
DSC250: Advanced Data Mining

Graph Neural Networks

Zhiting Hu

Lecture 12, Feb 13, 2025

Outline

● Graph neural networks

● Presentation

◯ Yongyi Jiang, Haoyun Wang: "Visual Autoregressive Modeling: Scalable Image

Generation via Next-Scale Prediction”

◯ Nevasini Sasikumar, Kaiming Tao: “DeepSeek-V3 Technical Report”

◯ Sarah Borsotto, John Driscoll: “Training Language Models to Generate Text with

Citations via Fine-grained Rewards”

◯ Sreetama Chowdhury, Chandrima Das: “A New Perspective on ADHD Research:

Knowledge Graph Construction with LLMs and Network Based Insights”

2

Recap: Summary so far

Encoder + Decoder Framework

Shallow encoder: embedding lookup

Parameters to optimize: which contains node
embeddings for all nodes

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize for node pairs
that are similar

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

3

Simplest encoding approach: encoder is just an
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Dimension/size

of embeddings

one column per node

embedding

matrix

embedding vector for a

specific node

2/16/2023

Recap: How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if
they

are linked?

share neighbors?

We will now learn node similarity definition that uses
random walks, and how to optimize embeddings for
such a similarity measure.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

4

Encoder: maps each node to a low-dimensional
vector

Similarity function: specifies how the
relationships in vector space map to the
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of and in
the original network

dot product between node
embeddings

2/16/2023

Decoder

node in the input graph

d-dimensional
embedding

Similarity Function based on Random Walk

1

4

3

2

5
6

7

9
10

8

11

12

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

Given a graph and a starting
point, we select a neighbor of
it at random, and move to this
neighbor; then we select a
neighbor of this point at
random, and move to it, etc.
The (random) sequence of
points visited this way is a
random walk on the graph.

Step 1
Step 2

Step 3 Step 4

Step 5

5

Random walk on graph:

Similarity Function based on Random Walk

6

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

probability that u
and v co-occur on a

random walk over

the graph

2/16/2023

Encoder: maps each node to a low-dimensional
vector

Similarity function: specifies how the
relationships in vector space map to the
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of and in
the original network

dot product between node
embeddings

2/16/2023

Decoder

node in the input graph

d-dimensional
embedding

Why Random Walk?

1. Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node
visits with high probability, and are
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 242/16/2023

7

Limitations of Random Walk Embedding (1)Limitations of node embeddings via matrix
factorization and random walks

Cannot obtain embeddings for nodes not in the
training set

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

1

4

3

2
5

Training set A newly added node 5 at test time

(e.g., new user in a social network)

Cannot compute its embedding

with DeepWalk / node2vec. Need to

recompute all node embeddings.

8

Limitations of Random Walk Embedding (2)

9

Cannot capture structural similarity:

Node 1 and 11 are structurally similar part of

However, they have very different embeddings.

node 11 from node 1.

DeepWalk and node2vec do not capture
structural similarity.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

1

3

4

2

5 10

11

13

12

Limitations of Random Walk Embedding (3)

10

Cannot utilize node, edge and graph features

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

1

4

3

2
5

Feature vector

(e.g. protein properties in a

protein-protein interaction graph)

DeepWalk / node2vec

embeddings do not incorporate

such node features

Solution to these limitations: Deep Representation
Learning and Graph Neural Networks
(To be covered in depth next)

Limitations of Random Walk Embedding (3)

11

Cannot utilize node, edge and graph features

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

1

4

3

2
5

Feature vector

(e.g. protein properties in a

protein-protein interaction graph)

DeepWalk / node2vec

embeddings do not incorporate

such node features

Solution to these limitations: Deep Representation
Learning and Graph Neural Networks
(To be covered in depth next)

Summary

Encoder + Decoder Framework

Shallow encoder: embedding lookup

Parameters to optimize: which contains node
embeddings for all nodes

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize for node pairs
that are similar

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

12

13

Graph Neural Networks (GNNs)

Slides adapted from:

• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Deep Graph Encoders

● Encoding based on graph neural networks

14

Today: We will now discuss deep learnig
methods based on graph neural networks
(GNNs):

Note: All these deep encoders can be
combined with node similarity functions
defined in the Lecture 3.

8

multiple layers of
non-linear transformations

based on graph structure

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

v.s. Shallow Encoder:
Simplest encoding approach: Encoder is just an
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node

embedding [what we learn /

optimize]

indicator vector, all zeroes
except a one in column

indicating node v

2/16/2023

Deep Graph Encoders

15
9

Output: Node embeddings.

Also, we can embed subgraphs,

and graphs
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Graphs are more complex than images / text
But networks are far more complex!

Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

No fixed node ordering or reference point

Often dynamic and have multimodal features
12

vs.

Networks Images

Text

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

16

Graph Neural Networks: Setup

Assume we have a graph :
is the vertex set

is the adjacency matrix (assume binary)

is a matrix of node features

: a node in ; : the set of neighbors of .

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information

When there is no node feature in the graph dataset:
Indicator vectors (one-hot encoding of a node)

3310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

17

A Naïve Approach

Join adjacency matrix and features
Feed them into a deep neural net:

Issues with this idea:
Issues with this idea:

parameters

Not applicable to graphs of different sizes

Sensitive to node ordering
34

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E

A

B

C

D

E

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 0 1 0 0 1

1 1 1 0 1 1 1

0 1 0 1 0 1 0

Feat

A naïve approach

8

Take adjacency matrix and feature matrix

Concatenate them

Feed them into deep (fully connected) neural net

Done?

Problems:

Huge number of parameters

No inductive learning possible

?A

C

B

D

E

[A ,X]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

A Naïve Approach

Join adjacency matrix and features
Feed them into a deep neural net:

Issues with this idea:
Issues with this idea:

parameters

Not applicable to graphs of different sizes

Sensitive to node ordering
34

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E

A

B

C

D

E

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 0 1 0 0 1

1 1 1 0 1 1 1

0 1 0 1 0 1 0

Feat

A naïve approach

8

Take adjacency matrix and feature matrix

Concatenate them

Feed them into deep (fully connected) neural net

Done?

Problems:

Huge number of parameters

No inductive learning possible

?A

C

B

D

E

[A ,X]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
19

Permutation Invariance
Graph does not have a canonical order of the nodes!

39

A
C

B

E
F

D

A

B

C

D

E

F

Node features Adjacency matrix

A

B

C

D

E

F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features Adjacency matrix

A

B

C

D

E

F

A B C D E FOrder plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

Graph does not have a canonical order of the nodes!

40

A
C

B

E
F

D

A

B

C

D

E

F

Node feature Adjacency matrix

A

B

C

D

E

F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node feature Adjacency matrix

A

B

C

D

E

F

A B C D E FOrder plan 2

Graph and node representations
should be the same for Order plan 1

and Order plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Permutation Invariance

21

Permutation Invariance

Consider we learn a function that maps a
graph to a vector then

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

A
C

B

E
F

D

E
D

F

B
A

C

Order plan 1: Order plan 2:

is the adjacency matrix

is the node feature matrix

For two order plans,

output of should

be the same!

22

Permutation Equivariance

For node representation: We learn a function
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F

Order plan 1: Order plan 2:

23

Permutation Equivariance

For node representation: We learn a function
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F

Order plan 1: Order plan 2:

24

For node representation: We learn a function
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F

Order plan 1: Order plan 2:

Representation vector

of the brown node A

Representation vector

of the brown node EFor two order plans, the vector of node at

the same position in the graph is the same!

For node representation: We learn a function
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F
For two order plans, the vector of node at

the same position in the graph is the same!

Order plan 1: Order plan 2:

Representation vector

of the green node C

Representation vector

of the green node D

Permutation Equivariance

25

Permutation Equivariance

26

For node representation
Consider we learn a function that maps a
graph to a matrix
If the output vector of a node at the same
position in the graph remains unchanged for any
order plan, we say is permutation
equivariant.

Definition: For any node function

, is permutation-
equivariant if for any
permutation .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

Summary: Permutation Invariance and Equivariance

27

Permutation-invariant

Permutation-equivariant

Examples:

: Permutation-invariant

Reason:

: Permutation-equivariant

Reason:

: Permutation-equivariant

Reason:
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Permute the input, the

output stays the same.

(map a graph to a vector)

Permute the input, output

also permutes accordingly.

(map a graph to a matrix)

Summary: Permutation Invariance and Equivariance

28

Permutation-invariant

Permutation-equivariant

Examples:

: Permutation-invariant

Reason:

: Permutation-equivariant

Reason:

: Permutation-equivariant

Reason:
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Permute the input, the

output stays the same.

(map a graph to a vector)

Permute the input, output

also permutes accordingly.

(map a graph to a matrix)

Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

29

Graph neural networks consist of multiple
permutation equivariant / invariant functions.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

[Bronstein, ICLR 2021 keynote]

[Bronstein, ICLR 2021 keynote]

Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

30

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the

input leads to different

outputs!

Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

31

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the

input leads to different

outputs!

Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

32

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the

input leads to different

outputs!

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?

No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

This explains why the naïve MLP approach
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E

A

B

C

D

E

0 1 1 1 0 1 0

1 0 0 1 1 0 0

1 0 0 1 0 0 1

1 1 1 0 1 1 1

0 1 0 1 0 1 0

Feat

A naïve approach

8

Take adjacency matrix and feature matrix

Concatenate them

Feed them into deep (fully connected) neural net

Done?

Problems:

Huge number of parameters

No inductive learning possible

?A

C

B

D

E

[A ,X]

Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

● Next: Design GNNs that are permutation equivariant / invariant by passing and
aggregating information from neighbors

33

Graph Convolutional Networks

Idea:
computation graph

53

Determine node
computation graph

Propagate and
transform information

Learn how to propagate information across the
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
34[Kipf and Welling, ICLR 2017]

Graph Convolutional Networks

Idea:
computation graph

53

Determine node
computation graph

Propagate and
transform information

Learn how to propagate information across the
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
35[Kipf and Welling, ICLR 2017]

Idea: Aggregate Neighbors

36

Key idea: Generate node embeddings based
on local network neighborhoods

5410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Idea: Aggregate Neighbors

37

Key idea: Generate node embeddings based
on local network neighborhoods

5410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Intuition: Nodes aggregate information from
their neighbors using neural networks

55

Neural networks

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Idea: Aggregate Neighbors

38

Intuition: Network neighborhood defines a
computation graph

56

Every node defines a computation
graph based on its neighborhood!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Deep Model: Many Layers

Model can be of arbitrary depth:
Nodes have embeddings at each layer

Layer-0 embedding of node is its input feature,

Layer- embedding gets information from nodes that
are hops away

57

Layer-2

Layer-1
Layer-0

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
39

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

58

?

?

?

?

What is in the box?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

40

Neighborhood Aggregation

41

Basic approach: Average information from
neighbors and apply a neural network

59

(1) average messages
from neighbors

(2) apply neural network
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

GCN (Graph Convolutional Net): Invariance and Equivariance

What are the invariance and equivariance
properties for a GCN?

Given a node, the GCN that computes its
embedding is permutation invariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

A
C

B

E
F

D

Target Node

D A

D

B

C

Shared NN weights

Average
embeddings - Permutation invariant

42

GCN: Invariance and Equivariance

43

Considering all nodes in a graph, GCN computation
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

E
D

F

B
A

C

Target Node

A
C

B

E
F

D

Target Node

Order

plan 1

Order

plan 2

Permute the input, the output also permutes

accordingly - permutation equivariant

Embeddings

Embeddings

A

B

C

D

E

F

A

B

C

D

E

F

GCN: Invariance and Equivariance

44

Considering all nodes in a graph, GCN computation
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

E
D

F

B
A

C

Target Node

A
C

B

E
F

D

Target Node

Order

plan 1

Order

plan 2

Permute the input, the output also permutes

accordingly - permutation equivariant

Embeddings

Embeddings

A

B

C

D

E

F

A

B

C

D

E

F

Considering all nodes in a graph, GCN computation
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Embeddings

Embeddings

Detailed reasoning:
1. The rows of input node features and
output embeddings are aligned
2. We know computing the embedding
of a given node with GCN is invariant.
3. So, after permutation, the location
of a given node in the input node
feature matrix is changed, and the the
output embedding of a given node
stays the same (the colors of node
feature and embedding are matched)

This is permutation equivariant

Permute the input, the output also permutes

accordingly - permutation equivariant

A

B

C

D

E

F

A

B

C

D

E

F

How to Train A GNN

45

How do we train the GCN to
generate embeddings?

Need to define a loss function on the embeddings.

6410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

How to Train A GNN

46

Node embedding is a function of input graph
Supervised setting: we want to minimize the loss

(see also Slide 15):

: node label

could be L2 if is real number, or cross entropy
if is categorical

Unsupervised setting:

No node label available

Use the graph structure as the supervision!

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

How to Train A GNN

47

Node embedding is a function of input graph
Supervised setting: we want to minimize the loss

(see also Slide 15):

: node label

could be L2 if is real number, or cross entropy
if is categorical

Unsupervised setting:

No node label available

Use the graph structure as the supervision!

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

How to Train A GNN

48

Node embedding is a function of input graph
Supervised setting: we want to minimize the loss

(see also Slide 15):

: node label

could be L2 if is real number, or cross entropy
if is categorical

Unsupervised setting:

No node label available

Use the graph structure as the supervision!

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

“Similar” nodes have similar

embeddings (discussed in last

lecture)

Model Design: Overview

72

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

49

Model Design: Overview

5073

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Model Design: Overview

74

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
51

Inductive Capability

The same aggregation parameters are shared
for all nodes:

The number of model parameters is sublinear in
and we can generalize to unseen nodes!

7510/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
52

Inductive Capability: New Nodes

77

Train with snapshot New node arrives
Generate embedding

for new node

Many application settings constantly encounter
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
53

Inductive Capability: New Graphs

54
76

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Discussion: Design Space of GNNs

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

INPUT GRAPH

TARGET NODE B

D

E

F

C

A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

55J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Ex1: Connectivity

56

Our assumption so far has been
¡ Raw input graph = computational graph
Reasons for breaking this assumption

§ Feature level:
§ The input graph lacks features feature augmentation

§ Structure level:
§ The graph is too sparse à inefficient message passing

§ The graph is too dense à message passing is too costly

§ The graph is too large à cannot fit the computational
graph into a GPU

§ It’s just unlikely that the input graph happens to be
the optimal computation graph for embeddings

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

Ex1: Connectivity

57

¡ Graph Feature manipulation

§ The input graph lacks features feature
augmentation

¡ Graph Structure manipulation

§ The graph is too sparse Add virtual nodes / edges

§ The graph is too dense Sample neighbors when
doing message passing

§ The graph is too large Sample subgraphs to
compute embeddings

§ Will cover later in lecture: Scaling up GNNs

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

Ex2: Graph Attention Network (GAT)

¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE

§ is the weighting factor (importance)

of node ’s message to node

§ is defined explicitly based on the
structural properties of the graph (node degree)

§ All neighbors are equally important
to node

)

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Attention weights

58

Not all node’s neighbors are equally important

¡ Let " " # be computed as a byproduct of an
attention mechanism #:

§ (1) Let compute attention coefficients across
pairs of nodes , based on their messages:

§ L indicates the importance of MN	message to node ?

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

*
("#$)

+
("#$)

* +

O = P($ % , $ %)

● Query, Key, Value

● Alignment 𝒆

● 𝒂 = softmax 𝒆

59

Questions?

	Slide 1: DSC250: Advanced Data Mining Graph Neural Networks
	Slide 2: Outline
	Slide 3: Recap: Summary so far
	Slide 4: Recap: How to Define Node Similarity?
	Slide 5: Similarity Function based on Random Walk
	Slide 6: Similarity Function based on Random Walk
	Slide 7: Why Random Walk?
	Slide 8: Limitations of Random Walk Embedding (1)
	Slide 9: Limitations of Random Walk Embedding (2)
	Slide 10: Limitations of Random Walk Embedding (3)
	Slide 11: Limitations of Random Walk Embedding (3)
	Slide 12: Summary
	Slide 13
	Slide 14: Deep Graph Encoders
	Slide 15: Deep Graph Encoders
	Slide 16: Graphs are more complex than images / text
	Slide 17: Graph Neural Networks: Setup
	Slide 18: A Naïve Approach
	Slide 19: A Naïve Approach
	Slide 20: Permutation Invariance
	Slide 21: Permutation Invariance
	Slide 22: Permutation Invariance
	Slide 23: Permutation Equivariance
	Slide 24: Permutation Equivariance
	Slide 25: Permutation Equivariance
	Slide 26: Permutation Equivariance
	Slide 27: Summary: Permutation Invariance and Equivariance
	Slide 28: Summary: Permutation Invariance and Equivariance
	Slide 29: Graph Neural Networks Overview
	Slide 30: Graph Neural Networks Overview
	Slide 31: Graph Neural Networks Overview
	Slide 32: Graph Neural Networks Overview
	Slide 33: Graph Neural Networks Overview
	Slide 34: Graph Convolutional Networks
	Slide 35: Graph Convolutional Networks
	Slide 36: Idea: Aggregate Neighbors
	Slide 37: Idea: Aggregate Neighbors
	Slide 38: Idea: Aggregate Neighbors
	Slide 39: Deep Model: Many Layers
	Slide 40: Neighborhood Aggregation
	Slide 41: Neighborhood Aggregation
	Slide 42: GCN (Graph Convolutional Net): Invariance and Equivariance
	Slide 43: GCN: Invariance and Equivariance
	Slide 44: GCN: Invariance and Equivariance
	Slide 45: How to Train A GNN
	Slide 46: How to Train A GNN
	Slide 47: How to Train A GNN
	Slide 48: How to Train A GNN
	Slide 49: Model Design: Overview
	Slide 50: Model Design: Overview
	Slide 51: Model Design: Overview
	Slide 52: Inductive Capability
	Slide 53: Inductive Capability: New Nodes
	Slide 54: Inductive Capability: New Graphs
	Slide 55: Discussion: Design Space of GNNs
	Slide 56: Ex1: Connectivity
	Slide 57: Ex1: Connectivity
	Slide 58: Ex2: Graph Attention Network (GAT)
	Slide 59
	Slide 60: Questions?

