DSC250: Advanced Data Mining

Graph Neural Networks

Zhiting Hu
Lecture 13, Feb 18, 2025

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

Outline

e Graph neural networks

e Presentation
o Yuan Ly, Songyao Jin: "Auto-Encoding Variational Bayes”

o0 Shweta Nalluri, Keertana Kappuram: “Multi-task retriever fine-tuning for domain-
specific and efficient RAG”

o Jingman Wang, Jiayue Xu: “LLM-Enhanced Data Management”

o Shanglin Zeng, Tianle Wang: “Learning Concise and Descriptive Attributes for Visual
Recognition”

Recap: Summary

Shallow encoder: embedding lookup

Parameters to optimize: Z which contains node
embeddings z, for all nodes u € V

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize z, z,, for node pairs (u, v)
that are similar

Graph Regularization, Graph
convolutions eg., dropout ., convo lutions

)
\Loée
Activation ﬁ Q
function &
’ <

‘N
A7

Output: Node embeddings.
Also, we can embed subgraphs,
and graphs

Recap: Deep Graph Encoders

e Encoding based on graph neural networks

multiple layers of
ENC(v) = non-linear transformations
based on graph structure

v.s. Shallow Encoder:

ENC(v) =z,=7Z v

Recap: Permutation Invariance

= Graph does not have a canonical order of the nodes!
Adjacency matrix 44
A B CDTEF

Order plana

Order plan 2

Node features X4

Node features X,

mm ON W >

Adjacency matrix 4,
A B CDTEF

m m ON 0 >

Recap: Permutation Invariance

= Graph does not have a canonical order of the nodes!
Node feature X, Adjacency matrix 4,

Order plana

Graph and node representations
should be the same for

Recap: Permutation Invariance

What does it mean by “graph representationis
same for two order plans”?
Consider we learn a function f that maps a

graph G = (4, X) to a vector R then
f(Al'Xl) — f(AZJXZ) A is the adjacency matrix

X is the node feature matrix

Orderplani1: 44, X4 Order plan 2: 4,5, X,

For two order plans,
output of f should
be the same!

Recap: Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢,

Order plani1: A, X4 Order plan 2: A;, X,

I f(A2;X2) =

f(Al Xl)_

'nrnUmCUZD
M m O N W >

10

Recap: Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

e Next: Design GNNs that are permutation equivariant / invariant by passing and
aggregating information from neighbors

11

Idea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

&
TARGET NODE ‘ A‘<

o*
o*
.
o*
.
.
.
o o
. Lo
*
* X
. Lo
o 8

000‘/ .‘.‘
INPUTGRAPH s . .

12

Idea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

INPUT GRAPH

Neural networks

13

Idea: Aggregate Neighbors

Intuition: Network neighborhood defines a
computation graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH

! ! ? ? ¢ o
= m B u hd 2
ad Rt %N & RNy ;:I o e <\
:: “ %: .iﬁ %%d._: ;‘;0 hd %: .b : o‘
S iized® %S ses® eagieet Gie Ceir e i o

14

Deep Model: Many Layers

Model can be of arbitrary depth:
Nodes have embeddings at each layer
Layer-0 embedding of node v is its input feature, x,,

Layer-k embedding gets information from nodes that
are k hops away

Layer-0

Layer-1 B XA

TARGET NODE ‘ ‘4‘ ‘ XC

- Layer-2 .- n XA

‘ A A ' XB

® B < — ol ® Xp

o ® ® Xp
@

INPUT GRAPH ‘.‘ A

XA

15

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

TARGET NODE

l

?

‘4-

INPUT GRAPH

16

Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages

IARGET NODE from neighbors PO CEP

*
*
.
*
*
0
*
.
.
.
.
. L
o o
.
. K
. o
*
*

INPUT GRAPH ‘.‘ ‘
(2) apply neural network

17

GCN (Graph Convolutional Net): Invariance and Equivariance

What are the invariance and equivariance
properties for a GCN?
Given a node, the GCN that computes its
embedding is permutation invariant

Shared NN weights
\

o Hl-»

Target Node

Permutation invariant
18

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
is permutation equivariant

Node feature X, Adjacency matrix A, Embeddings H;

AGEED AP CDEF A
: QD 3

|

Order
plan 1

E

F G

MmO Nn @™ >

Target Node Permute the input, the output also permutes

accordingly - permutation equivariant
Node feature X, Adjacency matrix 4, Embeddings H,

Order N) ABCDEF
A
B
plan 2 ;
D D
EED -
— 3

Target Node

19

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
is permutation equivariant

Node feature X Adjacency matrix4; Embeddings H,
A B CDEF

A

Detailed reasoning: : e

1. The rows of input node features and
output embeddings are aligned
2. We know computing the embedding E
of a given node with GCN is invariant. - CEEED
3. So, after permutation, thelocation Permute the input, the output also permutes
of a given node in the input node accordingly - permutation equivariant_
.. Node feature X, Adjacency matrix 4, Embeddin
feature matrix is changed, and the the PN
output embedding of a given node 5
stays the same (the colors of node

feature and embedding are matched) D
This is permutation equivariant .
F

mm ONn ™ >

|

20

How to Train A GNN

How do we train the GCN to
generate embeddings?

Z, ® <« R c

Need to define a loss function on the embeddings.

21

How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L (see also Slide 15):

min L(y, f (z,,))

y: node label

L could be L2 if y is real number, or cross entropy
if y is categorical

22

How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L (see also Slide 15):

min L(y, f (z,))

y: hode label

L could be L2 if y is real number, or cross entropy
if y is categorical

Unsupervised setting:
No node label available
Use the graph structure as the supervision!

How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L (see also Slide 15):

min L(y, f (z,))

y: hode label
L could be L2 if y is real number, or cross entropy

if y is categorical

. . “Similar’’ nodes have similar
Unsupervised setting:

embeddings (discussed in last
No node label available lecture)

Use the graph structure as the supervision!

Model Design: Overview

(1) Define a neighborhood
aggregation function

ZA."

(2) Define a loss function on the
embeddings

25

Model Design: Overview

INPUT GRAPH

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

26

Model Design: Overview

INPUT GRAPH

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

27

Inductive Capability

The same aggregation parameters are shared
for all nodes:

The number of model parameters is sublinear in
|V'| and we can generalize to unseen nodes!

®
B shared parameters
5 W B
® 0 09 . .. koo AT I
P ./. . ‘ shared parameters . ‘
OV @ ——— : ®

'Y X ®e o®

INPUT GRAPH Compute graph for node A Compute graph for node B

28

Inductive Capability: New Nodes

-
T

|~

Train with snapshot

AN
\\

Zy,
\ N
DR 2

| = | =

Generate embedding

New node arrives for new node

Many application settings constantly encounter
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings “on the fly”

29

Inductive Capability: New Graphs

— 7 Zu
Train on one graph Generalize to new graph
Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate

embeddings on newly collected data about organism B
30

Discussion: Design Space of GNNs

TARCGET NODE

l

INPUT GRAPH

(3) Layer
connectivity

(5) Learning objective

.. oo

(2) Aggregation
GNN Layer 1 TN
& _ \’ (1) Message
GNNlayer2 & "

Xime @ @

Ceoo®
(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurlPS 2020

31

Ex1: Connectivity

Our assumption so far has been
Raw input graph = computational graph
Reasons for breaking this assumption
Feature level:
S The input graph lacks features = feature augmentation

Structure level:

S The graph is too sparse a inefficient message passing

S The graph is too dense & message passing is too costly

S The graph is too large a cannot fit the computational
graph into a GPU

It’s just unlikely that the input graph happens to be

the optimal computation graph for embeddings
32

Ex1: Connectivity

Graph Feature manipulation

The input graph lacks features > feature
augmentation

Graph Structure manipulation
The graph is too sparse = Add virtual nodes / edges
The graph is too dense = Sample neighbors when
doing message passing

The graph is too large = Sample subgraphs to
compute embeddings

S Will cover later in lecture: Scaling up GNNs

33

Ex2: Graph Attention Network (GAT)
In GCN

1
IN(v)
of node u’s message to node v

S Ayy = is the weighting factor (importance)

S = a,, is defined explicitly based on the
structural properties of the graph (node degree)

§ = All neighbors u € N(v) are equally important
to node v

Not all node’s neighbors are equally important

e Query, Key, Value
e Alignment e

e a = softmax(e)

Knowledge Graphs (KGs)

Slides adapted from:
« Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Outline

o Overview

e Knowledge Graph Completion (Link Prediction)

e Reasoning on Knowledge Graphs

36

Heterogeneous Graphs

Heterogeneous graphs: a graph with multiple
relation types

|
Target noV'

._
Y

Input graph

37

Heterogeneous Graphs

8 possible relation types!

(Paper, Cite, Paper) (Author, Cite, Author)

(Paper, Like, Paper) (Author, Like, Author)

(Paper, Cite, Author) (Author, Cite, Paper)

(Paper, Like, Author) (Author, Like, Paper)

Relation types: (node start, edge, node end)
We use relation type to describe an edge (as
opposed to edge type)

Relation type better captures the interaction
between nodes and edges

38

Heterogeneous Graphs

chromosome
seggregation

Biomedical Knowledge Graphs

Example node: Migraine
Example relation: (fulvestrant,
Treats, Breast Neoplasms)
Example node type: Protein
Example edge type: Causes

® Drug

@ Disease

4 Adverse event
Protein

A Pathways

39

Knowledge Graph

Knowledge in graph form:

Capture entities, types, and relationships

Nodes are entities

Nodes are labeled with
their types

Edges between two nodes
capture relationships
between entities

KG is an example of a
heterogeneous graph

40

Example: Bibliographic Networks

Node types: paper, title, author, conference,
year

Relation types: pubWhere, pubYear, hasTitle,
hasAuthor, cite

pubWhere hasTtile
Conference [« Paper

\ 4

Title

Author Year

Example: Bio Knowledge Graphs

Node types: drug, disease, adverse event,
protein, pathways

Relation types: has_func, causes, assoc, treats,
IS a

@® Drug

@ Disease

4@ Adverse event
Protein

A Pathways

42

KGs in Practice

Examples of knowledge graphs
Google Knowledge Graph
Amazon Product Graph

Facebook Graph API
IBM Watson

Microsoft Satori
Project Hanover/Literome
LinkedIn Knowledge Graph

Yandex Object Answer

43

Applications of KGs

Serving information:

B® Microsoft Bing latest films by the director of titanic

ALL WORK VIDEOS IMAGES MAPS

Movies featuring James Cameron

NEWS

SHOPPING

{©

)
(&)

INVISIBLE ACTION STARS

omecre

2N UNIT

44

Applications of KGs

i Question answering and conversation agents

s

s ~N
NLG from | Obtaining _
<s, p, [o]> j labels |

Dialogue Memory
Entites = Rels | E n- kNN
grams | TTTTTTTmmmtmmmmmmsoosooeoeees search /
i index cosine sim
T answer entity |
5 T ' embeddings !
e Coref by |) — i
entity | Entity | . Entity !
N~ 1 | candidates Knowledge embeddings | ! .
—— i Graph ~ ; i
i Embeddings : N
No coref ----- i - :F*/ +)
: Zero-shot _ PBG— N
SRty Classifier & g h et (:
rankin : Relation N Wikidata Relation | !
) SE——— - . -- -- . -
g | candidates Transk embeddings
_____ Corefby 1 Y, \
relation)
N

Image credit: Medium

45

KG Datasets

Publicly available KGs:
FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.

Common characteristics:

Massive: Millions of nodes and edges
Incomplete: Many true edges are missing

Given a massive KG,
enumerating all the

possible facts is
intractable!

46

Example: Freebase

Freebase

~80 million entities
~38K relation types <: have no p|ace of birth and 78.5%

~3 billion facts/triples

r~ Freebase

93.8% of persons from Freebase

have no nationality!

Datasets: FB15k/FB15k-237

A complete subset of Freebase, used by
researchers to learn KG models

Dataset Entities | Relations | Total Edges
FB15k 14,951 1,345 392,213
FB15k-237 | 14,505 237 310,079

[1] Paulheim, Heiko. "Knowledge graph refinement: A survey of approaches and evaluation methods." Semantic web 8.3 (2017): 489-508.

[2] Min, Bonan, et al. "Distant supervision for relation extraction with an inco

Linguistics: Human Language Technologies. 2013.

mplete knowledge base." Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational

47

Outline

o Overview

e Knowledge Graph Completion (Link Prediction)

e Reasoning on Knowledge Graphs

48

Questions?

	Slide 1: DSC250: Advanced Data Mining Graph Neural Networks
	Slide 2: Outline
	Slide 3: Recap: Summary
	Slide 6: Recap: Deep Graph Encoders
	Slide 7: Recap: Permutation Invariance
	Slide 8: Recap: Permutation Invariance
	Slide 9: Recap: Permutation Invariance
	Slide 10: Recap: Permutation Equivariance
	Slide 11: Recap: Graph Neural Networks Overview
	Slide 12: Idea: Aggregate Neighbors
	Slide 13: Idea: Aggregate Neighbors
	Slide 14: Idea: Aggregate Neighbors
	Slide 15: Deep Model: Many Layers
	Slide 16: Neighborhood Aggregation
	Slide 17: Neighborhood Aggregation
	Slide 18: GCN (Graph Convolutional Net): Invariance and Equivariance
	Slide 19: GCN: Invariance and Equivariance
	Slide 20: GCN: Invariance and Equivariance
	Slide 21: How to Train A GNN
	Slide 22: How to Train A GNN
	Slide 23: How to Train A GNN
	Slide 24: How to Train A GNN
	Slide 25: Model Design: Overview
	Slide 26: Model Design: Overview
	Slide 27: Model Design: Overview
	Slide 28: Inductive Capability
	Slide 29: Inductive Capability: New Nodes
	Slide 30: Inductive Capability: New Graphs
	Slide 31: Discussion: Design Space of GNNs
	Slide 32: Ex1: Connectivity
	Slide 33: Ex1: Connectivity
	Slide 34: Ex2: Graph Attention Network (GAT)
	Slide 35
	Slide 36: Outline
	Slide 37: Heterogeneous Graphs
	Slide 38: Heterogeneous Graphs
	Slide 39: Heterogeneous Graphs
	Slide 40: Knowledge Graph
	Slide 41: Example: Bibliographic Networks
	Slide 42: Example: Bio Knowledge Graphs
	Slide 43: KGs in Practice
	Slide 44: Applications of KGs
	Slide 45: Applications of KGs
	Slide 46: KG Datasets
	Slide 47: Example: Freebase
	Slide 48: Outline
	Slide 49: Questions?

