DSC250: Advanced Data Mining

Graph Neural Networks

Zhiting Hu
Lecture 12, Feb 13, 2025

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

Outline

e Graph neural networks

e Presentation

O

Yongyi Jiang, Haoyun Wang: "Visual Autoregressive Modeling: Scalable Image
Generation via Next-Scale Prediction”

Nevasini Sasikumar, Kaiming Tao: “DeepSeek-V3 Technical Report”

Sarah Borsotto, John Driscoll: “Training Language Models to Generate Text with
Citations via Fine-grained Rewards”

Sreetama Chowdhury, Chandrima Das: “A New Perspective on ADHD Research:
Knowledge Graph Construction with LLMs and Network Based Insights”

embedding vector for a

embedding specific node
matrix |
Recap: Su mmary SO far \Z _ / g D]Cimerwbsi(ér(;(size
— E§ " of embeddings

one column per node

Shallow encoder: embedding lookup

Parameters to optimize: Z which contains node
embeddings z,, for all nodes u € IV

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximizr node pairs (u, v)

that are similar T
E—

. . . ~ T
(Isimilarity(u,)y~ z,z,
W

Recap: How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if

they-

share neighbors?

have similar “structural roles”?

Similarity Function based on Random Walk

Random walk on graph:

Given a graph and a starting
point, we select a neighbor of
it at random, and move to this
neighbor; then we select a
neighbor of this point at
random, and move to it, etc.
The (random) sequence of
points visited this way is a
random walk on the graph.

5

Similarity (u, v) ~ 7.7,

Similarity Function based on Random Walk

Why Random Walk?

Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node u
visits v with high probability, u and v are

similar (high-order multi-hop information) /@

Efficiency: Do not need to consider all node 6/ =
pairs when training; only need to consider :.> > ?
pairs that co-occur on random walks

C‘/-[/, @ —

7

Limitations of Random Walk Embedding (1)

Cannot obtain embeddings for nodes not in the

training set

Training set

sss
56

A newly added node 5 at test time
(e.g., new user in a social network)

Cannot compute its embedding
with DeepWalk / node2vec. Need to
recompute all node embeddings.

Limitations of Random Walk Embedding (2)

Cannot captu@ral imitarity: ‘
3 %
| N—&)---------- 10 b

1] @,

ode Tand 11 are structurally similar — part of
one triangle, degree 2, ...

However, they have very different embeddings.

It’s unlikely that a random walk will reach
node 11 from node 1.

Limitations of Random Walk Embedding (3)

Cannot utilize node, edge and graph features

Feature vector
(e.g. protein properties in a
I / protein-protein interaction graph)

)7_ I DeepWalk / node2vec
hre I embeddings do not incorporate

7 such node features
Y ! L%

10

Limitations of Random Walk Embedding (3)

Cannot utilize node, edge and graph features

Feature vector
(e.g. protein properties in a
I / protein-protein interaction graph)

I DeepWalk / node2vec
I embeddings do not incorporate
such node features

Solution to these limitations: Deep Representation

Learning and Graph Neural Networks
— e

-

11

Summary

(Encoderd

§ha|low encoder: embedding lookup

Parameters to optimize: Z which contains node
embeddings z, for all nodes u € V

We will cover deep encoders in the GNNs

‘?—ﬁ

Decoder: based on node similarity.

Objective: maximize z, z,, for node pairs (u, v)

that are similar M
L tnclors wall

Graph Neural Networks (GNNs)

Slides adapted from:
« Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Deep Graph Encoders

e Encoding based on graph neural networks

multiple layers of

ENC(v) = non-linear transformations
e based on graph structure
— >

V.S. Shal}_gv_v%}er:
ENC(v) =z,=7Z v

*ﬂ/zﬁ’gof — 86}27—’

Deep Graph Encoders

Graph
convolutions

R

eo

454/

Regularization, Graph
e.g., dropout convolutions

Activation
function

Output: Node embeddings.
Also, we can embed subgraphs,
and graphs

15

Graphs are more complex than images / text

Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

L7 &
- Gy 1 22 %

9000
Text
—
%Eh-
Images

No fixed node ordering or reference point
< e

Often dynamic and have multimodal features

16

Graph Neural Networks: Setup

Assume we have a graph G:

V is the vertex set
A is the adjacency matrix (assume_binary)

X € RI"*% is a matrix of node features &

v:anodeinV; N(v): the set of neighbors of v.

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information
When there_is ho node feature in the graph dataset:

Indicator vectors (one-hot encoding of a node)
Vector of constant1:[1, 1, ..., 1_]_

17

A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1 hidden layer 2 hidden layer 3

input layer

output layer

Isstes with this idea:

18

A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1 hidden layer 2 hidden layer 3

input layer

'

Issues with t

IS Idea.: o
O(|V|) parameters

- Not applicable to graphs of different sizes

Sensitive to node orderin
e

19

Permutation Invariance —
= Graph does not have

anonical order of the nodes!
Node features X4 Adjacency matrix 44
A B CDEF

Order plana

Adjacency matrix 4,
A B CDTEF

ode features X,

Order plan 2

20

Permutation Invariance

= Graph does not have a canonical order of the nodes!
Node feature X, Adjacency matrix 4,

Order plana

Graph and node representations
should be the same for

21

Permutation Invariance

What does it mean by “graph representationis
same for two order plans”?
Consider we learn a function f that maps a

graph G = (4, X) to a vector R then

f(A1,X1) = f(A, Xp) sisteadecenoyman:
S e —— N
Orderplani1: 44, X4 Order plan 2: 4,5, X,
S

For two order plans,
output of f should
be the same!

22

Permutation Equivariance

For node representation: We learn a function f
: mxd
that maps nodes of G to a matrix R .

Order plani1: A, X4 Order plan 2: A;, X,

f(AZl XZ) =

M m O N W >

23

Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢.

Orderplani1: 44, X, Order plan 2: 4,5, X,

Representation vecto
of the brown node A

Representation vector
of the brown node E

For two order plans, the vector of node at
the same position in the graph is the same!

4

Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢.

Orderplani1: 44, X, Order plan 2: 4,5, X,

A A
B
Representation vector
of the green node C —
f(Al’ X1) —_ f(Az, Xz) _ Representation vector
——— f the green node D
E For two order plans, the vector of node at
F the same position in the graph is the same! F

- 25

Permutation Equivariance

For node representation
Consider we learn a function f that maps a
graph G = (4, X) to a matrix R™*¢
p————
If the output vector of a node at the same
position in the graph remains unchanged for any
order plan, we say f is permutation

equivariant.

Definition: For any node function f: RIV1*™ x
RIVIXIVI 5 RIVIX™M - £is permutation-

equivariant if Pf (4, X) = f(PAP", PX) for any
permutation P. 2

Summary: Permutation Invariance and Equivariance

Permutation-invariant Permute the input, the
output stays the same.
f(A, X) — f(PAPT, PX) (map a graph to a vector)
Permutation-equivariant

Permute the input, output

Pf(A, X) o f(PAPT, PX) also permutes accordingly.

— . (map a graph to a matrix)

27

Summary: Permutation Invariance and Equivariance

Permutation-invariant Permute the inpu, the
output stays the same.
f(A,X) — f(PAPT,PX) (map a graph to a vector)
Permutation-equivariant |
T Permute the input, oqtput
Pf (A’ X) — f(PAP , PX) also permutes accordingly.

(map a graph to a matrix)

Examples:
f(4,X) = : Permutation-invariant
Reason: f(PAPT,PX) = 1TPX = = f(4,X)
f(A,X) = X : Permutation-equivariant
Reason: f(PAPT,PX) = PX = Pf(4,X)
f(4,X) = : Permutation-equivariant

Reason: f(PAPT,PX) = PAPTPX = PAX = Pf(4,X)

28

Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

[Bronstein, ICLR 2021 keynote]

29

Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

30

Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
No.

Switching the order of the
Input leads to different
outputs!

31

Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
= No.

>
w

m O O W >
-—

O O~ =R =N

© A oo~ O

_ O ===

© =~ ollalo

- = O o=
—

32

Graph Neural Networks Overview

(—

e GNNs consist of multiple permutation equivariant / invariant functions :

e Next: Design GNNs that are permutation equivariant / invariant by passing and
aggregating information from neighbors

(v_“—'-_/_’-v—_\‘__ o N

33

Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph

A —
" ol

Determine node Propagate and
computation graph transform information

[Kipf and Welling, ICLR 2017]

34

Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph

2

*

2. a
2
z,

Determine node Propagate and
computation graph transform information
Learn how to propagate information across the

graph to compute node features
[Kipf and Welling, ICLR 2017]

35

Idea: Aggregate Neighbors

‘u Key idea: Generate node embeddings based
on local network neighborhoods

TARGET NODE

A

INPUT GRAPH

36

Idea: Aggregate Neighbors & ,V4 — Z:
Intuition: Nodes aggregate inform A
their neighbors using neural networks z(v)
G
‘ =

TARGET NODE

l

INPUT GRAPH

Neural networks

37

Idea: Aggregate Neighbors

Intuition: Network neighborhood defines a
computation graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH

38

Deep Model: Many Layers

Model can be of arbitrary depth:
Nodes have embeddings at each layer
Layer-0 embedding of node v is its input feature, x,,

Layer-k embedding gets information from nodes that
are k hops away

Layer-0

Layer-1 B XA

TARGET NODE ‘ ‘4‘ ‘ XC

- Layer-2 .- n XA

‘ A A ' XB

® B < — ol ® Xp

o ® ® Xp
@

INPUT GRAPH ‘.‘ A

XA

39

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

TARGET NODE

l

?

‘4-

INPUT GRAPH

40

Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages

IARGET NODE from neighbors PO CEP

*
*
.
*
*
0
*
.
.
.
.
. L
o o
.
. K
. o
*
*

INPUT GRAPH ‘.‘ ‘
(2) apply neural network

41

GCN (Graph Convolutional Net): Invariance and Equivariance

What are the invariance and equivariance
properties for a GCN?
Given a node, the GCN that computes its
embedding is permutation invariant

Shared NN weights
\

o Hl-»

Target Node

Permutation invariant
42

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
is permutation equivariant

Node feature X, Adjacency matrix A, Embeddings H;

AGEED AP CDEF A
: QD 3

|

Order
plan 1

E

F G

MmO Nn @™ >

Target Node Permute the input, the output also permutes

accordingly - permutation equivariant
Node feature X, Adjacency matrix 4, Embeddings H,

Order N) ABCDEF
A
B
plan 2 ;
D D
EED -
— 3

Target Node

43

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
is permutation equivariant

Node feature X Adjacency matrix4; Embeddings H,
A B CDEF

A

Detailed reasoning: : e

1. The rows of input node features and
output embeddings are aligned
2. We know computing the embedding E
of a given node with GCN is invariant. - CEEED
3. So, after permutation, thelocation Permute the input, the output also permutes
of a given node in the input node accordingly - permutation equivariant_
.. Node feature X, Adjacency matrix 4, Embeddin
feature matrix is changed, and the the PN
output embedding of a given node 5
stays the same (the colors of node

feature and embedding are matched) D
This is permutation equivariant .
F

mm ONn ™ >

|

44

How to Train A GNN

How do we train the GCN to
generate embeddings?

Z, ® <« R c

Need to define a loss function on the embeddings.

45

How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L (see also Slide 15):

min L(y, f (z,,))

y: node label

L could be L2 if y is real number, or cross entropy
if y is categorical

46

How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L (see also Slide 15):

min L(y, f (z,))

y: hode label

L could be L2 if y is real number, or cross entropy
if y is categorical

Unsupervised setting:
No node label available
Use the graph structure as the supervision!

How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss
L (see also Slide 15):

min L(y, f (z,))

y: hode label
L could be L2 if y is real number, or cross entropy

if y is categorical

. . “Similar’’ nodes have similar
Unsupervised setting:

embeddings (discussed in last
No node label available lecture)

Use the graph structure as the supervision!

T

Model Design: Overview

(1) Define a neighborhood
aggregation function

ZA."

(2) Define a loss function on the
embeddings

49

Model Design: Overview

INPUT GRAPH

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

50

Model Design: Overview

INPUT GRAPH

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

51

Inductive Capability

The same aggregation parameters are shared
for all nodes:

The number of model parameters is sublinear in
|V'| and we can generalize to unseen nodes!

®
B shared parameters
5 W B
® 0 09 . .. koo AT I
P ./. . ‘ shared parameters . ‘
OV @ ——— : ®

'Y X ®e o®

INPUT GRAPH Compute graph for node A Compute graph for node B

52

Inductive Capability: New Nodes

-
T

|~

Train with snapshot

AN
\\

Zy,
\ N
DR 2

| = | =

Generate embedding

New node arrives for new node

Many application settings constantly encounter
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings “on the fly”

53

Inductive Capability: New Graphs

— 7 Zu
Train on one graph Generalize to new graph
Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate

embeddings on newly collected data about organism B
54

Discussion: Design Space of GNNs

TARCGET NODE

l

INPUT GRAPH

(3) Layer
connectivity

(5) Learning objective

.. oo

(2) Aggregation
GNN Layer 1 TN
& _ \’ (1) Message
GNNlayer2 & "

Xime @ @

Ceoo®
(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurlPS 2020

55

Ex1: Connectivity

Our assumption so far has been
Raw input graph = computational graph
Reasons for breaking this assumption
Feature level:
S The input graph lacks features = feature augmentation

Structure level:

S The graph is too sparse a inefficient message passing

S The graph is too dense & message passing is too costly

S The graph is too large a cannot fit the computational
graph into a GPU

It’s just unlikely that the input graph happens to be

the optimal computation graph for embeddings
56

Ex1: Connectivity

Graph Feature manipulation

The input graph lacks features > feature
augmentation

Graph Structure manipulation
The graph is too sparse = Add virtual nodes / edges
The graph is too dense = Sample neighbors when
doing message passing

The graph is too large = Sample subgraphs to
compute embeddings

S Will cover later in lecture: Scaling up GNNs

57

Ex2: Graph Attention Network (GAT)
In GCN

1
IN(v)
of node u’s message to node v

S Ayy = is the weighting factor (importance)

S = a,, is defined explicitly based on the
structural properties of the graph (node degree)

§ = All neighbors u € N(v) are equally important
to node v

Not all node’s neighbors are equally important

e Query, Key, Value
e Alignment e

e a = softmax(e)

Questions?

	Slide 1: DSC250: Advanced Data Mining Graph Neural Networks
	Slide 2: Outline
	Slide 3: Recap: Summary so far
	Slide 4: Recap: How to Define Node Similarity?
	Slide 5: Similarity Function based on Random Walk
	Slide 6: Similarity Function based on Random Walk
	Slide 7: Why Random Walk?
	Slide 8: Limitations of Random Walk Embedding (1)
	Slide 9: Limitations of Random Walk Embedding (2)
	Slide 10: Limitations of Random Walk Embedding (3)
	Slide 11: Limitations of Random Walk Embedding (3)
	Slide 12: Summary
	Slide 13
	Slide 14: Deep Graph Encoders
	Slide 15: Deep Graph Encoders
	Slide 16: Graphs are more complex than images / text
	Slide 17: Graph Neural Networks: Setup
	Slide 18: A Naïve Approach
	Slide 19: A Naïve Approach
	Slide 20: Permutation Invariance
	Slide 21: Permutation Invariance
	Slide 22: Permutation Invariance
	Slide 23: Permutation Equivariance
	Slide 24: Permutation Equivariance
	Slide 25: Permutation Equivariance
	Slide 26: Permutation Equivariance
	Slide 27: Summary: Permutation Invariance and Equivariance
	Slide 28: Summary: Permutation Invariance and Equivariance
	Slide 29: Graph Neural Networks Overview
	Slide 30: Graph Neural Networks Overview
	Slide 31: Graph Neural Networks Overview
	Slide 32: Graph Neural Networks Overview
	Slide 33: Graph Neural Networks Overview
	Slide 34: Graph Convolutional Networks
	Slide 35: Graph Convolutional Networks
	Slide 36: Idea: Aggregate Neighbors
	Slide 37: Idea: Aggregate Neighbors
	Slide 38: Idea: Aggregate Neighbors
	Slide 39: Deep Model: Many Layers
	Slide 40: Neighborhood Aggregation
	Slide 41: Neighborhood Aggregation
	Slide 42: GCN (Graph Convolutional Net): Invariance and Equivariance
	Slide 43: GCN: Invariance and Equivariance
	Slide 44: GCN: Invariance and Equivariance
	Slide 45: How to Train A GNN
	Slide 46: How to Train A GNN
	Slide 47: How to Train A GNN
	Slide 48: How to Train A GNN
	Slide 49: Model Design: Overview
	Slide 50: Model Design: Overview
	Slide 51: Model Design: Overview
	Slide 52: Inductive Capability
	Slide 53: Inductive Capability: New Nodes
	Slide 54: Inductive Capability: New Graphs
	Slide 55: Discussion: Design Space of GNNs
	Slide 56: Ex1: Connectivity
	Slide 57: Ex1: Connectivity
	Slide 58: Ex2: Graph Attention Network (GAT)
	Slide 59
	Slide 60: Questions?

