40



More general idea: Self-Supervised Learning: Motivation ()

» Our brains do this all the time

» Filling in the visual field at the retinal blind spot
» Filling in occluded images, missing segments in speech

» Predicting the state of the world from partial (textual)
descriptions —

» Predicting the consequences of our actions

» Predicting the sequence of-actions leading to a resulit

R_Predicting any part of the past, present or future
percepts from whatever information is available.

[Courtesy: Lecun “Self-supervised Learning”] 41



More general idea: Self-Supervised Learning: Motivation (I)

e Successfully learning to predict everything from everything else would result in the
accumulation of lots of background knowledge about how the world works

e The model is forced to learn what we really care about, e.g. a semantic
representation, in order to solve the prediction problem

[Courtesy: Lecun “Self-supervised Learning’]
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More general idea: Self-Supervised Learning: M

o ww par’rlkf its input from any observed part 5

- L Ld L Ll \ L d
O A lot of supervision signals in each data instance

e Untapped/availability of vast numbers of unlabeled text/images/videos..

0 Facebook: one billion images uploaded per day
o 300 hours of video are uploaded to YouTube every minute /D
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Questions?
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