DSC250: Advanced Data Mining

Graph Neural Networks

Zhiting Hu
Lecture 13, Feb 18, 2025

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

Outline

e Graph neural networks

e Presentation
o Yuan Ly, Songyao Jin: "Auto-Encoding Variational Bayes”

o0 Shweta Nalluri, Keertana Kappuram: “Multi-task retriever fine-tuning for domain-
specific and efficient RAG”

o Jingman Wang, Jiayue Xu: “LLM-Enhanced Data Management”

o Shanglin Zeng, Tianle Wang: “Learning Concise and Descriptive Attributes for Visual
Recognition”

Recap: Summary

Shallow encoder: embedding lookup

Parameters to optimize: Z which contains node
embeddings z, for all nodes u € V

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize z, z,, for node pairs (u, v)
that are similar

Recap: Similarity Function based on Random Walk

Random walk on graph:

Given a graph and a starting
point, we select a neighbor of
it at random, and move to this
neighbor; then we select a
neighbor of this point at
random, and move to it, etc.
The (random) sequence of
points visited this way is a
random walk on the graph.

similarity(u,v) ~ z)z,

Recap: Similarity Function based on Random Walk

probability that u
zgzv ~ and v co-occuron a
— random walk over

———ee——— D

the graph

F_-‘__—-___'_"""‘\

0630\(9 Wﬁ'[‘é Hodo2VE ¢

Graph Regularization, Graph
convolutions eg., dropout ., convo lutions
)

\Loée
Activation ﬁ Q
function &
’ &

‘N
A7

Output: Node embeddings.
Also, we can embed subgraphs,
and graphs

Recap: Deep Graph Encoders

e Encoding based on graph neural networks

multiple layers of

ENC(U) — non-linear transformations

based on graph-structure

v.s. Shallow Encoder:

ENC(v) =z,=7Z v

: &
Recap: Permutation Invariance ~
———

= Graph does not have a canonical order of the nodes!

Node features X4 Adjacency matrix 44
A B CDTEF

& ~ My v

Order plana
—_——

Node features X, Adjacency matrix A4,

"G o ABCDEC
. GEED
- GEED

Order Elan 2

e

: D

m m ON 0 >

- QI |

Recap: Permutation Invariance

= Graph does not have a canonical order of the nodes!
Node feature X, Adjacency matrix 4,

Order plana

Graph and node representations
should be the same for

Recap: Permutation Invariance

What does it mean by “graph representationis
same for two order plans”?
Consider we learn a function f that maps a

graph G = (4, X) to a vector R then
f(Al'Xl) — f(AZJXZ) A is the adjacency matrix

X is the node feature matrix

Orderplani1: 44, X4 Order plan 2: 4,5, X,

For two order plans,
output of f should
be the same!

Recap: Permutation Eguivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢,

Order plani1: A, X4 Order plan 2: A;, X,

10

Recap: Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

e Next: Design GNNs that are permutation equivariant / invariant by passing and

aggregating information from neighbors

11

Idea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

INPUT GRAPH

12

Idea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

INPUT GRAPH

Neural networks

13

Idea: Aggregate Neighbors

Intuition: Network neighborhood defines a
computation graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH

.Q? % o
" i - R %.ﬁ ‘ ‘ ‘
% 2 Nl L »? @ %= = @ o 2 % 2
% P L o W o - = L] = 2 @

14

Deep Model: Many Layers

Model can be of arbitrary depth:
Nodes have embeddings at each layer

Layer-0 embedding of node v is its input feature, x,,
sayer-v < v,

Layer-k embedding gets information from nodes that
are k hops away

Layer-0

Layer-1 B XA

TARGET NODE B ‘4“ c XC

- Layer-2 .~ » XA

‘ A A ’ X B

® B < — ol ® Xp

D ® ® Xp
@

INPUT GRAPH ‘.‘ A

15

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

TARGET NODE

- .®
| Whatis in the box?.~

,—-—__‘ o*
o
.

*
/ !
‘ < ?
u
.0
.0
0“
.
*
*
*
.
*
.0

INPUT GRAPH

16

Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages

TARGETl ope from neighbors W S

INPUT GRAPH ‘

(2) apply neural network

17

GCN (Graph Convolutional Net): Invariance and Equivariance
W—f_\

What are the invariance and equivariance
° M
properties for a GCN?
Given a node, the GCN that computes its
embedding is permutation invariant

Shared NN weights
\

o Hl-»

o

<

Target Node ﬁ

Permutation invariant
18

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
is permutation equivariant

Node feature X, Adjacency matrix A, Embeddings H;

AGEED AP CDEF A
: QD 3

|

Order
plan 1

E

F G

MmO Nn @™ >

Target Node Permute the input, the output also permutes

accordingly - permutation equivariant
Node feature X, Adjacency matrix 4, Embeddings H,

Order N) ABCDEF
A
B
plan 2 ;
D D
EED -
— 3

Target Node

19

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
is permutation equivariant

Node feature X Adjacency matrix4; Embeddings H,
A B CDEF

A

Detailed reasoning: : e

1. The rows of input node features and
output embeddings are aligned
2. We know computing the embedding E
of a given node with GCN is invariant. - CEEED
3. So, after permutation, thelocation Permute the input, the output also permutes
of a given node in the input node accordingly - permutation equivariant_
.. Node feature X, Adjacency matrix 4, Embeddin
feature matrix is changed, and the the PN
output embedding of a given node 5
stays the same (the colors of node

feature and embedding are matched) D
This is permutation equivariant .
F

mm ONn ™ >

|

20

How to Train A GNN

How do we train the GCN to
generate embeddings?

Z, ® <« R c

Need to define a loss function on the embeddings.

21

How to Train A GNN

Node embedding z,)is a function of input graph
Supervised setting: we want to minimize the loss

P

L (see also Slide 15):
min £y, £(2,))
y: hode Iggel

L could be L2 if y is real number, or cross entropy
if y is categorical

22

How to Train A GNN /-::5_(, ‘%Cﬂa/@n

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss

N e — T e
L (see also Slide 15):
min L(y, f (2,))
- \}6’
y: node label

—
L could be L2 if y is real number, or cross entropy

if y is categorical
Unsupervised setting: &

No node label available
Use the graph structure as the supervision!

How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L (see also Slide 15):

min L(y, f (z,))

y: hode label

L could be L2 if y is real number, or cross entropy
if y is categorical - ~

. . “Similar’’ nodes have similar
Unsupervised setting:

embeddings (discussed in last
No node label available lecture) y

Use the graph structure as the supervision!

Model Design: Overview

'(Q_Define a neighborhood
aggregation function

(&Define a loss function on the
embeddings

25

Model Design: Overview

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

26

Model Design: Overview

INPUT GRAPH

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

27

Inductive Capability

The same aggregation parameters are shared
for all nodes:

The number of model parameters is sublinear in
|V'| and we can generalize to unseen nodes!

®
B shared parameters
5 W B
® 0 09 . .. koo AT I
P ./. . ‘ shared parameters . ‘
OV @ ——— : ®

'Y X ®e o®

INPUT GRAPH Compute graph for node A Compute graph for node B

28

Inductive Capability: New Nodes

AN \/S\f

/ T /
| e | e
Train with snapshott’ New node arrives

Zy,
=N

|~

Generate embedding
for new node

Many application settings constantly encounter

previously unseen nodes:
E.g., Reddit, YouTube, Google Scholar

Need to generate new embeddings “on the fly”

Inductive Capability: New Graphs

v
o j

__/-_f'-"\/-_"_""-—"
T Generalize to new graph
Al .

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model oréanism A)and generate

embedm newly collected data about organism B
) —1# 30

Discussion: Design Space of GNNs

TARCGET NODE

: : (5) Lsgging objective
.. Jeeeeersenenenrsesss s sess e

e (2) Aggregation
GNN Layer 1 —
?’, (1) Message
(3) Layer ... TR
connectivity ‘ b ..
Aty v) GNN Layer 2 ,~ f— '
o000

(4) Graph augmentation
—_—

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurlPS 2020

31

Ex1: Connectivity
M

Our assumption so far has been
Raw input graph = computational graph
Reasons for breaking this assumption
Feature level:
S The input graph lacks features = feature augmentation
Structure level:
S The graph is too sparse a inefficient message passing
S The graph is too dens_e;é message passin_é is too costly

S The graph.is too large a cannot fit the computational
graph into a GPU

It’s just unlikely that the input graph happens to be
the optimal computation graph for embeddings

32

Ex1: Connectivity

Graph Feature manipulation

The input graph lacks features > feature
augmentation

Graph Structure manipulation
The graph is too sparse = Add virtual nodes / edges
The graph is too dense = Sample neighbors when
doing message passing

The graph is too large = Sample subgraphs to
compute embeddings

S Will cover later in lecture: Scaling up GNNs

33

Ex2: Graph Attention Network (GAT)
In GCN

1
IN(v)
of node u’s message to node v

S Ayy = is the weighting factor (importance)

S = a,, is defined explicitly based on the
structural properties of the graph (node degree)

§ = All neighbors u € N(v) are equally important
to node v

Not all node’s neighbors are equally important

e Query, Key, Value
e Alignment e

e a = softmax(e)

Questions?

	Slide 1: DSC250: Advanced Data Mining Graph Neural Networks
	Slide 2: Outline
	Slide 3: Recap: Summary
	Slide 4: Recap: Similarity Function based on Random Walk
	Slide 5: Recap: Similarity Function based on Random Walk
	Slide 6: Recap: Deep Graph Encoders
	Slide 7: Recap: Permutation Invariance
	Slide 8: Recap: Permutation Invariance
	Slide 9: Recap: Permutation Invariance
	Slide 10: Recap: Permutation Equivariance
	Slide 11: Recap: Graph Neural Networks Overview
	Slide 12: Idea: Aggregate Neighbors
	Slide 13: Idea: Aggregate Neighbors
	Slide 14: Idea: Aggregate Neighbors
	Slide 15: Deep Model: Many Layers
	Slide 16: Neighborhood Aggregation
	Slide 17: Neighborhood Aggregation
	Slide 18: GCN (Graph Convolutional Net): Invariance and Equivariance
	Slide 19: GCN: Invariance and Equivariance
	Slide 20: GCN: Invariance and Equivariance
	Slide 21: How to Train A GNN
	Slide 22: How to Train A GNN
	Slide 23: How to Train A GNN
	Slide 24: How to Train A GNN
	Slide 25: Model Design: Overview
	Slide 26: Model Design: Overview
	Slide 27: Model Design: Overview
	Slide 28: Inductive Capability
	Slide 29: Inductive Capability: New Nodes
	Slide 30: Inductive Capability: New Graphs
	Slide 31: Discussion: Design Space of GNNs
	Slide 32: Ex1: Connectivity
	Slide 33: Ex1: Connectivity
	Slide 34: Ex2: Graph Attention Network (GAT)
	Slide 35: Questions?

