
DSC250: Advanced Data Mining

Graph Mining

Zhiting Hu

Lecture 10, Feb 6, 2025

Outline

● Graph features

● Graph representation learning

● Presentation

◯ Lila Horwitz: “expainable AI and LIME”

2

Graph is everywhere

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
2/16/2023

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

3

Graph is everywhere

4Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

2/16/2023

Social Networks
Image credit: Medium

Networks of Neurons

Image credit: The Conversation

Internet

Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

Graph is everywhere

5
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes

Image credit: Wikipedia

Code Graphs

Image credit: ResearchGate

Molecules

Image credit: MDPI

Scene Graphs

Image credit: math.hws.edu

Regulatory Networks

Image credit: ese.wustl.edu

2/16/2023

Tasks on Graph

Node-level prediction
Link-level prediction
Graph-level prediction

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

C

A

B

D E

H

F

G

Link-level

?

Node-level?

?

Graph-level

6

Getting Features for Nodes/Links/Graphs
Design features for nodes/links/graphs
Obtain features for all training data

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

C

A

B

D E

H

F

G

Node features

Graph features
Link features

7

Node-level Tasks

13

? ?

?
?

?

Machine

Learning

Node classification

ML needs features.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

8

Node-level Features

9

Goal: Characterize the structure and position of
a node in the network:

Node degree

Node centrality

Clustering coefficient

Graphlets

2/16/2023 14Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Node feature

Node-level Features (1): Node Degree

10

The degree of node is the number of
edges (neighboring nodes) the node has.
Treats all neighboring nodes equally.

2/16/2023 15Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Node-level Features (2): Node Centrality

11

Node degree counts the neighboring nodes
without capturing their importance.
Node centrality takes the node importance
in a graph into account
Different ways to model importance:

Engienvector centrality

Betweenness centrality

Closeness centrality

2/16/2023 16Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Eigenvector centrality

Node-level Features (2): Node Centrality

12

Eigenvector centrality:

A node is important if surrounded by important
neighboring nodes .

We model the centrality of node as the sum of
the centrality of neighboring nodes:

Notice that the above equation models centrality
in a recursive manner. How do we solve it?

2/16/2023 17Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

is normalization constant (it will turn

out to be the largest eigenvalue of A)

Node-level Features (2): Node Centrality

13

Eigenvector centrality:

A node is important if surrounded by important
neighboring nodes .

We model the centrality of node as the sum of
the centrality of neighboring nodes:

Notice that the above equation models centrality
in a recursive manner. How do we solve it?

2/16/2023 17Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

is normalization constant (it will turn

out to be the largest eigenvalue of A)

Node-level Features (2): Node Centrality

Eigenvector centrality:
Rewrite the recursive equation in the matrix form.

We see that centrality is the eigenvector of !

The largest eigenvalue is always positive and
unique (by Perron-Frobenius Theorem).

The eigenvector corresponding to is
used for centrality.

2/16/2023 18Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

B

C

D I
J

K

: Adjacency matrix

if

: Centrality vector

: Eigenvalue

is normalization const

(largest eigenvalue of A)

14

Node-level Features (2): Node Centrality
Betweenness centrality:

A node is important if it lies on many shortest
paths between other nodes.

Example:

2/16/2023 19Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E
(A-C-B, A-C-D, A-C-D-E)

(A-C-D-E, B-D-E, C-D-E)

15

Node-level Features (2): Node Centrality

Closeness centrality:

A node is important if it has small shortest path
lengths to all other nodes.

Example:

2/16/2023 20Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

(A-C-B, A-C, A-C-D, A-C-D-E)

(D-C-A, D-B, D-C, D-E)

16

Node-level Features (3): Clustering Coefficient

Measures how connected neighboring
nodes are:

Examples:

2/16/2023 21Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

#(node pairs among neighboring nodes)
In our examples below the denominator is 6 (4 choose 2).

17

Node-level Features (4): Graphlets

Observation: Clustering coefficient counts the
#(triangles) in the ego-network

We can generalize the above by counting
#(pre-specified subgraphs, i.e., graphlets).

2/16/2023 22Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

3 triangles (out of 6 node triplets)

18

Node-level Features (4): Graphlets

Goal: Describe network structure around node

Graphlets are small subgraphs that describe the
structure of node

Analogy:
Degree counts #(edges) that a node touches
Clustering coefficient counts #(triangles) that a
node touches.
Graphlet Degree Vector (GDV): Graphlet-base
features for nodes

GDV counts #(graphlets) that a node touches
2/16/2023 23Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

E

19

Node-level Features (4): Graphlets

20

Graphlet Degree Vector (GDV): A count
vector of graphlets rooted at a given node.
Example:

2/16/2023 27Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Pedro Ribeiro

Graphlet Degree Vector

An automorphism orbit takes into account the
symmetries of the graph

The graphlet degree vector is a feature vector with
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism orbit takes into account the
symmetries of the graph

The graphlet degree vector is a feature vector with
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism orbit takes into account the
symmetries of the graph

The graphlet degree vector is a feature vector with
the frequency of the node in each orbit position

Possible graphlets on up to 3 nodes

GDV of node :

[2,1,0,2]

Graphlet instances of node u:

Node-level Features: Summary

We have introduced different ways to obtain
node features.
They can be categorized as:

Importance-based features:

Node degree

Different node centrality measures

Structure-based features:

Node degree

Clustering coefficient

Graphlet count vector

2/16/2023 28Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

21

Node-level Features: Summary

22

Importance-based features: capture the
importance of a node in a graph

Node degree:

Simply counts the number of neighboring nodes

Node centrality:

Models importance of neighboring nodes in a graph

Different modeling choices: eigenvector centrality,
betweenness centrality, closeness centrality

Useful for predicting influential nodes in a graph

Example: predicting celebrity users in a social
network

2/16/2023 29Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Node-level Features: Summary

23

Structure-based features: Capture topological
properties of local neighborhood around a node.

Node degree:
Counts the number of neighboring nodes

Clustering coefficient:
Measures how connected neighboring nodes are

Graphlet degree vector:
Counts the occurrences of different graphlets

Useful for predicting a particular role a node
plays in a graph:

Example: Predicting protein functionality in a
protein-protein interaction network.

2/16/2023 30Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Node-level Features: Discussion

24

Different ways to label nodes of the network:

31

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
r homophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE

to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison

with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-

ity since it involves matrix factorization, our experiments stand out

from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asan example, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling to approximate thesoftmax probabilities

with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inef when compared with neg-

ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thede facto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-

ical values used for DeepWalk and LINE. , d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically

with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274

LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-

rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label
In the multi-label setting, every node is assigned

oneor morelabels from a set L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label

on the following datasets:

BlogCatalog [44]: This is a network of social relationships

of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.

Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent

biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.
Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the million bytes of the

Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural

equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome amiliar that is, bloggers

that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.

For example, they exhibit structural equivalencewhen proteins per-

form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedges exist between words

cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOS tagsdue to syntactic grammar rules such as

determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is

split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and the relativeperformance

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors

r homophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-

ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we

discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling to approximate thesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inef when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity

for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. , d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically
with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label
In the multi-label setting, every node is assigned

oneor morelabelsfrom a set L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is

to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label

on the following datasets:

BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.

Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.

Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome amiliar that is, bloggers
that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-

protein interaction network also exhibit both types of equivalences.

For example, they exhibit structural equivalencewhen proteins per-
form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedges exist between words

cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOStagsdue to syntactic grammar rules such as

determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and the relativeperformance

Node features defined so

far would allow to

distinguish nodes in the

above example

However, the features

defines so far would not

allow for distinguishing the

above node labelling

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Node-level Features: Discussion

25

Different ways to label nodes of the network:

31

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
r homophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE

to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison

with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-

ity since it involves matrix factorization, our experiments stand out

from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asan example, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling to approximate thesoftmax probabilities

with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inef when compared with neg-

ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thede facto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-

ical values used for DeepWalk and LINE. , d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically

with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274

LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-

rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label
In the multi-label setting, every node is assigned

oneor morelabels from a set L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label

on the following datasets:

BlogCatalog [44]: This is a network of social relationships

of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.

Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent

biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.
Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the million bytes of the

Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural

equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome amiliar that is, bloggers

that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.

For example, they exhibit structural equivalencewhen proteins per-

form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedges exist between words

cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOS tagsdue to syntactic grammar rules such as

determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is

split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and the relativeperformance

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors

r homophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-

ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we

discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling to approximate thesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inef when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity

for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. , d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically
with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label
In the multi-label setting, every node is assigned

oneor morelabelsfrom a set L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is

to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label

on the following datasets:

BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.

Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.

Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome amiliar that is, bloggers
that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-

protein interaction network also exhibit both types of equivalences.

For example, they exhibit structural equivalencewhen proteins per-
form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedges exist between words

cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOStagsdue to syntactic grammar rules such as

determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and the relativeperformance

Node features defined so

far would allow to

distinguish nodes in the

above example

However, the features

defines so far would not

allow for distinguishing the

above node labelling

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

?

Link-level Task

The task is to predict new links based on the
existing links.
At test time, node pairs (with no existing links)
are ranked, and top node pairs are predicted.
The key is to design features for a pair of nodes.

2/16/2023 33Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

?

?

26

Link-level Features: Quick Overview

Distance-based feature
Local neighborhood overlap
Global neighborhood overlap

2/16/2023 36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Link feature

27

Link-level Features: Quick Overview

28

Distance-based features:

Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

Local neighborhood overlap:

Captures how many neighboring nodes are shared
by two nodes.

Becomes zero when no neighbor nodes are shared.

Global neighborhood overlap:

Uses global graph structure to score two nodes.

Katz index counts #walks of all lengths between two
nodes.

2/16/2023 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Link-level Features: Quick Overview

29

Distance-based features:

Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

Local neighborhood overlap:

Captures how many neighboring nodes are shared
by two nodes.

Becomes zero when no neighbor nodes are shared.

Global neighborhood overlap:

Uses global graph structure to score two nodes.

Katz index counts #walks of all lengths between two
nodes.

2/16/2023 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Link-level Features: Quick Overview

30

Distance-based features:

Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

Local neighborhood overlap:

Captures how many neighboring nodes are shared
by two nodes.

Becomes zero when no neighbor nodes are shared.

Global neighborhood overlap:

Uses global graph structure to score two nodes.

Katz index counts #walks of all lengths between two
nodes.

2/16/2023 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Graph-level Features

Goal: We want features that characterize the
structure of an entire graph.

For example:

2/16/2023 47Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

31

Graph-level Features

32

Goal: Design graph feature vector
Key idea: Bag-of-Words (BoW) for a graph

Recall: BoW simply uses the word counts as
features for documents (no ordering considered).

Naïve extension to a graph: Regard nodes as words.

Since both graphs have 4 red nodes, we get the

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

=

Graph-level Features

What if we use Bag of node degrees?
Deg1: Deg2: Deg3:

Both Graphlet Kernel and Weisfeiler-Lehman
(WL) Kernel use Bag-of-* representation of
graph, where * is more sophisticated than
node degrees!

2/16/2023 51Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

= count() = [1, 2, 1]

= count() = [0, 2, 2]

Obtains different features

for different graphs!

33

Graph-level Features: Graphlet Features

34

Key idea: Count the number of different
graphlets in a graph.

Note: Definition of graphlets here is slightly
different from the node-level features.

The two differences are:
Nodes in graphlets here do not need to be connected (allows for
isolated nodes)

The graphlets here are not rooted.

Examples in the next slide illustrate this.

2/16/2023 52Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Given graph , and a graphlet list
, define the graphlet count

vector as

for .

2/16/2023 54Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Graph-level Features: Graphlet Features

35

Example for = 3.

2/16/2023 55Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Graph-level Features: Graphlet Features

36

Example for = 3.

2/16/2023 55Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

- Limitations: Counting graphlets is expensive!

- More advanced methods: color refinement, etc.

Summary so far: feature engineering

● Node-level:

◯ Node degree, centrality, clustering coefficient, graphlets

● Link-level:

◯ Distance-based feature

◯ Local/global neighborhood overlap

● Graph-level:

◯ Graphlet kernel

37

2

Input

Graph

Structured

Features

Learning

Algorithm

Downstream

prediction task
Feature engineering
(node-level, edge-level, graph-

level features)

Given an input graph, extract node, link
and graph-level features, learn a model
(SVM, neural network, etc.) that maps
features to labels.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu2/16/2023

Prediction

Graph Representation Learning

3

Input

Graph

Structured

Features

Learning

Algorithm
Prediction

Downstream

prediction task

Feature

Engineering

Representation Learning --

Automatically

learn the features

Graph Representation Learning alleviates
the need to do feature engineering every
single time.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu2/16/2023

38

Graph Representation Learning

39

Goal: Efficient task-independent feature
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

vectornode

Feature representation,

embedding

2/16/2023

Node Embedding

40

Task: Map nodes into an embedding space

Similarity of embeddings between nodes indicates
their similarity in the network. For example:

Both nodes are close to each other (connected by an edge)

Encode network information

Potentially used for many downstream predictions

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Vec

embeddings

Node classification

Link prediction

Graph classification

Anomalous node detection

Clustering

Tasks

Example Node Embedding

41

Karate Club network:

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Example

Zachary s Karate Network:

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.

Node Embedding: Setup

Assume we have a graph G:

V is the vertex set.

A is the adjacency matrix (assume binary).

For simplicity: No node features or extra
information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 82/16/2023

1

4

3

2

0111

1000

1001

1010

A
V: {1, 2, 3, 4}

42

Node Embedding

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 92/16/2023
43

Node Embedding

44

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Goal:

Need to define!

2/16/2023

in the original network Similarity of the embedding

Node Embedding: Key Components

Encoder: maps each node to a low-dimensional
vector

Similarity function: specifies how the
relationships in vector space map to the
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of and in
the original network

dot product between node
embeddings

2/16/2023

Decoder

node in the input graph

d-dimensional
embedding

45

“Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node

embedding [what we learn /

optimize]

indicator vector, all zeroes
except a one in column

indicating node v

2/16/2023

46

“Shallow” Encoding

47

Simplest encoding approach: encoder is just an
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Dimension/size

of embeddings

one column per node

embedding

matrix

embedding vector for a

specific node

2/16/2023

“Shallow” Encoding

48

Simplest encoding approach: Encoder is just an
embedding-lookup

Each node is assigned a unique
embedding vector

(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

Summary

Encoder + Decoder Framework

Shallow encoder: embedding lookup

Parameters to optimize: which contains node
embeddings for all nodes

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize for node pairs
that are similar

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

49

Discussion: How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if
they

are linked?

share neighbors?

We will now learn node similarity definition that uses
random walks, and how to optimize embeddings for
such a similarity measure.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

50

Questions?

	Slide 1: DSC250: Advanced Data Mining Graph Mining
	Slide 2: Outline
	Slide 3: Graph is everywhere
	Slide 4: Graph is everywhere
	Slide 5: Graph is everywhere
	Slide 6: Tasks on Graph
	Slide 7: Getting Features for Nodes/Links/Graphs
	Slide 8: Node-level Tasks
	Slide 9: Node-level Features
	Slide 10: Node-level Features (1): Node Degree
	Slide 11: Node-level Features (2): Node Centrality
	Slide 12: Node-level Features (2): Node Centrality
	Slide 13: Node-level Features (2): Node Centrality
	Slide 14: Node-level Features (2): Node Centrality
	Slide 15: Node-level Features (2): Node Centrality
	Slide 16: Node-level Features (2): Node Centrality
	Slide 17: Node-level Features (3): Clustering Coefficient
	Slide 18: Node-level Features (4): Graphlets
	Slide 19: Node-level Features (4): Graphlets
	Slide 20: Node-level Features (4): Graphlets
	Slide 21: Node-level Features: Summary
	Slide 22: Node-level Features: Summary
	Slide 23: Node-level Features: Summary
	Slide 24: Node-level Features: Discussion
	Slide 25: Node-level Features: Discussion
	Slide 26: Link-level Task
	Slide 27: Link-level Features: Quick Overview
	Slide 28: Link-level Features: Quick Overview
	Slide 29: Link-level Features: Quick Overview
	Slide 30: Link-level Features: Quick Overview
	Slide 31: Graph-level Features
	Slide 32: Graph-level Features
	Slide 33: Graph-level Features
	Slide 34: Graph-level Features: Graphlet Features
	Slide 35: Graph-level Features: Graphlet Features
	Slide 36: Graph-level Features: Graphlet Features
	Slide 37: Summary so far: feature engineering
	Slide 38: Graph Representation Learning
	Slide 39: Graph Representation Learning
	Slide 40: Node Embedding
	Slide 41: Example Node Embedding
	Slide 42: Node Embedding: Setup
	Slide 43: Node Embedding
	Slide 44: Node Embedding
	Slide 45: Node Embedding: Key Components
	Slide 46: “Shallow” Encoding
	Slide 47: “Shallow” Encoding
	Slide 48: “Shallow” Encoding
	Slide 49: Summary
	Slide 50: Discussion: How to Define Node Similarity?
	Slide 51: Questions?

