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Outline

● Graph features

● Graph representation learning

● Presentation

◯ Lila Horwitz: “expainable AI and LIME”
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Graph is everywhere
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Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
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Graph is everywhere
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Economic Networks
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Graph is everywhere
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Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
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Tasks on Graph

Node-level prediction
Link-level prediction
Graph-level prediction
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Getting Features for Nodes/Links/Graphs
Design features for nodes/links/graphs
Obtain features for all training data
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Node-level Tasks

13

? ?

?
?

?

Machine 

Learning

Node classification

ML needs features.
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Node-level Features
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Goal: Characterize the structure and position of 
a node in the network:

Node degree

Node centrality

Clustering coefficient

Graphlets
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Node-level Features (1): Node Degree

10

The degree of node is the number of 
edges (neighboring nodes) the node has.
Treats all neighboring nodes equally.
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Node-level Features (2): Node Centrality

11

Node degree counts the neighboring nodes 
without capturing their importance.
Node centrality takes the node importance 
in a graph into account
Different ways to model importance:

Engienvector centrality

Betweenness centrality

Closeness centrality
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Eigenvector centrality



Node-level Features (2): Node Centrality
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Eigenvector centrality:

A node is important if surrounded by important 
neighboring nodes .

We model the centrality of node as the sum of 
the centrality of neighboring nodes:

Notice that the above equation models centrality 
in a recursive manner. How do we solve it?
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Node-level Features (2): Node Centrality

Eigenvector centrality:
Rewrite the recursive equation in the matrix form.

We see that centrality is the eigenvector of !

The largest eigenvalue is always positive and 
unique (by Perron-Frobenius Theorem).

The eigenvector corresponding to is 
used for centrality.
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Node-level Features (2): Node Centrality
Betweenness centrality:

A node is important if it lies on many shortest 
paths between other nodes.

Example:
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Node-level Features (2): Node Centrality

Closeness centrality:

A node is important if it has small shortest path 
lengths to all other nodes.

Example:
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Node-level Features (3): Clustering Coefficient

Measures how connected neighboring 
nodes are:

Examples:
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#(node pairs among neighboring nodes)
In our examples below the denominator is 6 (4 choose 2).
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Node-level Features (4): Graphlets

Observation: Clustering coefficient counts the 
#(triangles) in the ego-network

We can generalize the above by counting 
#(pre-specified subgraphs, i.e., graphlets).
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3 triangles (out of 6 node triplets)
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Node-level Features (4): Graphlets

Goal: Describe network structure around node 

Graphlets are small subgraphs that describe the 
structure of node 

Analogy:
Degree counts #(edges) that a node touches
Clustering coefficient counts #(triangles) that a 
node touches.
Graphlet Degree Vector (GDV): Graphlet-base 
features for nodes

GDV counts #(graphlets) that a node touches
2/16/2023 23Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Node-level Features (4): Graphlets

20

Graphlet Degree Vector (GDV): A count 
vector of graphlets rooted at a given node.
Example:
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Pedro Ribeiro

Graphlet Degree Vector

An automorphism orbit  takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism orbit  takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism orbit  takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

Possible graphlets on up to 3 nodes

GDV of node : 

[2,1,0,2]

Graphlet instances of node u:



Node-level Features: Summary

We have introduced different ways to obtain 
node features.
They can be categorized as:

Importance-based features:

Node degree

Different node centrality measures

Structure-based features:

Node degree

Clustering coefficient

Graphlet count vector
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Node-level Features: Summary

22

Importance-based features: capture the 
importance of a node in a graph

Node degree:

Simply counts the number of neighboring nodes

Node centrality:

Models importance of neighboring nodes in a graph

Different modeling choices: eigenvector centrality, 
betweenness centrality, closeness centrality

Useful for predicting influential nodes in a graph

Example: predicting celebrity users in a social 
network
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Node-level Features: Summary

23

Structure-based features: Capture topological 
properties of local neighborhood around a node.

Node degree:
Counts the number of neighboring nodes

Clustering coefficient:
Measures how connected neighboring nodes are

Graphlet degree vector:
Counts the occurrences of different graphlets

Useful for predicting a particular role a node 
plays in a graph:

Example: Predicting protein functionality in a 
protein-protein interaction network.
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Node-level Features: Discussion

24

Different ways to label nodes of the network:

31

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
r homophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE

to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison

with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-

ity since it involves matrix factorization, our experiments stand out

from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asan example, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling to approximate thesoftmax probabilities

with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inef when compared with neg-

ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thede facto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-

ical values used for DeepWalk and LINE. , d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically

with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274

LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-

rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label
In the multi-label setting, every node is assigned

oneor morelabels from a set L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label

on the following datasets:

BlogCatalog [44]: This is a network of social relationships

of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.

Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent

biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.
Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the million bytes of the

Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural

equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome amiliar that is, bloggers

that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.

For example, they exhibit structural equivalencewhen proteins per-

form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedges exist between words

cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOS tagsdue to syntactic grammar rules such as

determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is

split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and the relativeperformance
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implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and the relativeperformance

Node features defined so 

far would allow to 

distinguish nodes in the 

above example

However, the features 

defines so far would not 

allow for distinguishing the 

above node labelling
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Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
r homophily (top) and structural equivalence(bottom).
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Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label
In the multi-label setting, every node is assigned

oneor morelabelsfrom a set L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is

to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label

on the following datasets:

BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.

Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.

Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome amiliar that is, bloggers
that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-

protein interaction network also exhibit both types of equivalences.

For example, they exhibit structural equivalencewhen proteins per-
form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedges exist between words

cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOStagsdue to syntactic grammar rules such as

determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and the relativeperformance

Node features defined so 

far would allow to 

distinguish nodes in the 

above example

However, the features 

defines so far would not 

allow for distinguishing the 

above node labelling
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Link-level Task

The task is to predict new links based on the 
existing links.
At test time, node pairs (with no existing links) 
are ranked, and top node pairs are predicted.
The key is to design features for a pair of nodes.
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Link-level Features: Quick Overview

Distance-based feature
Local neighborhood overlap
Global neighborhood overlap
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Link-level Features: Quick Overview

28

Distance-based features:

Uses the shortest path length between two nodes 
but does not capture how neighborhood overlaps.

Local neighborhood overlap:

Captures how many neighboring nodes are shared 
by two nodes.

Becomes zero when no neighbor nodes are shared.

Global neighborhood overlap:

Uses global graph structure to score two nodes.

Katz index counts #walks of all lengths between two 
nodes.
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Link-level Features: Quick Overview

29

Distance-based features:

Uses the shortest path length between two nodes 
but does not capture how neighborhood overlaps.

Local neighborhood overlap:

Captures how many neighboring nodes are shared 
by two nodes.

Becomes zero when no neighbor nodes are shared.

Global neighborhood overlap:

Uses global graph structure to score two nodes.

Katz index counts #walks of all lengths between two 
nodes.
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Link-level Features: Quick Overview

30

Distance-based features:

Uses the shortest path length between two nodes 
but does not capture how neighborhood overlaps.

Local neighborhood overlap:

Captures how many neighboring nodes are shared 
by two nodes.

Becomes zero when no neighbor nodes are shared.

Global neighborhood overlap:

Uses global graph structure to score two nodes.

Katz index counts #walks of all lengths between two 
nodes.
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Graph-level Features

Goal: We want features that characterize the 
structure of an entire graph.

For example:
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Graph-level Features

32

Goal: Design graph feature vector 
Key idea: Bag-of-Words (BoW) for a graph

Recall: BoW simply uses the word counts as 
features for documents (no ordering considered).

Naïve extension to a graph: Regard nodes as words.

Since both graphs have 4 red nodes, we get the 

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

= 



Graph-level Features

What if we use Bag of node degrees?
Deg1:      Deg2:     Deg3: 

Both Graphlet Kernel and Weisfeiler-Lehman 
(WL) Kernel use Bag-of-* representation of 
graph, where * is more sophisticated than 
node degrees!
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= count(        ) = [1, 2, 1] 

= count(        ) = [0, 2, 2] 

Obtains different features 

for different graphs!
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Graph-level Features: Graphlet Features

34

Key idea: Count the number of different 
graphlets in a graph.

Note: Definition of graphlets here is slightly 
different from the node-level features. 

The two differences are:
Nodes in graphlets here do not need to be connected (allows for 
isolated nodes)

The graphlets here are not rooted.

Examples in the next slide illustrate this.
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Given graph , and a graphlet list 
, define the graphlet count 

vector as

for .
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Graph-level Features: Graphlet Features

35

Example for = 3.
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Graph-level Features: Graphlet Features

36

Example for = 3.
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- Limitations: Counting graphlets is expensive!

- More advanced methods: color refinement, etc.



Summary so far: feature engineering

● Node-level:

◯ Node degree, centrality, clustering coefficient, graphlets

● Link-level:

◯ Distance-based feature

◯ Local/global neighborhood overlap

● Graph-level:

◯ Graphlet kernel

37
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Input 

Graph

Structured 

Features

Learning 

Algorithm  

Downstream 

prediction task
Feature engineering
(node-level, edge-level, graph-

level features)

Given an input graph, extract node, link 
and graph-level features, learn a model 
(SVM, neural network, etc.) that maps 
features to labels.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu2/16/2023
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Graph Representation Learning

3

Input 

Graph

Structured 

Features

Learning 

Algorithm  
Prediction

Downstream 

prediction task

Feature 

Engineering

Representation Learning --

Automatically

learn the features

Graph Representation Learning alleviates 
the need to do feature engineering every 
single time.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu2/16/2023
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Graph Representation Learning

39

Goal: Efficient task-independent feature 
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

vectornode

Feature representation, 

embedding
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Node Embedding

40

Task: Map nodes into an embedding space

Similarity of embeddings between nodes indicates 
their similarity in the network. For example:

Both nodes are close to each other (connected by an edge)

Encode network information

Potentially used for many downstream predictions

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5
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Node classification

Link prediction
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Example Node Embedding

41

Karate Club network:

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Example

Zachary s Karate Network:

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.



Node Embedding: Setup

Assume we have a graph G:

V is the vertex set.

A is the adjacency matrix (assume binary).

For simplicity: No node features or extra 
information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 82/16/2023
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0111

1000

1001

1010

A
V: {1, 2, 3, 4}
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Node Embedding

Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 92/16/2023
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Node Embedding

44

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Goal:

Need to define!

2/16/2023
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Node Embedding: Key Components

Encoder: maps each node to a low-dimensional 
vector

Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of and in 
the original network

dot product between node 
embeddings

2/16/2023

Decoder

node in the input graph

d-dimensional 
embedding
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“Shallow” Encoding

Simplest encoding approach: Encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node 

embedding [what we learn / 

optimize]

indicator vector, all zeroes 
except a one in column 

indicating node v

2/16/2023
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“Shallow” Encoding

47

Simplest encoding approach: encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Dimension/size 

of embeddings

one column per node 

embedding 

matrix

embedding vector for a 

specific node
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“Shallow” Encoding

48

Simplest encoding approach: Encoder is just an 
embedding-lookup

Each node is assigned a unique 
embedding vector

(i.e., we directly optimize 
the embedding of each node)

Many methods: DeepWalk, node2vec

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15



Summary

Encoder + Decoder Framework

Shallow encoder: embedding lookup

Parameters to optimize: which contains node 
embeddings for all nodes 

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize for node pairs 
that are similar

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16
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Discussion: How to Define Node Similarity?

Key choice of methods is how they define node 
similarity.

Should two nodes have a similar embedding if 
they

are linked?

share neighbors?

We will now learn node similarity definition that uses 
random walks, and how to optimize embeddings for 
such a similarity measure.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17
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Questions?
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