DSC250: Advanced Data Mining

Graph Mining

Zhiting Hu Lecture 10, Feb 6, 2025

HALICIOĞLU DATA SCIENCE INSTITUTE

Outline

- Graph features
- Graph representation learning
- Presentation
 - Lila Horwitz: "expainable AI and LIME"

Graph is everywhere

Event Graphs

Image credit: SalientNetworks

Computer Networks

Disease Pathways

Image credit: <u>Wikipedia</u>

Food Webs

Image credit: Pinterest

Particle Networks

Image credit: <u>visitlondon.com</u>

Underground Networks

'C

Graph is everywhere

Image credit: <u>Medium</u>

Social Networks

Economic Networks Communication Networks

Citation Networks

Image credit: Missoula Current News

Internet

Image credit: The Conversation

Networks of Neurons

Graph is everywhere

Image credit: <u>Maximilian Nickel et al</u>

Image credit: <u>ese.wustl.edu</u>

Regulatory Networks

Image credit: <u>math.hws.edu</u>

Scene Graphs

Code Graphs

Image credit: MDPI

Molecules

 NH_2

3D Shapes

Image credit: Wikipedia

Tasks on Graph

- Node-level prediction
- Link-level prediction
- Graph-level prediction

Getting Features for Nodes/Links/Graphs

Node-level Tasks

Node classification

Node-level Features

Goal: Characterize the structure and position of a node in the network:

- Node degree
- Node centrality

Node-level Features (1): Node Degree

- The degree k_v of node v is the number of edges (neighboring nodes) the node has.
- Treats all neighboring nodes equally.

- Node degree counts the neighboring nodes without capturing their importance.
- Node centrality c_v takes the node importance in a graph into account
- Different ways to model importance:
 - Eigenvector centrality
 - Betweenness centrality
 - Closeness centrality
 - and many others...

Eigenvector centrality:

- A node v is important if surrounded by important neighboring nodes $u \in N(v)$.
- We model the centrality of node v as the sum of the centrality of neighboring nodes:

$$c_{v} = \frac{1}{\lambda} \sum_{u \in N(v)} c_{u}$$

 λ is normalization constant (it will turn
out to be the largest eigenvalue of A)

Eigenvector centrality:

- A node v is important if surrounded by important neighboring nodes $u \in N(v)$.
- We model the centrality of node v as the sum of the centrality of neighboring nodes:

$$c_{v} = \frac{1}{\lambda} \sum_{u \in N(v)} c_{u}$$

 λ is normalization constant (it will turn
out to be the largest eigenvalue of A)

Notice that the above equation models centrality in a recursive manner. How do we solve it?

Eigenvector centrality:

Rewrite the recursive equation in the matrix form.

$$c_{v} = \frac{1}{\lambda} \sum_{u \in N(v)} c_{u} \quad \longleftarrow \quad$$

 λ is normalization const (largest eigenvalue of A)

 $\lambda c = Ac$

- A: Adjacency matrix $A_{uv} = 1$ if $u \in N(v)$
- c: Centrality vector
- λ: Eigenvalue
- We see that centrality c is the eigenvector of A!
- The largest eigenvalue λ_{max} is always positive and unique (by Perron-Frobenius Theorem).
- The eigenvector c_{max} corresponding to λ_{max} is used for centrality.

- Betweenness centrality:
 - A node is important if it lies on many shortest paths between other nodes.

 $c_v = \sum_{s \neq v \neq t} \frac{\#(\text{shortest paths betwen } s \text{ and } t \text{ that contain } v)}{\#(\text{shortest paths between } s \text{ and } t)}$

Example:

$$c_A = c_B = c_E = 0$$

 $c_C = 3$
(A-C-B, A-C-D, A-C-D-E)

 $c_D = 3$ (A-C-<u>D</u>-E, B-<u>D</u>-E, C-<u>D</u>-E)

Closeness centrality:

 A node is important if it has small shortest path lengths to all other nodes.

1

 $c_v = \frac{1}{\sum_{u \neq v} \text{shortest path length between } u \text{ and } v}$

• Example:

Node-level Features (3): Clustering Coefficient

 Measures how connected v's neighboring nodes are:

Node-level Features (4): Graphlets

 Observation: Clustering coefficient counts the #(triangles) in the ego-network

 We can generalize the above by counting #(pre-specified subgraphs, i.e., graphlets).

Node-level Features (4): Graphlets

- **Goal:** Describe network structure around node *u*
 - Graphlets are small subgraphs that describe the structure of node u's network neighborhood

Analogy:

- Degree counts #(edges) that a node touches
- Clustering coefficient counts #(triangles) that a node touches.
- Graphlet Degree Vector (GDV): Graphlet-base features for nodes
 - GDV counts #(graphlets) that a node touches

Node-level Features (4): Graphlets

- Graphlet Degree Vector (GDV): A count vector of graphlets rooted at a given node.
- Example: Possible graphlets on up to 3 nodes $u \stackrel{G}{\longrightarrow} 0$

Graphlet instances of node u:

GDV of node *u*: *a, b, c, d* [2,1,0,2]

Node-level Features: Summary

- We have introduced different ways to obtain node features.
- They can be categorized as:
 - Importance-based features:
 - Node degree
 - Different node centrality measures
 - Structure-based features:
 - Node degree
 - Clustering coefficient
 - Graphlet count vector

Node-level Features: Summary

- Importance-based features: capture the importance of a node in a graph
 - Node degree:
 - Simply counts the number of neighboring nodes
 - Node centrality:
 - Models importance of neighboring nodes in a graph
 - Different modeling choices: eigenvector centrality, betweenness centrality, closeness centrality
- Useful for predicting influential nodes in a graph
 - Example: predicting celebrity users in a social network

Node-level Features: Summary

- Structure-based features: Capture topological properties of local neighborhood around a node.
 - Node degree:
 - Counts the number of neighboring nodes
 - Clustering coefficient:
 - Measures how connected neighboring nodes are
 - Graphlet degree vector:
 - Counts the occurrences of different graphlets
- Useful for predicting a particular role a node plays in a graph:
 - Example: Predicting protein functionality in a protein-protein interaction network.

Node-level Features: Discussion

Different ways to label nodes of the network:

Node features defined so far would allow to distinguish nodes in the above example

Node-level Features: Discussion

Different ways to label nodes of the network:

Node features defined so far would allow to distinguish nodes in the above example

Link-level Task

- The task is to predict new links based on the existing links.
- At test time, node pairs (with no existing links) are ranked, and top K node pairs are predicted.
- The key is to design features for **a pair of nodes**.

- Distance-based feature
- Local neighborhood overlap
- Global neighborhood overlap

Distance-based features:

 Uses the shortest path length between two nodes but does not capture how neighborhood overlaps.

Distance-based features:

- Uses the shortest path length between two nodes but does not capture how neighborhood overlaps.
- Local neighborhood overlap:
 - Captures how many neighboring nodes are shared by two nodes.
 - Becomes zero when no neighbor nodes are shared.

Distance-based features:

- Uses the shortest path length between two nodes but does not capture how neighborhood overlaps.
- Local neighborhood overlap:
 - Captures how many neighboring nodes are shared by two nodes.
 - Becomes zero when no neighbor nodes are shared.
- Global neighborhood overlap:
 - Uses global graph structure to score two nodes.
 - Katz index counts #walks of all lengths between two nodes.

Graph-level Features

 Goal: We want features that characterize the structure of an entire graph.

Graph-level Features

- Key idea: Bag-of-Words (BoW) for a graph
 - Recall: BoW simply uses the word counts as features for documents (no ordering considered).
 - Naïve extension to a graph: Regard nodes as words.
 - Since both graphs have 4 red nodes, we get the same feature vector for two different graphs...

Graph-level Features

What if we use Bag of node degrees? Deg1: • Deg2: • Deg3: • $\phi(\frown) = \text{count}(\frown) = [1, 2, 1]$ Obtains different features for different graphs! $\phi(\frown) = \text{count}(\frown) = [0, 2, 2]$

 Both Graphlet Kernel and Weisfeiler-Lehman (WL) Kernel use Bag-of-* representation of graph, where * is more sophisticated than node degrees!

Graph-level Features: Graphlet Features

- Key idea: Count the number of different graphlets in a graph.
- Given graph G, and a graphlet list $G_k = (g_1, g_2, \dots, g_{n_k})$, define the graphlet count vector $f_G \in \mathbb{R}^{n_k}$ as

 $(f_G)_i = #(g_i \subseteq G) \text{ for } i = 1, 2, ..., n_k.$

Graph-level Features: Graphlet Features

Graph-level Features: Graphlet Features

- Limitations: Counting graphlets is expensive!
- More advanced methods: color refinement, etc.

Summary so far: feature engineering

- Node-level:
 - Node degree, centrality, clustering coefficient, graphlets
- Link-level:
 - Distance-based feature
 - Local/global neighborhood overlap
- Graph-level:
 - Graphlet kernel

Graph Representation Learning

Graph Representation Learning alleviates the need to do feature engineering every single time.

Graph Representation Learning

Goal: Efficient task-independent feature learning for machine learning with graphs!

Node Embedding

- Task: Map nodes into an embedding space
 - Similarity of embeddings between nodes indicates their similarity in the network. For example:
 - Both nodes are close to each other (connected by an edge)
 - Encode network information
 - Potentially used for many downstream predictions

Example Node Embedding

 2D embedding of nodes of the Zachary's Karate Club network:

Node Embedding: Setup

Assume we have a graph G:

- V is the vertex set.
- A is the adjacency matrix (assume binary).
- For simplicity: No node features or extra information is used

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Node Embedding

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph

Node Embedding

Node Embedding: Key Components

- Encoder: maps each node to a low-dimensional
 - vector d-dimensional $ENC(v) = \mathbf{z}_v$ embedding node in the input graph
- Similarity function: specifies how the relationships in vector space map to the relationships in the original network $similarity(u, v) \approx \mathbf{z}_{v}^{T} \mathbf{z}_{u}$ Decoder Similarity of u and v in the original network dot product between node embeddings

"Shallow" Encoding

Simplest encoding approach: Encoder is just an embedding-lookup

$$ENC(v) = \mathbf{z}_{v} = \mathbf{Z} \cdot v$$

- $\mathbf{Z} \in \mathbb{R}^{d \times |\mathcal{V}|}$ matrix, each column is a node embedding [what we learn / optimize]
 - $v \in \mathbb{I}^{|\mathcal{V}|}$ indicator vector, all zeroes except a one in column indicating node v

"Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup

"Shallow" Encoding

Simplest encoding approach: Encoder is just an embedding-lookup

Each node is assigned a unique embedding vector (i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec

Summary

Encoder + Decoder Framework

- Shallow encoder: embedding lookup
- Parameters to optimize: **Z** which contains node embeddings \mathbf{z}_u for all nodes $u \in V$
- We will cover deep encoders in the GNNs

- Decoder: based on node similarity.
- **Objective:** maximize $\mathbf{z}_v^T \mathbf{z}_u$ for node pairs (u, v) that are **similar**

Discussion: How to Define Node Similarity?

- Key choice of methods is how they define node similarity.
- Should two nodes have a similar embedding if they...
 - are linked?
 - share neighbors?
 - have similar "structural roles"?

Questions?