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Outline

● Graph representation learning

● Presentation

◯ Tianhao Zhou, Hao Wang: "Retrieval-Augmented Generation for Knowledge-Intensive 

NLP Tasks”

◯ Nikhil Chowdary Paleti, Shankara Narayanan Venkateswara Raju: “DeepSeek-R1: 

Incentivizing Reasoning Capability in LLMs via Reinforcement Learning”

◯ Letong Liang, Selena Ge: “s1: Simple test-time scaling”

◯ Jahnavi Patel, Pratishtha Gaur: “From Local to Global: A Graph RAG Approach to 

Query-Focused Summarization”
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Recap: Tasks on Graph

Node-level prediction
Link-level prediction
Graph-level prediction
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Recap: Getting Features for Nodes/Links/Graphs
Design features for nodes/links/graphs
Obtain features for all training data
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Node features

Graph features
Link features
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Recap: feature engineering

● Node-level:

◯ Node degree, centrality, clustering coefficient, graphlets

● Link-level:

◯ Distance-based feature

◯ Local/global neighborhood overlap

● Graph-level:

◯ Graphlet kernel

5
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Input 

Graph

Structured 

Features

Learning 

Algorithm  

Downstream 

prediction task
Feature engineering
(node-level, edge-level, graph-

level features)

Given an input graph, extract node, link 
and graph-level features, learn a model 
(SVM, neural network, etc.) that maps 
features to labels.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu2/16/2023
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Graph Representation Learning
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Input 

Graph

Structured 

Features

Learning 

Algorithm  
Prediction

Downstream 

prediction task

Feature 

Engineering

Representation Learning --

Automatically

learn the features

Graph Representation Learning alleviates 
the need to do feature engineering every 
single time.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu2/16/2023
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Graph Representation Learning

7

Goal: Efficient task-independent feature 
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

vectornode

Feature representation, 

embedding
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Node Embedding

8

Task: Map nodes into an embedding space

Similarity of embeddings between nodes indicates 
their similarity in the network. For example:

Both nodes are close to each other (connected by an edge)

Encode network information

Potentially used for many downstream predictions

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Vec

embeddings

Node classification

Link prediction

Graph classification

Anomalous node detection

Clustering

Tasks



Example Node Embedding

9

Karate Club network:

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Example

Zachary s Karate Network:

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.



Node Embedding: Setup

Assume we have a graph G:

V is the vertex set.

A is the adjacency matrix (assume binary).

For simplicity: No node features or extra 
information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 82/16/2023
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Node Embedding

Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 92/16/2023
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Node Embedding

12

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Goal:

Need to define!

2/16/2023

in the original network Similarity of the embedding



Node Embedding: Key Components

Encoder: maps each node to a low-dimensional 
vector

Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of and in 
the original network

dot product between node 
embeddings

2/16/2023

Decoder

node in the input graph

d-dimensional 
embedding
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“Shallow” Encoding

Simplest encoding approach: Encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node 

embedding [what we learn / 

optimize]

indicator vector, all zeroes 
except a one in column 

indicating node v

2/16/2023
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“Shallow” Encoding

15

Simplest encoding approach: encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Dimension/size 

of embeddings

one column per node 

embedding 

matrix

embedding vector for a 

specific node
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“Shallow” Encoding

16

Simplest encoding approach: Encoder is just an 
embedding-lookup

Each node is assigned a unique 
embedding vector

(i.e., we directly optimize 
the embedding of each node)

Many methods: DeepWalk, node2vec

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15



Summary so far

Encoder + Decoder Framework

Shallow encoder: embedding lookup

Parameters to optimize: which contains node 
embeddings for all nodes 

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize for node pairs 
that are similar

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16
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Discussion: How to Define Node Similarity?

Key choice of methods is how they define node 
similarity.

Should two nodes have a similar embedding if 
they

are linked?

share neighbors?

We will now learn node similarity definition that uses 
random walks, and how to optimize embeddings for 
such a similarity measure.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17
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Node Embedding: Key Components

Encoder: maps each node to a low-dimensional 
vector

Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of and in 
the original network

dot product between node 
embeddings

2/16/2023

Decoder

node in the input graph

d-dimensional 
embedding
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Similarity Function based on Random Walk
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2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

Given a graph and a starting 
point, we select a neighbor of 
it at random, and move to this 
neighbor; then we select a 
neighbor of this point at 
random, and move to it, etc. 
The (random) sequence of 
points visited this way is a 
random walk on the graph.

Step 1
Step 2

Step 3 Step 4

Step 5

20

Random walk on graph:



Similarity Function based on Random Walk

21

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

probability that u
and v co-occur on a 

random walk over 

the graph

2/16/2023



Why Random Walk?

1. Expressivity: Flexible stochastic definition of 
node similarity that incorporates both local 
and higher-order neighborhood information
Idea: if random walk starting from node 
visits with high probability, and are 
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node 
pairs when training; only need to consider 
pairs that co-occur on random walks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 242/16/2023
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Limitations of Random Walk Embedding (1)Limitations of node embeddings via matrix 
factorization and random walks

Cannot obtain embeddings for nodes not in the 
training set

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64
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Training set A newly added node 5 at test time 

(e.g., new user in a social network)

Cannot compute its embedding 

with DeepWalk / node2vec. Need to 

recompute all node embeddings.
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Limitations of Random Walk Embedding (2)

24

Cannot capture structural similarity:

Node 1 and 11 are structurally similar part of 

However, they have very different embeddings.

node 11 from node 1.

DeepWalk and node2vec do not capture 
structural similarity.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65
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Limitations of Random Walk Embedding (3)

25

Cannot utilize node, edge and graph features

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66
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5

Feature vector

(e.g. protein properties in a 

protein-protein interaction graph)

DeepWalk / node2vec 

embeddings do not incorporate 

such node features

Solution to these limitations: Deep Representation 
Learning and Graph Neural Networks
(To be covered in depth next)



Summary

Encoder + Decoder Framework

Shallow encoder: embedding lookup

Parameters to optimize: which contains node 
embeddings for all nodes 

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize for node pairs 
that are similar

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16
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Discussion: How to Define Node Similarity?

Key choice of methods is how they define node 
similarity.

Should two nodes have a similar embedding if 
they

are linked?

share neighbors?

We will now learn node similarity definition that uses 
random walks, and how to optimize embeddings for 
such a similarity measure.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17
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Graph Neural Networks (GNNs)

Slides adapted from:

• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Deep Graph Encoders

● Encoding based on graph neural networks

29

Today: We will now discuss deep learnig
methods based on graph neural networks 
(GNNs):

Note: All these deep encoders can be 
combined with node similarity functions 
defined in the Lecture 3.

8

multiple layers of 
non-linear transformations 

based on graph structure

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

v.s. Shallow Encoder:
Simplest encoding approach: Encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node 

embedding [what we learn / 

optimize]

indicator vector, all zeroes 
except a one in column 

indicating node v
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Deep Graph Encoders

30
9

Output: Node embeddings. 

Also, we can embed subgraphs, 

and graphs
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Graphs are more complex than images / text
But networks are far more complex!

Arbitrary size and complex topological structure (i.e., 
no spatial locality like grids)

No fixed node ordering or reference point

Often dynamic and have multimodal features
12

vs.

Networks Images

Text

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Graph Neural Networks: Setup

Assume we have a graph :
is the vertex set

is the adjacency matrix (assume binary)

is a matrix of node features

: a node in ; : the set of neighbors of .

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene 
functional information

When there is no node feature in the graph dataset:
Indicator vectors (one-hot encoding of a node)

3310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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A Naïve Approach

Join adjacency matrix and features
Feed them into a deep neural net:

Issues with this idea:
Issues with this idea:

parameters

Not applicable to graphs of different sizes

Sensitive to node ordering
34

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
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0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

Take adjacency matrix     and feature matrix   

Concatenate them  

Feed them into deep (fully connected) neural net 

Done?

Problems:

Huge number of parameters 

No inductive learning possible

?A

C

B

D

E

[A ,X ]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Permutation Invariance
Graph does not have a canonical order of the nodes!

39
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Graph does not have a canonical order of the nodes!
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Node feature Adjacency matrix 

A

B

C

D

E

F

A B C D E FOrder plan 2

Graph and node representations 
should be the same for Order plan 1

and Order plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Permutation Invariance
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Permutation Invariance

Consider we learn a function that maps a 
graph to a vector then

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41
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Order plan 1: Order plan 2: 

is the adjacency matrix

is the node feature matrix

For two order plans,

output of should 

be the same!
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Permutation Equivariance

For node representation: We learn a function 
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43
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Permutation Equivariance

For node representation: We learn a function 
that maps nodes of to a matrix .
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For node representation: We learn a function 
that maps nodes of to a matrix .
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Order plan 1: Order plan 2: 

Representation vector 

of the brown node A

Representation vector 

of the brown node EFor two order plans, the vector of node at 

the same position in the graph is the same!



For node representation: We learn a function 
that maps nodes of to a matrix .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45
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For two order plans, the vector of node at 

the same position in the graph is the same!

Order plan 1: Order plan 2: 

Representation vector 

of the green node C

Representation vector 

of the green node D

Permutation Equivariance
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Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

40

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?

No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the 

input leads to different 

outputs!



Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

41

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?

No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the 

input leads to different 

outputs!

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?

No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

This explains why the naïve MLP approach 
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
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0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

Take adjacency matrix     and feature matrix   

Concatenate them  

Feed them into deep (fully connected) neural net 

Done?

Problems:

Huge number of parameters 

No inductive learning possible

?A

C

B

D

E

[A ,X ]



Graph Neural Networks Overview

● GNNs consist of multiple permutation equivariant / invariant functions

● Next: Permutation equivariant / invariant by passing and aggregating 
information from neighbors

42



Graph Convolutional Networks

Idea:
computation graph

53

Determine node 
computation graph

Propagate and
transform information

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Questions?
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