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Outline
භ Topic models: v1, v2, v3

භ Paper Presentations:
რ (1) Liyuan Jin, Riqian Hu: Megatron-LM: Training Multi-Billion Parameter Language 

Models Using Model Parallelism

რ (2) Victoria Jin, Wenqi Li: Large Language Models Are Human-Level Prompt 
Engineers

2



Recap: Represent a Document

3

Represent a Document
�Most common way: Bag-of-Words

� Ignore the order of words

� keep the count

4

c1        c2       c3       c4       c5        m1       m2       m3     m4

Vector space model



Recap: Represent a Topic

Topics
�Topic

� A topic is represented by a word 
distribution

� Relate to an issue

7
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Notations

භ Word, document, topic

რ ǡݓ ݀ǡ ݖ

භ Word count in document:

რ ܿሺݓǡ ݀ሻ : number of times word ݓ occurs in document ݀

რ or ݔௗ: number of times the ݊th word in the vocabulary occurs in document ݀ 

භ Word distribution for each topic ( ߚ௭ )

რ ௭௪ߚ  ሻݖȁݓሺ :
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Recap: Topic Model v1: Multinomial Mixture Model
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Multinomial Mixture Model
� For documents with bag-of-words 
representation
� = ( , ,ǥ , ), is the number of 
words for nth word in the vocabulary

� Generative model 
� For each document 

� Sample its cluster label ~ ( )
� = ( , ,ǥ , ), is the proportion of jth cluster
� = =

� Sample its word vector ~ ( )
� = , ,ǥ , , is the parameter associate with nth word 

in the vocabulary 

� | = = !
!

11

Graphical 
Model

� Plates indicate replicated 
variables.

� Shaded nodes are 
observed; unshaded nodes 
are hidden.

Issues of Mixture of Unigrams
�All the words in the same documents are 
sampled from the same topic

� In practice, people switch topics during their 
writing

19



Recap: Likelihood Function
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Likelihood Function
�For a set of M documents

= ( ) = ( , = )

= = ( = )

=
!
!

( = )

12

Issues of Mixture of Unigrams
�All the words in the same documents are 
sampled from the same topic

� In practice, people switch topics during their 
writing

19



Recap: Topic Model v2: pLSA
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Generative Model for pLSA

�Describe how a document d is generated 
probabilistically
� For each position in d, = 1,ǥ ,

� Generate the topic for the position as
| ~ ( ), . . , = | =

(Note, 1 trial multinomial)

� Generate the word for the position as
| ~ ( ), . . , = | =

21

௭௪Graphical Modelߚ

Note: Sometimes, people add parameters 
such as into the graphical model

22

Graphical 
Model



Likelihood Function

9

The Likelihood Function for a Corpus
�Probability of a word w

| , , = ( , = | , , )

= = , , , = | , , =

�Likelihood of a corpus

23
, i.e., 1/M

Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22



Likelihood Function

10

The Likelihood Function for a Corpus
�Probability of a word w

| , , = ( , = | , , )

= = , , , = | , , =

�Likelihood of a corpus

23
, i.e., 1/M

ǡ ǡߠ ǡ ሻߚ

Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22



Likelihood Function

11

The Likelihood Function for a Corpus
�Probability of a word w

| , , = ( , = | , , )

= = , , , = | , , =

�Likelihood of a corpus

23
, i.e., 1/M

ǡ ǡߠ ǡ ሻߚ

Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22



Likelihood Function

12

The Likelihood Function for a Corpus
�Probability of a word w

| , , = ( , = | , , )

= = , , , = | , , =

�Likelihood of a corpus

23
, i.e., 1/M

ǡ ǡߠ ǡ ሻߚ

Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22



Re-arrange the Likelihood Function

13

Re-arrange the Likelihood Function
�Group the same word from different 
positions together

max = ,

. . = 1 = 1

24



Limitations of pLSA
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Limitations of pLSA
�Not a proper generative model

� is treated as a parameter

� Cannot model new documents

�Solution:
� Make it a proper generative model by adding 
priors to and 

32



Limitations of pLSA
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Limitations of pLSA
�Not a proper generative model

� is treated as a parameter

� Cannot model new documents

�Solution:
� Make it a proper generative model by adding 
priors to and 

32

Topic Model v3: Latent Dirichlet Allocation (LDA)



Topic Model v3: Latent Dirichlet Allocation (LDA)

16

The Graphical Model of LDA

39

~ : address topic distribution for unseen documents
~ : smoothing over words



Topic Model v3: Latent Dirichlet Allocation (LDA)
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The Graphical Model of LDA

39

~ : address topic distribution for unseen documents
~ : smoothing over words



Generative Model for LDA 

18

The Graphical Model of LDA

39

~ : address topic distribution for unseen documents
~ : smoothing over words

Ʉߚ
݀ ܦ

݀
݀

݀݀
ௗǡݓ݀

ௗǡݖ
௭ǡߠ



Review: Dirichlet DistributionDirichlet Distribution
�Dirichlet distribution: ~ ( )

� . . , = ( )
( )

, where > 0

� :
� + 1 = ( )

� = , = , where =

34
: ~ , / = (

1
2
,
1
3
,
1
6
)
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Review: Dirichlet DistributionDirichlet Distribution
�Dirichlet distribution: ~ ( )

� . . , = ( )
( )

, where > 0

� :
� + 1 = ( )

� = , = , where =

34
: ~ , / = (

1
2
,
1
3
,
1
6
)

20

Simplex View 
�Simplex:

� a generalization of the notion of a triangle or 
tetrahedron to arbitrary dimensions.

� = 1,0,0 + 0,1,0 + (0,0,1)
� Where 0 , , 1 + + = 1

36
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Simplex view:
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More Examples in the Simplex View

21

More Examples in the Simplex View

37



Generative Model for LDA 

22

The Graphical Model of LDA

39

~ : address topic distribution for unseen documents
~ : smoothing over words

Ʉߚ
݀ ܦ

݀
݀

݀݀
ௗǡݓ݀

ௗǡݖ
௭ǡߠ
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LDA"for"Topic"Modeling"

� The"generative&story&begins"with"only"a"Dirichlet&
prior&over"the"topics."

� Each"topic&is"define d "as"a"Multinomial&distribution"
over"the"vocabulary,"parameterized"by"כk "

42"

(Blei,"Ng,"&"Jordan,"2003)"
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LDA"for"Topic"Modeling"

� The"generative&story&begins"with"only"a"Dirichlet&
prior&over"the"topics."

� Each"topic&is"define d "as"a"Multinomial&distribution"
over"the"vocabulary,"parameterized"by"כk "

43"

" 1כ   6כ 5כ  4כ 3כ  2כ
"
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LDA"for"Topic"Modeling"

� A"topic"is"visualized"as"its"high&probability&
words.""

� A"pedagogical"label&is"used"to"identify"the"topic."
44"

" 1כ   6כ 5כ  4כ 3כ  2כ
"

team,+season,+
hockey,+player,+
penguins,+ice,++
canadiens,+
puck,+montreal,+
stanley,+cup+
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LDA"for"Topic"Modeling"

� A"topic"is"visualized"as"its"high&probability&
words.""

� A"pedagogical"label&is"used"to"identify"the"topic."
45"
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LDA"for"Topic"Modeling"

� A"topic"is"visualized"as"its"high"probability"
words.""

� A"pedagogical"label&is"used"to"identify"the"topic."
46"
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LDA"for"Topic"Modeling"

47"

ɽ1=+

Dirichlet(ɲ)+

{Canadian+gov.}+ {government}+ {hockey}+ !{U.S.+gov.}+ {baseball}+ {Japan}+
+
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LDA"for"Topic"Modeling"

48"

The+54/40'+boundary+dispute+is+
sI ll+unresolved,+and+Canadian+
and+US+

ɽ1=+
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LDA"for"Topic"Modeling"

49"

The+54/40'+boundary+dispute+is+
sI ll+unresolved,+and+Canadian+
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LDA"for"Topic"Modeling"

50"

The+54/40'+boundary+dispute+is+
sI ll+unresolved,+and+Canadian+
and+US+Coast+Guard+

ɽ1=+

Dirichlet(ɲ)+

{Canadian+gov.}+ {government}+ {hockey}+ !{U.S.+gov.}+ {baseball}+ {Japan}+
+

" 1כ   6כ 5כ  4כ 3כ  2כ
"words

pr
ob

ab
ili

ty

0.
00

0
0.

00
6

words

pr
ob

ab
ili

ty

0.
00

0
0.

00
6

words

pr
ob

ab
ili

ty

0.
00

0
0.

00
6

0.
01

2

words

pr
ob

ab
ili

ty

0.
00

0
0.

00
6

words

pr
ob

ab
ili

ty

0.
00

0
0.

00
6

words

pr
ob

ab
ili

ty

0.
00

0
0.

00
6

0.
01

2

(Blei,"Ng,"&"Jordan,"2003)"

Dirichlet(ɴ)+ሺߟሻ

ࢼ ࢼ ࢼ ࢼ ࢼ ࢼ



LDA"for"Topic"Modeling"

50"
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LDA"for"Topic"Modeling"

51"

The+54/40'+boundary+dispute+is+
sI ll+unresolved,+and+Canadian+
and+US+Coast+Guard+vessels+
regularly+if+infrequently+detain+
each+other's+fish+boats+in+the+
disputed+waters+off+Dixon͙+
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LDA"for"Topic"Modeling"

52"
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LDA"for"Topic"Modeling"

53"
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Joint Distribution for LDA

36

Joint Distribution for LDA

� Joint distribution of latent variables and 
documents is: 

: , : , : , : , =

40
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Learning of Topic Models



Recap: pLSA Topic Model

38

Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22

භ Observed variables:
භ Latent variables:

භ Parameters:



The General Unsupervised Learning Problem
භ Each data instance is partitioned into two parts:
რ observed variables ࢞
რ latent (unobserved) variables ࢠ

භ Want to learn a model ఏ ǡ࢞ ࢠ

39[Content adapted from CMU 10-708]



Latent (unobserved) variables
භ A variable can be unobserved (latent) because: 
რ imaginary quantity: meant to provide some simplified and abstractive view of the data 

generation process 
� e.g., topic model, speech recognition models, ...

40



Latent (unobserved) variables
භ A variable can be unobserved (latent) because: 
რ imaginary quantity: meant to provide some simplified and abstractive view of the data 

generation process 
� e.g., topic model, speech recognition models, ...
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Latent (unobserved) variables
භ A variable can be unobserved (latent) because: 
რ imaginary quantity: meant to provide some simplified and abstractive view of the data 

generation process 
� e.g., topic model, speech recognition models, ...

რ a real-world object (and/or phenomena), but difficult or impossible to measure 
� e.g., the temperature of a star, causes of a disease, evolutionary ancestors ... 

რ a real-ZRUOG�REMHFW��DQG�RU�SKHQRPHQD���EXW�VRPHWLPHV�ZDVQ·W�PHDVXUHG��EHFDXVH�RI�
faulty sensors, etc.

භ Discrete latent variables can be used to partition/cluster data into sub- groups 
භ Continuous latent variables (factors) can be used for dimensionality reduction (e.g., 

factor analysis, etc.) 

42



Recap: pLSA Topic Model

43

Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22

භ Likelihood function of a word w:

The Likelihood Function for a Corpus
�Probability of a word w

| , , = ( , = | , , )

= = , , , = | , , =

�Likelihood of a corpus

23
, i.e., 1/M

, 㻌 , , 㻌 )



Recap: pLSA Topic Model

44

Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22

භ Likelihood function of a word w:

භ Learning by maximizing the log likelihood: 

The Likelihood Function for a Corpus
�Probability of a word w

| , , = ( , = | , , )

= = , , , = | , , =

�Likelihood of a corpus

23
, i.e., 1/M

, 㻌 , , 㻌 )



Why is Learning Harder? 

45



Why is Learning Harder? 
භ Complete log likelihood: if both ࢞ and ࢠ can be observed, then

რ Decomposes into a sum of factors, the parameter for each factor can be estimated 
separately

භ But given that ࢠ is not observed, κ Ǣߠ ǡ࢞ ࢠ  is a random quantity, cannot be 
maximized directly

46

κ Ǣߠ ǡ࢞ ࢠ ൌ ���� ǡ࢞ ࢠ ߠ ൌ ����� ࢠ ௭ߠ  ǡࢠȁ࢞ሺ���� ௫ሻߠ



Why is Learning Harder? 
භ Complete log likelihood: if both ࢞ and ࢠ can be observed, then

რ Decomposes into a sum of factors, the parameter for each factor can be estimated 
separately

භ But given that ࢠ is not observed, κ Ǣߠ ǡ࢞ ࢠ  is a random quantity, cannot be 
maximized directly

භ Incomplete (or marginal) log likelihood: with ࢠ unobserved, our objective 
becomes the log of a marginal probability: 

რ All parameters become coupled together
რ In other models when ࢠ is complex (continuous) variables, marginalization over ࢠ is 

intractable.
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Questions?
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