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Outline: Enhancing LLMs

e Richer learning mechanisms

o0 Learning with Embodied Experiences

o Social Learning
e Multi-modal capabilities
e Latent-space reasoning

e Agent models with external augmentations (e.g., tools)



Latent-space reasoning

e What's the best space for carrying out reasoning?
O0 Natural language space?
O Raw sensory space (e.g., video)?
O Learned latent space?

= which fuses information of different observed modalities



Latent-space reasoning

e What's the best space for carrying out reasoning?
O0 Natural language space?
O Raw sensory space (e.g., video)?
O Learned latent space?
= Single-level latent space?
= Multi-level latent spaces

e Multi-level latent spaces are needed for multi-granularity reasoning and control:
© Immediate next move
© Mid-term and long-term planning and thought experiments
o Control and reasoning at different granularity of visual, location, time, abstraction



Latent-space reasoning

e But how to learn a good latent space in the first place?

o Compact and well-structured representation of the world, enabling realistic generation and
consistent reconstruction

[Liv et al., 2024] Generating, Reconstructing, and Representing Discrete and Continuous Data: Generalized Diffusion with Learnable Encoding-Decoding
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[Liv et al., 2024] Generating, Reconstructing, and Representing Discrete and Continuous Data: Generalized Diffusion with Learnable Encoding-Decoding



Latent-space reasoning

e But how to learn a good latent space in the first place?

o Compact and well-structured representation of the world, enabling realistic generation and

consistent reconstruction

e Existing deep generative models
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Discussion

e No Free Lunch (NFL) theorem:

© No single machine learning algorithm is universally the best-performing algorithm for
all problems

o All algorithms perform equally well when their performance is averaged across all
possible problems

e Do generalist models (LLMs) violate this theorem?



Supervised Learning,
Unsupervised Learning



a comedy to brighten your day

Probabilistic Models: Why Probability? i
e The world is a very uncertain place Qgce%'a?ges
o “What will the weather be like today?” Weather

o “Will | like this movie2” man

e We often can’t prove something is true, but we can still ask how
likely different outcomes are or ask for the most likely
explanations

e Predictions need to have associated confidence
o Confidence -> probability

e Not all machine learning models are probabilistic

O ... but most of them have probabilistic interpretations

[CS60020, Bhattacharya; CSC2515, Wang] 11



Notations

e A random variable X represents outcomes or states of the world.

o We write p(Xy) to mean Probability(x = x;)

e Sample space: the space of all possible outcomes (may be discrete, continuous, or
mixed)
e p(x) is the probability mass (density) function
O Assigns a number to each point in sample space

© Non-negative, sums (integrates) to 1

O Intuitively: how often does X occur, how much do we believe in x.

[CSC2515, Wan(g] 12



Notations

e Joint distribution p(x,y)
e Conditional distribution p(y|x)

p(x,y)
p(x)

o p(ylx) =
e Expectation:
E[f ()] = ) () p()

or

E[f(x)] = j FOp () dx

13



Rules of Probability

e Sumrule

p(x)= 2 p(x,y) (Marginalize out y)

p(x) = EE Ep(xlaxza

X2 X3
e Product/chain rule

p(x,y)=p(y|x)p(x)
p(xla"'axN) = p(xl)p(xz | xl)"'p('xN | xl"'°9xN—1)

[CSC2515, Wang]
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Bayes’ Rule
_pxy)p(y)

p(x)

e This gives us a way of “reversing” conditional probabilities
e We call p(y) the “prior”, and p(y|x) the “posterior”

p(y|x)

e Ex: Bayes’ Rule in machine learning:
o D: data (evidence)

o 0: unknown quantities, such as model parameters, predictions

Likelihood: How likely is the
observed data under the

Posterior belief on the D (D | 9)1? (0) particular unknown quantities @
unknown quantities «—— P (9 |D) — (D) \
you see data D p Prior belief on the unknown

guantities before you see data D
[10-601B @ CMUJ] 15




Independence

e Two random variables are said to be independent iff their joint distribution
factors

p(x,y) = p(xX)p(y)

e Two random variables are conditionally independent given a third if they are
independent after conditioning on the third

p(x,y|z) = p(x|2)p(y|z)

[CSC2515, Wan(g] 16



Some common distributions - Gaussian distribution

e Gaussian distribution

(Multivariate)
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Some common distributions - Multinomial distribution

e Multinomial distribution

o Discrete random variable x that takes one of M values {1, ..., M}

o px=1i) = m 2 =1

o Qut of n independent trials, let k; be the number of times X = [ was observed

o The probability of observing a vector of occurrences k = [k, ..., ky] is given by the
multinomial distribution parametrized by

ki
p(klnan) — p(k13°°°3km|7-[13°“37tm3n) — kl'kz HT[
o E.g., describing a text document by the frequency of occurrence of every distinct word

o Forn =1, a.k.a. cq’regorical distribution

" px=ilm =
* Ink=[ky,.. kM] ki=1,andk; =0forallj#*i — a.k.a., one-hot representation of i

[CSC2515, Wang] 18



Entropy

e Shannon entropy H(p) = —z p(x)log p(x)
X

o The average level of "information", "surprise”, or "uncertainty" inherent to the variable
x's possible outcomes

22



KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two distributions p(x)
and g(x)

q(x)
p(x)

KL(q(0) [|p(x)) = ) q(x) log

O a.k.a. Relative entropy
o KL >= 0 (Jensen’s inequality) -> homework

O
= |f q is high and p is high in a region, then KL divergence is in this region.
= If q is high and p is low in a region, then KL divergence is in this region.
= |f g is low in a region, then KL divergence is in this region.

23



KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two distributions p(x)
and g(x)

q(x)
p(x)

KL(q(0) [|p(x)) = ) q(x) log

O a.k.a. Relative entropy
o KL >= 0 (Jensen’s inequality)
O Intuitively:
= |f q is high and p is high, then we are happy (i.e. low KL divergence)
= If q is high and p is low then we pay a price (i.e. high KL divergence).
= |f q is low then we don’t care (i.e. also low KL divergence, regardless of p)
© not a true “distance”:
= not commutative (symmetric) KL(p||q) ! = KL(q||p)

= doesn’t satisfy triangle inequality

24



Supervised Learning

e Model to be learned pg(x)
e Observe full data D = { x; }_,

O e.d., X; includes both input (e.g., image) and output (e.g., image label)
o D defines an empirical data distribution p(x)
= x~D © x~px)

e Maximum Likelihood Estimation (MLE) min — E, 50 [ log pg(x) ]

© The most classical learning algorithm 6

o Show that MLE is minimizing the KL divergence between the empirical
data distribution and the model distribution

25



Supervised Learning

e Model to be learned pg(x)
e Observe full data D = { x; }_,

O e.d., X; includes both input (e.g., image) and output (e.g., image label)
o D defines an empirical data distribution p(x)
= x~D © x~px)

e Maximum Likelihood Estimation (MLE)
© The most classical learning algorithm

mein _ [Ex~15(x) [ log pg (.X') ]

o Show that MLE is minimizing the KL divergence between the empirical
data distribution and the model distribution

KL@X) || po(x)) = —Ejn [ logpe(x) | + HB(x))

Cross entropy o



Unsupervised Learning Q

e Each data instance is partitioned into two parts: VAE
O observed variables x

O latent (unobserved) variables z

e Want to learn a model pg(x, z)

[Content adapted from CMU 10-708] 27



Latent (unobserved) variables

e A variable can be unobserved (latent) because:

O imaginary quantity: meant to provide some simplified and abstractive view of the data
generation process

= e.g., speech recognition models, mixture models, ...

Coocepr: a xiggle word
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Fig. 1.2 Isolated Word Problem
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

O imaginary quantity: meant to provide some simplified and abstractive view of the data
generation process

= e.g., speech recognition models, mixture models, ...

29



Latent (unobserved) variables

e A variable can be unobserved (latent) because:
O imaginary quantity: meant to provide some simplified and abstractive view of the data
generation process
= e.g., speech recognition models, mixture models, ...
o a real-world object (and /or phenomena), but difficult or impossible to measure
" e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

o a real-world object (and /or phenomena), but sometimes wasn’t measured, because of
faulty sensors, etc.

e Discrete latent variables can be used to partition/cluster data into sub- groups

e Continuous latent variables (factors) can be used for dimensionality reduction (e.g.,
factor analysis, etc.)

30



Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(xn ﬂ,Z) - ZkﬁkN(xa| /ukazk)
NN

mixture proportion  mixture component

0
X -3 -2 -1 0

e This model can be used for unsupervised clustering.

o This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.

31



Example: Gaussian Mixture Models (GMMs)

o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ (=, )"

e Consider a mixture of K Gaussian components: l

o X is a conditional Gaussian variable with a class-specific mean/covariance

1

1
27)"? ’Zk’yz exp{- 7 (x, - 1) 2 (x, 'ﬂk)}

p(xn |Z: zl,ﬂ,Z):

Parameters to be learned:

o The likelihood of a sample: .
mixture component

mixture proportion

w2 =Y p(z" =1|7)p(x,| 2" =1, 1, %) —
- Zzn Hk ((ﬂ.k )Zg N(x,: zukﬂEk)z:: ): Zk TN (x| 1y, 2 )

p(x,

32



Example: Gaussian Mixture Models (GMMs)

/J,Z) = Zk {Z.kN(xa! /ukazk)

e Consider a mixture of K Gaussian components: p(x,

e Recall MLE for completely observed data

© Data log-likelihood: (0;D) = long(Zn,x )= long(z | m)p(x, |z, ,u,0)

_zlogHﬂk +ZlogHN(xn,,uk,o-)
o MLE: —ZZZ"logﬂk Zzzn —= (%, -1)' +C

Ty g = argmax ¢ (0; D),
Z X

n n R

/&k,MLE =argmax ¢ (0,D) — J&k,MLE =

Oy e = argmax ¢ (0;D)

e What if we do not know z,,2 23



Why is Learning Harder?

e Complete log likelihood: if both X and zZ can be observed, then

£.(0;x,z) =logp(x,z|0) = logp(z|0,) + logp(x|z,6,)

0 Decomposes into a sum of factors, the parameter for each factor can be estimated
separately

e But given that Z is not observed, €.(0; X, Z) is a random quantity, cannot be
maximized directly

e Incomplete (or marginal) log likelihood: with Z unobserved, our objective
becomes the log of a marginal probability:

£(0;x) =logp(x|0) = logz p(x,z|0)

o All parameters become coupled together

O In other models when Z is complex (continuous) variables (as we’ll see later),

marginalization over Z is intractable.
34



Questions?
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