DSC250: Advanced Data Mining

Graph Neural Networks

Zhiting Hu Lecture 13, Feb 18, 2025

HALICIOĞLU DATA SCIENCE INSTITUTE

Outline

- Graph neural networks
- Presentation
 - Yuan Lu, Songyao Jin: "Auto-Encoding Variational Bayes"
 - Shweta Nalluri, Keertana Kappuram: "Multi-task retriever fine-tuning for domainspecific and efficient RAG"
 - Jingman Wang, Jiayue Xu: "LLM-Enhanced Data Management"
 - Shanglin Zeng, Tianle Wang: "Learning Concise and Descriptive Attributes for Visual Recognition"

Recap: Summary

Encoder + Decoder Framework

- Shallow encoder: embedding lookup
- Parameters to optimize: Z which contains node embeddings z_u for all nodes $u \in V$
- We will cover deep encoders in the GNNs
- Decoder: based on node similarity.
- **Objective:** maximize $\mathbf{z}_v^T \mathbf{z}_u$ for node pairs (u, v) that are **similar**

Recap: Similarity Function based on Random Walk

similarity $(u, v) \approx \mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{u}$

Recap: Similarity Function based on Random Walk

Recap: Deep Graph Encoders

• Encoding based on graph neural networks

 $ENC(v) = \frac{\text{multiple layers of}}{\text{based on graph structure}}$

v.s. Shallow Encoder:

$$\text{ENC}(v) = \mathbf{z}_v = \mathbf{Z} \cdot v$$

Recap: Permutation Invariance

Graph does not have a canonical order of the nodes!

D

Ε

8

Recap: Permutation Invariance

What does it mean by "graph representation is same for two order plans"?

• Consider we learn a function f that maps a graph G = (A, X) to a vector \mathbb{R}^d then $f(A_1, X_1) = f(A_2, X_2)$ A is the adjacency matrix X is the node feature matrix

 $G' \rightarrow NN \rightarrow M_{C}$

10

Recap: Permutation Equivariance

For node representation: We learn a function f that maps nodes of G to a matrix $\mathbb{R}^{m \times d}$.

Recap: Graph Neural Networks Overview

• GNNs consist of multiple permutation equivariant / invariant functions

• Next: Design GNNs that are permutation equivariant / invariant by **passing and aggregating information from neighbors**

Idea: Aggregate Neighbors

Key idea: Generate node embeddings based on local network neighborhoods

Idea: Aggregate Neighbors

 Intuition: Nodes aggregate information from their neighbors using neural networks

Idea: Aggregate Neighbors

Intuition: Network neighborhood defines a computation graph

Every node defines a computation graph based on its neighborhood!

atterntion

Deep Model: Many Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node v is its input feature, x_v
 - Layer-k embedding gets information from nodes that are k hops away

Neighborhood Aggregation

 Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers

Neighborhood Aggregation

 Basic approach: Average information from neighbors and apply a neural network

GCN (Graph Convolutional Net): Invariance and Equivariance

What are the invariance and equivariance properties for a GCN?

 Given a node, the GCN that computes its embedding is permutation invariant

Average of neighbor's previous layer embeddings - Permutation invariant **GCN: Invariance and Equivariance**

 Considering all nodes in a graph, GCN computation is permutation equivariant

GCN: Invariance and Equivariance

 Considering all nodes in a graph, GCN computation is permutation equivariant

D

Detailed reasoning:

1. The rows of **input node features** and **output embeddings** are **aligned**

2. We know computing the embedding of a given node with GCN is invariant.
3. So, after permutation, the location of a given node in the input node feature matrix is changed, and the the output embedding of a given node stays the same (the colors of node feature and embedding are matched)
This is permutation equivariant

Permute the input, the output also permutesaccordinglyA colspan="2">Permutation equivariantNode feature X_2 Adjacency matrix A_2 Embeddings H_2 ABCDFA

A B

С

D

Ε

Need to define a loss function on the embeddings.

Node embedding Z_v is a function of input graph
 Supervised setting: we want to minimize the loss

 \mathcal{L} (see also Slide 15): min $\mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$

• y: node label

 L could be L2 if y is real number, or cross entropy if y is categorical

- Node embedding z_v is a function of input graph
- Supervised setting: we want to minimize the loss

 <u>L</u> (see also Slide 15):
 - $\min \mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$
 - y: node label
 - L could be L2 if y is real number, or cross entropy if y is categorical
- Unsupervised setting: 6
 - No node label available
 - Use the graph structure as the supervision!

- Node embedding z_v is a function of input graph
- Supervised setting: we want to minimize the loss
 L (see also Slide 15):

 $\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{z}_{v}))$

- y: node label
- L could be L2 if y is real number, or cross entropy if y is categorical
- Unsupervised setting:
 - No node label available

"Similar" nodes have similar embeddings (discussed in last lecture)

• Use the graph structure as the supervision!

Model Design: Overview

Model Design: Overview

(3) Train on a set of nodes, i.e., a batch of compute graphs

INPUT GRAPH

Model Design: Overview

Inductive Capability

- The same aggregation parameters are shared for all nodes:
 - The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!

Inductive Capability: New Nodes

Inductive Capability: New Graphs

Discussion: Design Space of GNNs

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Ex1: Connectivity

Our assumption so far has been ¡ Raw input graph = computational graph Reasons for breaking this assumption

§ Feature level:

§ The input graph lacks features \rightarrow feature augmentation

§ Structure level:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational graph into a GPU

§ It's just unlikely that the input graph happens to be the optimal computation graph for embeddings

Ex1: Connectivity

Graph Feature manipulation

- § The input graph lacks features → feature augmentation
- **Graph Structure manipulation**
 - § The graph is **too sparse** → Add virtual nodes / edges
 - § The graph is too dense → Sample neighbors when doing message passing
 - § The graph is too large → Sample subgraphs to compute embeddings
 - § Will cover later in lecture: Scaling up GNNs

Ex2: Graph Attention Network (GAT)

In GCN

§ $\alpha_{vu} = \frac{1}{|N(v)|}$ is the weighting factor (importance) of node *u*'s message to node *v*

- $\$ \Rightarrow \alpha_{vu}$ is defined **explicitly** based on the structural properties of the graph (node degree)
- \Rightarrow All neighbors $u \in N(v)$ are equally important to node v

Not all node's neighbors are equally important

- Query, Key, Value
- Alignment *e*
- **a** = softmax(**e**)

Questions?