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Topic Models



Outline

● Representations of Text and Topics

● Topic Model v1: Multinomial Mixture Model

● Topic Model v2: Probabilistic Latent Semantic Analysis (pLSA)

● Topic Model v3: Latent Dirichlet Allocation (LDA)
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Slides adapted from:

• Y. Sun, CS 247: Advanced Data Mining

• M. Gormley, 10-701 Introduction to Machine Learning 



Motivation

Topic"Modeling"
Motivation:&
Suppose"you’re"given"a"massive"corpora"and"asked"to"carry"out"the"
following"tasks"
• Organize"the"documents"into"thematic&categories&
• Describe"the"evolution"of"those"categories"over&time&
• Enable"a"domain"expert"to"analyze&and&understand&the"content"
• Find"relationships"between"the"categories"
• Understand"how"authorship"influe nces"the"cont ent "
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Motivation
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Topic Modeling: Examples

7[15-780, Kolter]



Topic Modeling: Examples
Topic"Modeling"

http://"www.cs.umass.edu/~mimno/icml100.html"

Dirichlet3multinomial&regression&(DMR)&topic&model&on&ICML&
(Mimno"&"McCallum,"2008)"
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Topic Modeling: Examples
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Topic"Modeling"

• Map"of"NIH"Grants"

https://app.nihmaps.org/"

(Talley"et"al.,"2011)"



Other Applications of Topic Models
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Other"Applications"of"Topic"Models"

• Spacial"LDA"
(Wang"&"Grimson,"2007)"

Manual"

LDA"

SLDA"



Other Applications of Topic Models
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Text Data
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Text Data

•Word/term

•Document

•A sequence of words

•Corpus

•A collection of 

documents

3



Represent a Document
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Represent a Document

•Most common way: Bag-of-Words

• Ignore the order of words

• keep the count

4

c1        c2       c3       c4       c5        m1       m2       m3     m4

Vector space model



More Details

• Represent the doc as a vector where each entry 

corresponds to a different word and the number at that 

entry corresponds to how many times that word was 

present in the document (or some function of it)
• Number of words is huge

• Select and use a smaller set of words that are of interest

• E.g. uninteresting words: ‘and’, ‘the’ ‘at’, ‘is’, etc. These are called stop-

words

• Stemming: remove endings. E.g. ‘learn’, ‘learning’, ‘learnable’, ‘learned’ 

could be substituted by the single stem ‘learn’

• Other simplifications can also be invented and used

• The set of different remaining words is called dictionary or vocabulary. Fix 

an ordering of the terms in the dictionary so that you can operate them by 

their index.

• Can be extended to bi-gram, tri-gram, or so

5

Represent a Document
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Limitations of Bag-of-Words
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Limitations of Vector Space Model

•Dimensionality

•High dimensionality

•Sparseness

•Most of the entries are zero

•Shallow representation

•The vector representation does not capture 

semantic relations between words 

6

D1: I love romantic movies.
D2: Kate Winslet is my favorite actress. 

Ex: "Tom loves Kate.”



Represent a Topic

Topics

•Topic

•A topic is represented by a word 

distribution

•Relate to an issue

7
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Topic Models
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Topic Models

•Topic modeling
• Get topics automatically 
from a corpus

• Assign documents to 
topics automatically

•Most frequently used 
topic models
• pLSA

• LDA

8



Notations

● Word, document, topic

◯ 𝑤, 𝑑, 𝑧

● Word count in document:

◯ 𝑐(𝑤, 𝑑) : number of times word 𝑤 occurs in document 𝑑

◯ or 𝑥𝑑𝑛: number of times the 𝑛th word in the vocabulary occurs in document 𝑑 

● Word distribution for each topic ( 𝛽𝑧 )

◯ 𝛽𝑧𝑤 : 𝑝(𝑤|𝑧) 
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Recap: Multinomial distribution

● Multinomial distribution

◯ Discrete random variable 𝒙 that takes one of 𝑀 values {1, … , 𝑀}

◯ 𝑝(𝒙 = 𝑖)  =  𝜋𝑖 ,         σ𝑖 𝜋𝑖 = 1

◯ Out of 𝑛 independent trials, let 𝑘𝑖 be the number of times 𝒙 = 𝑖 was observed 

◯ The probability of observing a vector of occurrences 𝒌 = 𝑘1, … , 𝑘𝑀  is given by the 
multinomial distribution parametrized by 𝝅

◯ E.g., describing a text document by the frequency of occurrence of every distinct word 

◯ For 𝑛 = 1, a.k.a. categorical distribution

▪ 𝑝 𝒙 = 𝑖 𝝅)  =  𝜋𝑖

▪ In 𝒌 = 𝑘1, … , 𝑘𝑀 :  𝑘𝑖 = 1, and 𝑘𝑗 = 0 for all 𝑗 ≠ 𝑖 →  𝑎. 𝑘. 𝑎. , one-hot representation of 𝑖     

19[CSC2515, Wang]



Topic Model v1: Multinomial Mixture Model

20

Multinomial Mixture Model

• For documents with bag-of-words 
representation
• = ( , , … , ), is the number of 
words for nth word in the vocabulary

•Generative model 
• For each document 
• Sample its cluster label ~ ( )

• = ( , , … , ), is the proportion of jth cluster

• = =

• Sample its word vector ~ ( )
• = , , … , , is the parameter associate with nth word 

in the vocabulary 

• | = =
!

!

11



Topic Model v1: Multinomial Mixture Model
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Multinomial Mixture Model

• For documents with bag-of-words 
representation
• = ( , , … , ), is the number of 
words for nth word in the vocabulary

•Generative model 
• For each document 
• Sample its cluster label ~ ( )

• = ( , , … , ), is the proportion of jth cluster

• = =

• Sample its word vector ~ ( )
• = , , … , , is the parameter associate with nth word 

in the vocabulary 

• | = =
!

!

11

Formulating the statistical relationship 

between words, documents and latent topics 

as a generative process describing how 

documents are created



Topic Model v1: Multinomial Mixture Model
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Multinomial Mixture Model

• For documents with bag-of-words 
representation
• = ( , , … , ), is the number of 
words for nth word in the vocabulary

•Generative model 
• For each document 
• Sample its cluster label ~ ( )

• = ( , , … , ), is the proportion of jth cluster

• = =

• Sample its word vector ~ ( )
• = , , … , , is the parameter associate with nth word 

in the vocabulary 

• | = =
!

!
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Topic Model v1: Multinomial Mixture Model
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Multinomial Mixture Model

• For documents with bag-of-words 
representation
• = ( , , … , ), is the number of 
words for nth word in the vocabulary

•Generative model 
• For each document 
• Sample its cluster label ~ ( )

• = ( , , … , ), is the proportion of jth cluster

• = =

• Sample its word vector ~ ( )
• = , , … , , is the parameter associate with nth word 

in the vocabulary 

• | = =
!

!

11

Graphical 

Model

• Plates indicate replicated 

variables.

• Shaded nodes are 

observed; unshaded nodes 

are hidden.



Topic Model v1: Multinomial Mixture Model
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Multinomial Mixture Model

• For documents with bag-of-words 
representation
• = ( , , … , ), is the number of 
words for nth word in the vocabulary

•Generative model 
• For each document 
• Sample its cluster label ~ ( )

• = ( , , … , ), is the proportion of jth cluster

• = =

• Sample its word vector ~ ( )
• = , , … , , is the parameter associate with nth word 

in the vocabulary 

• | = =
!

!

11

Graphical 

Model

• Plates indicate replicated 

variables.

• Shaded nodes are 

observed; unshaded nodes 

are hidden.

Issues of Mixture of Unigrams

•All the words in the same documents are 
sampled from the same topic

• In practice, people switch topics during their 
writing

19



Likelihood Function
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Issues of Mixture of Unigrams

•All the words in the same documents are 
sampled from the same topic

• In practice, people switch topics during their 
writing

19



Likelihood Function

26

Likelihood Function

•For a set of M documents

= ( ) = ( , = )

= = ( = )

=
!

!
( = )

12



Limitations of Multinomial Mixture Model 
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Issues of Mixture of Unigrams

•All the words in the same documents are 
sampled from the same topic

• In practice, people switch topics during their 
writing

19



Limitations of Multinomial Mixture Model 
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Mixture"vs."Admixture"(LDA)"
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Topic Model v2: Probabilistic Latent Semantic Analysis (pLSA)

29



Generative Model for pLSA

30

Generative Model for pLSA

•Describe how a document d is generated 
probabilistically

•For each position in d, = 1, … ,

• Generate the topic for the position as
| ~ ( ), . . , = | =

(Note, 1 trial multinomial)

• Generate the word for the position as

| ~ ( ), . . , = | =

21

𝛽𝑧𝑛𝑤



Generative Model for pLSA
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Generative Model for pLSA

•Describe how a document d is generated 
probabilistically

•For each position in d, = 1, … ,

• Generate the topic for the position as
| ~ ( ), . . , = | =

(Note, 1 trial multinomial)

• Generate the word for the position as

| ~ ( ), . . , = | =

21

𝛽𝑧𝑛𝑤

Graphical 

Model



Generative Model for pLSA
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Generative Model for pLSA

•Describe how a document d is generated 
probabilistically

•For each position in d, = 1, … ,

• Generate the topic for the position as
| ~ ( ), . . , = | =

(Note, 1 trial multinomial)

• Generate the word for the position as

| ~ ( ), . . , = | =

21

𝛽𝑧𝑛𝑤Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22

Graphical 

Model



Likelihood Function
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The Likelihood Function for a Corpus

•Probability of a word w
| , , = ( , = | , , )

= = , , , = | , , =

•Likelihood of a corpus

23
, i.e., 1/M

Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22



Likelihood Function
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The Likelihood Function for a Corpus

•Probability of a word w
| , , = ( , = | , , )

= = , , , = | , , =

•Likelihood of a corpus

23
, i.e., 1/M

, 𝜃, , 𝛽)

Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22



Likelihood Function
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The Likelihood Function for a Corpus

•Probability of a word w
| , , = ( , = | , , )

= = , , , = | , , =

•Likelihood of a corpus

23
, i.e., 1/M

, 𝜃, , 𝛽)

Graphical Model

Note: Sometimes, people add parameters 
such as into the graphical model

22



Re-arrange the Likelihood Function

36

Re-arrange the Likelihood Function

•Group the same word from different 
positions together

max = ,

. . = 1 = 1

24



Limitations of pLSA

37

Limitations of pLSA

•Not a proper generative model

• is treated as a parameter

•Cannot model new documents

•Solution:

•Make it a proper generative model by adding 

priors to and 

32



Limitations of pLSA
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Limitations of pLSA

•Not a proper generative model

• is treated as a parameter

•Cannot model new documents

•Solution:

•Make it a proper generative model by adding 

priors to and 

32

Topic Model v3: Latent Dirichlet Allocation (LDA)



Review: Dirichlet DistributionDirichlet Distribution

•Dirichlet distribution: ~ ( )

• . . , =
( )

( )
, where > 0

• :
• + 1 = ( )

• = , = , where =

34

: ~ , / = (
1

2
,
1

3
,
1

6
)

40



Review: Dirichlet DistributionDirichlet Distribution

•Dirichlet distribution: ~ ( )

• . . , =
( )

( )
, where > 0

• :
• + 1 = ( )

• = , = , where =

34

: ~ , / = (
1

2
,
1

3
,
1

6
)

41

Simplex View 

•Simplex:

• a generalization of the notion of a triangle or 

tetrahedron to arbitrary dimensions.

• = 1,0,0 + 0,1,0 + (0,0,1)

• Where 0 , , 1 + + = 1

36

0

x2

0.5
0

1
0.8

0.2

x1

0.6
0.4

0.4

0.2 1
0

x
3

0.6

0.8

1 | ~ , = (2,3,4)

Simplex view:



More Examples in the Simplex View

42

More Examples in the Simplex View

37



Topic Model v3: Latent Dirichlet Allocation (LDA)

43

The Graphical Model of LDA

39

~ : address topic distribution for unseen documents
~ : smoothing over words



Topic Model v3: Latent Dirichlet Allocation (LDA)

44

The Graphical Model of LDA

39

~ : address topic distribution for unseen documents
~ : smoothing over words



Generative Model for LDA 

45

The Graphical Model of LDA

39

~ : address topic distribution for unseen documents
~ : smoothing over words

η𝛽𝑘
𝑑 𝐷

𝑑

𝑑

𝑑𝑑

𝑑𝑤𝑑,𝑛

𝑧𝑑,𝑛

𝜃𝑧𝑑,𝑛
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LDA"for"Topic"Modeling"

• The"generative&story&begins"with"only"a"Dirichlet&
prior&over"the"topics."

• Each"topic&is"define d "as"a"Multinomial&distribution"
over"the"vocabulary,"parameterized"by"ϕk "

42"

(Blei,"Ng,"&"Jordan,"2003)"
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LDA"for"Topic"Modeling"

• The"generative&story&begins"with"only"a"Dirichlet&
prior&over"the"topics."

• Each"topic&is"define d "as"a"Multinomial&distribution"
over"the"vocabulary,"parameterized"by"ϕk "
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LDA"for"Topic"Modeling"

• A"topic"is"visualized"as"its"high&probability&
words.""

• A"pedagogical"label&is"used"to"identify"the"topic."

44"
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Dirichlet(β)+(𝜂)

𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓 𝜷𝟔



LDA"for"Topic"Modeling"

• A"topic"is"visualized"as"its"high&probability&
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LDA"for"Topic"Modeling"

• A"topic"is"visualized"as"its"high"probability"
words.""
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LDA"for"Topic"Modeling"
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LDA"for"Topic"Modeling"
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LDA"for"Topic"Modeling"
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Joint Distribution for LDA

• Joint distribution of latent variables and 
documents is: 

: , : , : , : , =

40
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