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Outline

● Probability

◯ Bayes’ rule

◯ Exponential family

◯ Probabilistic graphical models

◯ Entropy, KL divergence, cross entropy

● Functional derivatives

● Practice: MLE vs Maximum entropy
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Probability



Why Probability?

● The world is a very uncertain place 

◯ “What will the weather be like today?”

◯ “Will I like this movie?” 

● We often can’t prove something is true, but we can still ask how 
likely different outcomes are or ask for the most likely 
explanations

◯ Indeed, this is how humans reason

◯ We reason by “thinking about possibilities”

4[CS60020, Bhattacharya; CSC2515, Wang]



Why Probability?

● The world is a very uncertain place 

◯ “What will the weather be like today?”

◯ “Will I like this movie?” 

● We often can’t prove something is true, but we can still ask how 
likely different outcomes are or ask for the most likely 
explanations

◯ Indeed, this is how humans reason

● Predictions need to have associated confidence

◯ Confidence -> probability

● Not all machine learning models are probabilistic

◯ … but most of them have probabilistic interpretations

5[CS60020, Bhattacharya; CSC2515, Wang]



Example: topic modeling

6[15-780, Kolter]



Example: image segmentation

7[15-780, Kolter]



Example: modeling protein networks

8[15-780, Kolter]



Notations

● A random variable 𝒙 represents outcomes or states of the world.

◯ We write 𝑝(𝒙0) to mean Probability(𝒙 =  𝒙0)

● Sample space: the space of all possible outcomes (may be discrete, continuous, or 

mixed)

● 𝑝(𝒙) is the probability mass (density) function

◯ Assigns a number to each point in sample space

◯ Non-negative, sums (integrates) to 1

◯ Intuitively: how often does 𝒙 occur, how much do  we believe in 𝒙.

9[CSC2515, Wang]



Notations

● Joint distribution 𝑝 𝒙, 𝒚

● Conditional distribution 𝑝 𝒚|𝒙

◯ 𝑝 𝒚|𝒙 =
𝑝 𝒙,𝒚

𝑝 𝒙
 

● Expectation:
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𝔼 𝑓(𝒙) = 
𝒙
𝑓(𝒙) 𝑝 𝒙

𝔼 𝑓(𝒙) = න
𝒙

𝑓 𝒙 𝑝 𝒙 𝑑𝑥

or



Rules of Probability

● Sum rule

● Product/chain rule

11[CSC2515, Wang]

(Marginalize out 𝑦)



Bayes’ Rule

● This gives us a way of “reversing” conditional probabilities

● We call 𝑝(𝒚) the “prior”, and 𝑝 𝒚|𝒙  the “posterior”

● Ex: Bayes’ Rule in machine learning:

◯ 𝒟: data (evidence)

◯ 𝜽: unknown quantities, such as model parameters, predictions
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𝑝 𝒚|𝒙 =
𝑝 𝒙|𝒚 𝑝(𝒚)

𝑝 𝒙
=

𝑝 𝒙|𝒚 𝑝(𝒚)

σ𝒚′ 𝑝 𝒙|𝒚′ 𝒑(𝒚′)

𝑝 𝜽|𝒟 =
𝑝 𝒟|𝜽 𝑝(𝜽)

𝑝 𝒟
=

𝑝 𝒙|𝒚 𝑝(𝒚)

σ𝒚′ 𝑝 𝒙|𝒚′ 𝒑(𝒚′)

Posterior belief on the 
unknown quantities 
you see data 𝒟 

Likelihood: How likely is the 

observed data under the 

particular unknown quantities 𝜽 

Prior belief on the unknown 
quantities before you see data 𝒟 

[10-601B @ CMU]



Independence

● Two random variables are said to be independent iff their joint distribution 
factors

● Two random variables are conditionally independent given a third if they are 
independent after conditioning on the third
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𝑝 𝒙, 𝒚 = 𝑝 𝒙 𝑝(𝒚)

𝑝 𝒙, 𝒚|𝒛 = 𝑝 𝒙|𝒛 𝑝(𝒚|𝒛)

[CSC2515, Wang]



Some common distributions - Gaussian distribution

● Gaussian distribution
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(Multivariate)

[CSC2515, Wang]



Some common distributions - Multinomial distribution

● Multinomial distribution

◯ Discrete random variable 𝒙 that takes one of 𝑀 values {1, … , 𝑀}

◯ 𝑝(𝒙 = 𝑖)  =  𝜋𝑖 ,         σ𝑖 𝜋𝑖 = 1

◯ Out of 𝑛 independent trials, let 𝑘𝑖 be the number of times 𝒙 = 𝑖 was observed 

◯ The probability of observing a vector of occurrences 𝒌 = 𝑘1, … , 𝑘𝑀  is given by the 
multinomial distribution parametrized by 𝝅

◯ E.g., describing a text document by the frequency of occurrence of every distinct word 

◯ For 𝑛 = 1, a.k.a. categorical distribution

▪ 𝑝 𝒙 = 𝑖 𝝅)  =  𝜋𝑖

▪ In 𝒌 = 𝑘1, … , 𝑘𝑀 :  𝑘𝑖 = 1, and 𝑘𝑗 = 0 for all 𝑗 ≠ 𝑖 →  𝑎. 𝑘. 𝑎. , one-hot representation of 𝑖     

15[CSC2515, Wang]



Exponential family

● A distribution

is an exponential family distribution

◯ 𝜽 ∈ 𝑅𝑑: natural (canonical) parameter 

◯ 𝑇 𝒙 ∈ 𝑅𝑑: sufficient statistics, features of data 𝒙

◯ 𝑍 𝜽 = σ𝑥,𝑦 ℎ 𝒙 exp 𝜽 ⋅ 𝑇 𝒙 : normalization factor

● Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,... 
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𝑝𝜃 𝒙 = ℎ 𝒙  exp 𝜽 ⋅ 𝑇 𝒙  /𝑍(𝜽)



Example: Multivariate Gaussian Distribution 

● For a continuous vector random variable 𝒙 ∈ 𝑅𝑘

● Exponential family representation

17
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Probabilistic Graphical Models



Example

20[PGM 2013, NYU, Sontag]



Example

21[PGM 2013, NYU, Sontag]



Marginalization

22[PGM 2013, NYU, Sontag]



Conditioning

23[PGM 2013, NYU, Sontag]



Example: Medical diagnosis

25[PGM 2013, NYU, Sontag]



Representing the distribution

26[PGM 2013, NYU, Sontag]



Structure through independence

27[PGM 2013, NYU, Sontag]



Bayesian networks (directed PGMs)

28[PGM 2013, NYU, Sontag]



Example

29[PGM 2013, NYU, Sontag]



Example

30[PGM 2013, NYU, Sontag]



More Examples

31[Sontag]



More Examples

32[Sontag]



More Examples

33[Sontag]
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Entropy



Entropy

● Shannon entropy

◯ The average level of "information", "surprise", or "uncertainty" inherent to the variable 

𝒙 's possible outcomes
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𝐻 𝑝 = − 
𝒙
𝑝 𝒙 log 𝑝 𝒙



KL Divergence

● Kullback-Leibler (KL) divergence: measures the closeness of two distributions 𝑝(𝒙) 
and 𝑞(𝒙)

◯ a.k.a. Relative entropy

◯ KL >= 0  (Jensen’s inequality)

◯ Questions:
▪ If 𝑞 is high and 𝑝 is high in a region, then KL divergence is ______ in this region.

▪ If 𝑞 is high and 𝑝 is low in a region, then KL divergence is ______ in this region.

▪ If 𝑞 is low in a region, then KL divergence is ______ in this region.
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KL 𝑞 𝒙 || 𝑝(𝒙) = 

𝒙

𝑞 𝒙 log
𝑞(𝒙)

𝑝(𝒙)



KL Divergence

● Kullback-Leibler (KL) divergence: measures the closeness of two distributions 𝑝(𝒙) 
and 𝑞(𝒙)

◯ a.k.a. Relative entropy

◯ KL >= 0  (Jensen’s inequality)

◯ Intuitively:

▪ If 𝑞 is high and 𝑝 is high, then we are happy (i.e. low KL divergence) 

▪ If 𝑞 is high and 𝑝 is low then we pay a price (i.e. high KL divergence).

▪ If 𝑞 is low then we don’t care (i.e. also low KL divergence, regardless of 𝑝) 

◯ not a true “distance”: 

▪ not commutative (symmetric) KL p||q  ! = KL(q||p)

▪ doesn’t satisfy triangle inequality

37

KL 𝑞 𝒙 || 𝑝(𝒙) = 

𝒙

𝑞 𝒙 log
𝑞(𝒙)

𝑝(𝒙)



KL Divergence

● Kullback-Leibler (KL) divergence: measures the closeness of two distributions 𝑝(𝒙) and 
𝑞(𝒙)

◯ a.k.a. Relative entropy

● Maximum likelihood estimation (MLE) 

● Question: Show that MLE is minimizing the KL divergence between the empirical data 
distribution and the model distribution

38

KL 𝑞 𝒙 || 𝑝(𝒙) = 

𝒙

𝑞 𝒙 log
𝑞(𝒙)

𝑝(𝒙)

min
𝜃

− 𝔼𝑥∼ 𝑝 𝒙

1
log 𝑝𝜃(𝒙)



KL Divergence

● Kullback-Leibler (KL) divergence: measures the closeness of two distributions 𝑝(𝒙) and 
𝑞(𝒙)

◯ a.k.a. Relative entropy

● Maximum likelihood estimation (MLE) 

● Question: Show that MLE is minimizing the KL divergence between the empirical data 
distribution and the model distribution

39

KL 𝑞 𝒙 || 𝑝(𝒙) = 

𝒙

𝑞 𝒙 log
𝑞(𝒙)

𝑝(𝒙)

KL 𝑝(𝒙) || 𝑝𝜃(𝒙) = −𝔼 𝑝 𝒙  log 𝑝𝜃 𝒙  + 𝐻( 𝑝(𝒙)) 

Cross entropy

min
𝜃

− 𝔼𝑥∼ 𝑝 𝒙

1
log 𝑝𝜃(𝒙)



Key Takeaways

● Probability 𝑝(𝒙) 

● Bayes’ rule

◯ prior, posterior

● Exponential family:

◯ Gaussian, multinomial, categorical, …

● Probabilistic graphical models: Bayesian networks

● KL Divergence

◯ relation to Cross-entropy

40

KL 𝑞 𝒙 || 𝑝(𝒙) = 

𝒙

𝑞 𝒙 log
𝑞(𝒙)

𝑝(𝒙)

𝑝 𝒚|𝒙 =
𝑝 𝒙|𝒚 𝑝(𝒚)

𝑝 𝒙
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Functional Derivatives (Optional)



Functional derivative

●  

● Functional 𝐹(𝑦): an operator that takes a function 𝑦(𝑥) and returns an output 
value 𝐹 

● Functional derivative (aka, variational derivative): relates a change in a Functional 
𝐹 𝑦  to a change in the function 𝑦

42

∇𝑞 − ℍ 𝑞 = log 𝑞 + 1



Functional derivative

● Recall the conventional derivative 
𝑑𝑦

𝑑𝑥
◯ Taylor expansion

● Functional derivative

◯ How much a functional 𝐹[𝑦] changes when we make a small change 𝜀𝜂(𝑥) to the 
function 𝑦(𝑥)

◯ A function 𝑦(𝑥) that maximizes (or minimizes) a functional 𝐹[𝑦] must satisfy 

43

= 0 for all 𝑥 



Functional derivative

● Consider a functional that is defined by an integral over a function 𝐺 𝑦, 𝑥

◯ Ex.1, −ℍ 𝑞 = ∫ 𝑞(𝑥) log 𝑞(𝑥) 𝑑𝑥
▪ 𝐺 = 𝑞 𝑥 log 𝑞(𝑥)

● Consider variations in the function 𝑦(𝑥), 

44

𝐹[𝑦] = න𝐺 𝑦, 𝑥 𝑑𝑥

𝐹 𝑦 + 𝜖𝜂 𝑥 = 𝐹 𝑦 𝑥 + 𝜖 න
𝜕𝐺

𝜕𝑦
𝜂(𝑥)𝑑𝑥 + 𝑂(𝜖2)



Functional derivative

● Consider a functional that is defined by an integral over a function 𝐺 𝑦, 𝑥

◯ Ex.1, −ℍ 𝑞 = ∫ 𝑞(𝑥) log 𝑞(𝑥) 𝑑𝑥
▪ 𝐺 = 𝑞 𝑥 log 𝑞(𝑥)

● Consider variations in the function 𝑦(𝑥),
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𝐹[𝑦] = න𝐺 𝑦, 𝑥 𝑑𝑥

𝐹 𝑦 + 𝜖𝜂 𝑥 = 𝐹 𝑦 𝑥 + 𝜖 න
𝜕𝐺

𝜕𝑦
𝜂(𝑥)𝑑𝑥 + 𝑂(𝜖2)
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Practice: Maximum likelihood vs Maximum 
Entropy (Optional)



Supervised Maximum Likelihood 

● Model to be learned 𝑝𝜃 𝒙

● Observe full data 𝒟 =  𝒙∗ 
◯ i.i.d: independent, identically distributed 

● Maximum Likelihood Estimation (MLE)

◯ The most classical learning algorithm 

● MLE is closely connected to the Maximum Entropy (MaxEnt) principle

47

min
𝜃

− 𝔼𝑥∗∼ 𝒟

1
log 𝑝𝜃(𝒙∗)



Recap: Exponential Family

● A distribution

is an exponential family distribution

◯ 𝜽 ∈ 𝑅𝑑: natural (canonical) parameter 

◯ 𝑇 𝒙 ∈ 𝑅𝑑: sufficient statistics, features of data 𝒙

◯ 𝑍 𝜽 = σ𝑥,𝑦 ℎ 𝒙 exp 𝜽 ⋅ 𝑇 𝒙 : normalization factor

● Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,... 

48

𝑝𝜃 𝒙 = ℎ 𝒙  exp 𝜽 ⋅ 𝑇 𝒙  /𝑍(𝜽)



Maximum Likelihood for Exponential Family

49

● Take gradient and set to 0 

𝑚 𝒙  : the number of times 𝒙 is observed in D

At MLE, the expectations of the 

sufficient statistics under the model 

must match empirical feature 

average



Maximum Entropy (MaxEnt)

● Given 𝒟, to estimate 𝑝 𝒙

● We can approach the problem from an entirely different point of view. Begin with 
some fixed feature expectations:

● There may exist many distributions which satisfy them. Which one should we 
select?

◯ MaxEnt principle: the most uncertain or flexible one, i.e., the one with maximum entropy

● This yields a new optimization problem:
◯ This is a variational definition of a distribution!

50


𝒙

𝑝 𝒙 𝑇𝑖 𝒙 = 
𝒙

𝑚(𝒙)

𝑁
𝑇𝑖 𝒙 ≔ 𝛼𝑖



Solution to the MaxEnt Problem

● To solve the MaxEnt problem, we use Lagrange multipliers:

51

max
𝜃,𝜇

 min
𝑝(𝑥)

 



Solution to the MaxEnt Problem

● To solve the MaxEnt problem, we use Lagrange multipliers:
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max
𝜃,𝜇

 min
𝑝(𝑥)

 



Solution to the MaxEnt Problem

● To solve the MaxEnt problem, we use Lagrange multipliers:

53

● So feature constraints + 
MaxEnt  exponential 
family.

● Problem is strictly 
convex w.r.t. 𝑝(𝒙), so 
solution is unique.

max
𝜃,𝜇

 min
𝑝(𝑥)

 



Solution to the MaxEnt Problem

● To solve the MaxEnt problem, we use Lagrange multipliers:

plug 𝑝(𝑥|𝜽) back into 𝐿, and since σ𝒙
𝑚(𝒙)

𝑁
𝑇𝑖 𝒙 ≔ 𝛼𝑖 :

● Recovers precisely the MLE problem of exponential family

54

● So feature constraints + 
MaxEnt  exponential 
family.

● Problem is strictly 
convex w.r.t. 𝑝(𝒙), so 
solution is unique.

max
𝜃,𝜇

 min
𝑝(𝑥)

 

max
𝜃

 𝐿 𝜽

(Homework)



Constraints from Data

● We have seen a case of convex duality:

◯ In one case, we assume exponential family and show that Maximum Likelihood implies 

model expectations must match empirical expectations.

◯ In the other case, we assume model expectations must match empirical feature counts 

and show that MaxEnt implies exponential family distribution.

55



A more general MaxEnt problem

56



Summary

● Maximum entropy is dual to maximum likelihood of exponential family 
distributions

● This provides an alternative view of the problem of fitting a model into data:

◯ The data instances in the training set are treated as constraints, and the learning 

problem is treated as a constrained optimization problem.

◯ We’ll revisit this optimization-theoretic view of learning repeatedly in the future!

57



Key Takeaways

● Probability

◯ Bayes’ rule

◯ Exponential family

◯ Probabilistic graphical models: Bayesian networks

◯ KL divergence

● Functional derivative

● Convex duality between MLE and MaxEnt (optional)

58



Questions?
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