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Outline

● Graph neural networks

● Presentation

◯ Yuan Lu, Songyao Jin: "Auto-Encoding Variational Bayes”

◯ Shweta Nalluri, Keertana Kappuram: “Multi-task retriever fine-tuning for domain-
specific and efficient RAG”

◯ Jingman Wang, Jiayue Xu: “LLM-Enhanced Data Management”

◯ Shanglin Zeng, Tianle Wang: “Learning Concise and Descriptive Attributes for Visual 

Recognition”
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Recap: Summary

Encoder + Decoder Framework

Shallow encoder: embedding lookup

Parameters to optimize: which contains node 
embeddings for all nodes 

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize for node pairs 
that are similar

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16
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Recap: Similarity Function based on Random Walk
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Given a graph and a starting 
point, we select a neighbor of 
it at random, and move to this 
neighbor; then we select a 
neighbor of this point at 
random, and move to it, etc. 
The (random) sequence of 
points visited this way is a 
random walk on the graph.

Step 1
Step 2

Step 3 Step 4

Step 5
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Random walk on graph:



Recap: Similarity Function based on Random Walk
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probability that u
and v co-occur on a 

random walk over 

the graph

2/16/2023

Encoder: maps each node to a low-dimensional 
vector

Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of and in 
the original network

dot product between node 
embeddings

2/16/2023

Decoder

node in the input graph

d-dimensional 
embedding



Recap: Deep Graph Encoders

● Encoding based on graph neural networks

6

v.s. Shallow Encoder:
Simplest encoding approach: Encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node 

embedding [what we learn / 

optimize]

indicator vector, all zeroes 
except a one in column 

indicating node v

2/16/2023
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Output: Node embeddings. 

Also, we can embed subgraphs, 

and graphs
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Today: We will now discuss deep learnig
methods based on graph neural networks 
(GNNs):

Note: All these deep encoders can be 
combined with node similarity functions 
defined in the Lecture 3.
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multiple layers of 
non-linear transformations 

based on graph structure

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Recap: Permutation Invariance
Graph does not have a canonical order of the nodes!

39
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Graph does not have a canonical order of the nodes!
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Graph and node representations 
should be the same for Order plan 1

and Order plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Recap: Permutation Invariance
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Recap: Permutation Invariance

Consider we learn a function that maps a 
graph to a vector then

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41
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is the adjacency matrix

is the node feature matrix

For two order plans,

output of should 

be the same!
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Recap: Permutation Equivariance

For node representation: We learn a function 
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43
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Recap: Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

● Next: Design GNNs that are permutation equivariant / invariant by passing and 
aggregating information from neighbors

11

Graph neural networks consist of multiple 
permutation equivariant / invariant functions.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

[Bronstein, ICLR 2021 keynote]



Idea: Aggregate Neighbors

12

Key idea: Generate node embeddings based 
on local network neighborhoods 

5410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Idea: Aggregate Neighbors

13

Key idea: Generate node embeddings based 
on local network neighborhoods 

5410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Intuition: Nodes aggregate information from 
their neighbors using neural networks

55

Neural networks

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Idea: Aggregate Neighbors

14

Intuition: Network neighborhood defines a 
computation graph

56

Every node defines a computation 
graph based on its neighborhood!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Deep Model: Many Layers

Model can be of arbitrary depth:
Nodes have embeddings at each layer

Layer-0 embedding of node is its input feature, 

Layer- embedding gets information from nodes that 
are hops away

57

Layer-2

Layer-1
Layer-0

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Neighborhood Aggregation

Neighborhood aggregation: Key distinctions 
are in how different approaches aggregate 
information across the layers

58

?

?

?

?

What is in the box?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Neighborhood Aggregation

17

Basic approach: Average information from 
neighbors and apply a neural network

59

(1) average messages 
from neighbors 

(2) apply neural network
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



GCN (Graph Convolutional Net): Invariance and Equivariance

What are the invariance and equivariance
properties for a GCN?

Given a node, the GCN that computes its 
embedding is permutation invariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61
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GCN: Invariance and Equivariance

19

Considering all nodes in a graph, GCN computation 
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62
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GCN: Invariance and Equivariance

20

Considering all nodes in a graph, GCN computation 
is permutation equivariant
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is permutation equivariant 

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Embeddings

Embeddings

Detailed reasoning:
1. The rows of input node features and 
output embeddings are aligned
2. We know computing the embedding 
of a given node with GCN is invariant.
3. So, after permutation, the location
of a given node in the input node 
feature matrix is changed, and the the 
output embedding of a given node 
stays the same (the colors of node 
feature and embedding are matched)

This is permutation equivariant

Permute the input, the output also permutes 

accordingly - permutation equivariant
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How to Train A GNN

21

How do we train the GCN to 
generate embeddings?

Need to define a loss function on the embeddings.

6410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



How to Train A GNN

22

Node embedding is a function of input graph
Supervised setting: we want to minimize the loss 

(see also Slide 15):

: node label

could be L2 if is real number, or cross entropy 
if is categorical

Unsupervised setting:

No node label available

Use the graph structure as the supervision!

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



How to Train A GNN
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Node embedding is a function of input graph
Supervised setting: we want to minimize the loss 

(see also Slide 15):

: node label

could be L2 if is real number, or cross entropy 
if is categorical

Unsupervised setting:

No node label available

Use the graph structure as the supervision!
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How to Train A GNN

24

Node embedding is a function of input graph
Supervised setting: we want to minimize the loss 

(see also Slide 15):

: node label

could be L2 if is real number, or cross entropy 
if is categorical

Unsupervised setting:

No node label available

Use the graph structure as the supervision!

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

“Similar” nodes have similar 

embeddings (discussed in last 

lecture) 



Model Design: Overview

72

(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Model Design: Overview

2673

(3) Train on a set of nodes, i.e., 
a batch of compute graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Model Design: Overview

74

(4) Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Inductive Capability

The same aggregation parameters are shared 
for all nodes:

The number of model parameters is sublinear in 
and we can generalize to unseen nodes!

7510/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Inductive Capability: New Nodes

77

Train with snapshot New node arrives
Generate embedding 

for new node

Many application settings constantly encounter 
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Inductive Capability: New Graphs

30
76

Inductive node embedding          Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate 
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Discussion: Design Space of GNNs

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8
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GNN Layer 1
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(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

31J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020



Ex1: Connectivity

32

Our assumption so far has been 
¡ Raw input graph = computational graph
Reasons for breaking this assumption

§ Feature level: 
§ The input graph lacks features  feature augmentation

§ Structure level:
§ The graph is too sparse à  inefficient message passing

§ The graph is too dense à  message passing is too costly

§ The graph is too large à  cannot fit the computational 
graph into a GPU

§ It’s just unlikely that the input graph happens to be 
the optimal computation graph for embeddings

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58



Ex1: Connectivity

33

¡ Graph Feature manipulation

§ The input graph lacks features  feature 
augmentation

¡ Graph Structure manipulation

§ The graph is too sparse  Add virtual nodes / edges

§ The graph is too dense  Sample neighbors when 
doing message passing

§ The graph is too large  Sample subgraphs to 
compute embeddings 

§ Will cover later in lecture: Scaling up GNNs

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59



Ex2: Graph Attention Network (GAT)

¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE

§  is the weighting factor (importance) 

of node ’s message to node 

§  is defined explicitly based on the 
structural properties of the graph (node degree)

§ All neighbors  are equally important 
to node  

)

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Attention weights

34

Not all node’s neighbors are equally important 

¡ Let " " #  be computed as a byproduct of an 
attention mechanism #:

§ (1) Let  compute attention coefficients  across 
pairs of nodes ,  based on their messages:

§ L  indicates the importance of MN	message to node ?

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29
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● Query, Key, Value

● Alignment 𝒆

● 𝒂 = softmax 𝒆



Questions?
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