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Outline

● Graph neural networks

● Presentation

◯ Yongyi Jiang, Haoyun Wang: "Visual Autoregressive Modeling: Scalable Image 

Generation via Next-Scale Prediction”

◯ Nevasini Sasikumar, Kaiming Tao: “DeepSeek-V3 Technical Report”

◯ Sarah Borsotto, John Driscoll: “Training Language Models to Generate Text with 

Citations via Fine-grained Rewards”

◯ Sreetama Chowdhury, Chandrima Das: “A New Perspective on ADHD Research: 

Knowledge Graph Construction with LLMs and Network Based Insights”
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Recap: Summary so far

Encoder + Decoder Framework

Shallow encoder: embedding lookup

Parameters to optimize: which contains node 
embeddings for all nodes 

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize for node pairs 
that are similar

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16
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Simplest encoding approach: encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Dimension/size 

of embeddings

one column per node 

embedding 

matrix

embedding vector for a 

specific node

2/16/2023



Recap: How to Define Node Similarity?

Key choice of methods is how they define node 
similarity.

Should two nodes have a similar embedding if 
they

are linked?

share neighbors?

We will now learn node similarity definition that uses 
random walks, and how to optimize embeddings for 
such a similarity measure.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17
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Encoder: maps each node to a low-dimensional 
vector

Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of and in 
the original network

dot product between node 
embeddings

2/16/2023

Decoder

node in the input graph

d-dimensional 
embedding



Similarity Function based on Random Walk
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2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

Given a graph and a starting 
point, we select a neighbor of 
it at random, and move to this 
neighbor; then we select a 
neighbor of this point at 
random, and move to it, etc. 
The (random) sequence of 
points visited this way is a 
random walk on the graph.

Step 1
Step 2

Step 3 Step 4

Step 5

5

Random walk on graph:



Similarity Function based on Random Walk

6

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

probability that u
and v co-occur on a 

random walk over 

the graph

2/16/2023

Encoder: maps each node to a low-dimensional 
vector

Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of and in 
the original network

dot product between node 
embeddings

2/16/2023

Decoder

node in the input graph

d-dimensional 
embedding



Why Random Walk?

1. Expressivity: Flexible stochastic definition of 
node similarity that incorporates both local 
and higher-order neighborhood information
Idea: if random walk starting from node 
visits with high probability, and are 
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node 
pairs when training; only need to consider 
pairs that co-occur on random walks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 242/16/2023

7



Limitations of Random Walk Embedding (1)Limitations of node embeddings via matrix 
factorization and random walks

Cannot obtain embeddings for nodes not in the 
training set

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64
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Training set A newly added node 5 at test time 

(e.g., new user in a social network)

Cannot compute its embedding 

with DeepWalk / node2vec. Need to 

recompute all node embeddings.
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Limitations of Random Walk Embedding (2)

9

Cannot capture structural similarity:

Node 1 and 11 are structurally similar part of 

However, they have very different embeddings.

node 11 from node 1.

DeepWalk and node2vec do not capture 
structural similarity.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65
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Limitations of Random Walk Embedding (3)

10

Cannot utilize node, edge and graph features

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66
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5

Feature vector

(e.g. protein properties in a 

protein-protein interaction graph)

DeepWalk / node2vec 

embeddings do not incorporate 

such node features

Solution to these limitations: Deep Representation 
Learning and Graph Neural Networks
(To be covered in depth next)
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Summary

Encoder + Decoder Framework

Shallow encoder: embedding lookup

Parameters to optimize: which contains node 
embeddings for all nodes 

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize for node pairs 
that are similar

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16
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Graph Neural Networks (GNNs)

Slides adapted from:

• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Deep Graph Encoders

● Encoding based on graph neural networks

14

Today: We will now discuss deep learnig
methods based on graph neural networks 
(GNNs):

Note: All these deep encoders can be 
combined with node similarity functions 
defined in the Lecture 3.

8

multiple layers of 
non-linear transformations 

based on graph structure

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

v.s. Shallow Encoder:
Simplest encoding approach: Encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node 

embedding [what we learn / 

optimize]

indicator vector, all zeroes 
except a one in column 

indicating node v

2/16/2023



Deep Graph Encoders

15
9

Output: Node embeddings. 

Also, we can embed subgraphs, 

and graphs
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Graphs are more complex than images / text
But networks are far more complex!

Arbitrary size and complex topological structure (i.e., 
no spatial locality like grids)

No fixed node ordering or reference point

Often dynamic and have multimodal features
12

vs.

Networks Images

Text

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Graph Neural Networks: Setup

Assume we have a graph :
is the vertex set

is the adjacency matrix (assume binary)

is a matrix of node features

: a node in ; : the set of neighbors of .

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene 
functional information

When there is no node feature in the graph dataset:
Indicator vectors (one-hot encoding of a node)

3310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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A Naïve Approach

Join adjacency matrix and features
Feed them into a deep neural net:

Issues with this idea:
Issues with this idea:

parameters

Not applicable to graphs of different sizes

Sensitive to node ordering
34

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

Take adjacency matrix     and feature matrix   

Concatenate them  

Feed them into deep (fully connected) neural net 

Done?

Problems:

Huge number of parameters 

No inductive learning possible

?A

C

B

D

E

[A ,X ]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18
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Permutation Invariance
Graph does not have a canonical order of the nodes!

39

A
C

B

E
F

D

A

B

C

D

E

F

Node features Adjacency matrix 

A
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F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B
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F

Node features Adjacency matrix 

A
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D
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F

A B C D E FOrder plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20



Graph does not have a canonical order of the nodes!

40
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Node feature Adjacency matrix 
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F

A B C D E FOrder plan 1

E
D

F

B
A

C
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D

E

F

Node feature Adjacency matrix 

A

B

C

D

E

F

A B C D E FOrder plan 2

Graph and node representations 
should be the same for Order plan 1

and Order plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Permutation Invariance
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Permutation Invariance

Consider we learn a function that maps a 
graph to a vector then

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41
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Order plan 1: Order plan 2: 

is the adjacency matrix

is the node feature matrix

For two order plans,

output of should 

be the same!
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Permutation Equivariance

For node representation: We learn a function 
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

A
C

B

E
F

D

E
D

F

B
A

C

A

B

C

D

E

F

A

B

C

D

E

F

Order plan 1: Order plan 2: 
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Permutation Equivariance

For node representation: We learn a function 
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43
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Order plan 1: Order plan 2: 

24

For node representation: We learn a function 
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44
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Order plan 1: Order plan 2: 

Representation vector 

of the brown node A

Representation vector 

of the brown node EFor two order plans, the vector of node at 

the same position in the graph is the same!



For node representation: We learn a function 
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45
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For two order plans, the vector of node at 

the same position in the graph is the same!

Order plan 1: Order plan 2: 

Representation vector 

of the green node C

Representation vector 

of the green node D

Permutation Equivariance
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Permutation Equivariance

26

For node representation
Consider we learn a function that maps a 
graph to a matrix 
If the output vector of a node at the same 
position in the graph remains unchanged for any 
order plan, we say is permutation 
equivariant.

Definition: For any node function 

, is permutation-
equivariant if for any 
permutation .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46



Summary: Permutation Invariance and Equivariance

27

Permutation-invariant

Permutation-equivariant

Examples:

: Permutation-invariant 

Reason: 

: Permutation-equivariant

Reason: 

: Permutation-equivariant

Reason: 
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Permute the input, the 

output stays the same.

(map a graph to a vector)

Permute the input, output 

also permutes accordingly.

(map a graph to a matrix)



Summary: Permutation Invariance and Equivariance
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Permutation-invariant

Permutation-equivariant

Examples:

: Permutation-invariant 
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Reason: 

: Permutation-equivariant

Reason: 
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Permute the input, the 

output stays the same.

(map a graph to a vector)

Permute the input, output 

also permutes accordingly.

(map a graph to a matrix)



Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

29

Graph neural networks consist of multiple 
permutation equivariant / invariant functions.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

[Bronstein, ICLR 2021 keynote]

[Bronstein, ICLR 2021 keynote] 



Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

30

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?

No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the 

input leads to different 

outputs!
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Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions
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Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?

No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the 

input leads to different 

outputs!

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?

No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

This explains why the naïve MLP approach 
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

Take adjacency matrix     and feature matrix   

Concatenate them  

Feed them into deep (fully connected) neural net 

Done?

Problems:

Huge number of parameters 

No inductive learning possible

?A

C

B

D

E

[A ,X ]



Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

● Next: Design GNNs that are permutation equivariant / invariant by passing and 
aggregating information from neighbors

33



Graph Convolutional Networks

Idea:
computation graph

53

Determine node 
computation graph

Propagate and
transform information

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
34[Kipf and Welling, ICLR 2017] 



Graph Convolutional Networks
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10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Idea: Aggregate Neighbors

36

Key idea: Generate node embeddings based 
on local network neighborhoods 

5410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Idea: Aggregate Neighbors

37

Key idea: Generate node embeddings based 
on local network neighborhoods 

5410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Intuition: Nodes aggregate information from 
their neighbors using neural networks

55

Neural networks

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Idea: Aggregate Neighbors

38

Intuition: Network neighborhood defines a 
computation graph

56

Every node defines a computation 
graph based on its neighborhood!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Deep Model: Many Layers

Model can be of arbitrary depth:
Nodes have embeddings at each layer

Layer-0 embedding of node is its input feature, 

Layer- embedding gets information from nodes that 
are hops away

57

Layer-2

Layer-1
Layer-0

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
39



Neighborhood Aggregation

Neighborhood aggregation: Key distinctions 
are in how different approaches aggregate 
information across the layers

58

?

?

?

?

What is in the box?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Neighborhood Aggregation

41

Basic approach: Average information from 
neighbors and apply a neural network

59

(1) average messages 
from neighbors 

(2) apply neural network
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



GCN (Graph Convolutional Net): Invariance and Equivariance

What are the invariance and equivariance
properties for a GCN?

Given a node, the GCN that computes its 
embedding is permutation invariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

A
C

B

E
F

D

Target Node

D A

D

B

C

Shared NN weights

Average
embeddings - Permutation invariant 

42



GCN: Invariance and Equivariance

43

Considering all nodes in a graph, GCN computation 
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62
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Permute the input, the output also permutes 

accordingly - permutation equivariant

Embeddings

Embeddings
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GCN: Invariance and Equivariance

44

Considering all nodes in a graph, GCN computation 
is permutation equivariant
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Embeddings

A

B
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A
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C

D

E

F

Considering all nodes in a graph, GCN computation 
is permutation equivariant 

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Embeddings

Embeddings

Detailed reasoning:
1. The rows of input node features and 
output embeddings are aligned
2. We know computing the embedding 
of a given node with GCN is invariant.
3. So, after permutation, the location
of a given node in the input node 
feature matrix is changed, and the the 
output embedding of a given node 
stays the same (the colors of node 
feature and embedding are matched)

This is permutation equivariant

Permute the input, the output also permutes 

accordingly - permutation equivariant

A

B

C

D

E

F

A

B

C

D

E

F



How to Train A GNN

45

How do we train the GCN to 
generate embeddings?

Need to define a loss function on the embeddings.

6410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



How to Train A GNN

46

Node embedding is a function of input graph
Supervised setting: we want to minimize the loss 

(see also Slide 15):

: node label

could be L2 if is real number, or cross entropy 
if is categorical

Unsupervised setting:

No node label available

Use the graph structure as the supervision!

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



How to Train A GNN
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How to Train A GNN

48

Node embedding is a function of input graph
Supervised setting: we want to minimize the loss 

(see also Slide 15):

: node label

could be L2 if is real number, or cross entropy 
if is categorical

Unsupervised setting:

No node label available

Use the graph structure as the supervision!

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

“Similar” nodes have similar 

embeddings (discussed in last 

lecture) 



Model Design: Overview

72

(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Model Design: Overview

5073

(3) Train on a set of nodes, i.e., 
a batch of compute graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Model Design: Overview

74

(4) Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
51



Inductive Capability

The same aggregation parameters are shared 
for all nodes:

The number of model parameters is sublinear in 
and we can generalize to unseen nodes!

7510/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
52



Inductive Capability: New Nodes

77

Train with snapshot New node arrives
Generate embedding 

for new node

Many application settings constantly encounter 
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
53



Inductive Capability: New Graphs

54
76

Inductive node embedding          Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate 
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Discussion: Design Space of GNNs

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

INPUT GRAPH

TARGET NODE B

D

E

F

C

A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation
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Ex1: Connectivity

56

Our assumption so far has been 
¡ Raw input graph = computational graph
Reasons for breaking this assumption

§ Feature level: 
§ The input graph lacks features  feature augmentation

§ Structure level:
§ The graph is too sparse à  inefficient message passing

§ The graph is too dense à  message passing is too costly

§ The graph is too large à  cannot fit the computational 
graph into a GPU

§ It’s just unlikely that the input graph happens to be 
the optimal computation graph for embeddings

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58



Ex1: Connectivity

57

¡ Graph Feature manipulation

§ The input graph lacks features  feature 
augmentation

¡ Graph Structure manipulation

§ The graph is too sparse  Add virtual nodes / edges

§ The graph is too dense  Sample neighbors when 
doing message passing

§ The graph is too large  Sample subgraphs to 
compute embeddings 

§ Will cover later in lecture: Scaling up GNNs

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59



Ex2: Graph Attention Network (GAT)

¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE

§  is the weighting factor (importance) 

of node ’s message to node 

§  is defined explicitly based on the 
structural properties of the graph (node degree)

§ All neighbors  are equally important 
to node  

)

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Attention weights

58

Not all node’s neighbors are equally important 

¡ Let " " #  be computed as a byproduct of an 
attention mechanism #:

§ (1) Let  compute attention coefficients  across 
pairs of nodes ,  based on their messages:

§ L  indicates the importance of MN	message to node ?

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29
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● Query, Key, Value

● Alignment 𝒆

● 𝒂 = softmax 𝒆
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Questions?
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