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Outline: Enhancing LLMs

● Richer learning mechanisms

◯ Learning with Embodied Experiences

◯ Social Learning

● Multi-modal capabilities 

● Latent-space reasoning

● Agent models with external augmentations (e.g., tools)
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Outline: Enhancing LLMs

● Richer learning mechanisms

◯ Learning with Embodied Experiences

▪ Where to get experiences

▪ How to get experiences

▪ How to learn with the experiences
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Learning from Embodied Experiences

● Goal-oriented

◯ Collecting experiences by completing a given task

4[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

Goal: Goal: Goal:



Learning from Embodied Experiences
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Monte Carlo Tree Search (MCTS)

Goal:
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(2) How to get experiences
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Learning from Embodied Experiences
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Monte Carlo Tree Search (MCTS)

Goal:

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

● Goal-oriented

◯ Collecting experiences by completing a given task

Convert experiences 

into training data 

(question answering)



Learning from Embodied Experiences

● Auto curriculum

◯ Proposing new tasks automatically

7[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

• Collect experiences by 

completing the task

• Learn with the experiences 

Prompt GPT-4 to generate new tasks



Learning from Embodied Experiences

● Auto curriculum

◯ Proposing new tasks automatically

8[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

Examples:
Prompt GPT-4 to generate new tasks



Learning from Embodied Experiences

● Random Exploration
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Child learns about different textures and sensations by 

randomly picking up various objects 

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences



Learning from Embodied Experiences

● Random Exploration
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● Random Exploration
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(1) Where to get experiences
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(3) How to learn w/ experiences
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Convert experiences 
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Learning from Embodied Experiences

● Finetuning LMs with the experiences
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

Training 

data



Learning from Embodied Experiences

● Finetuning LMs with the experiences

● Also wanting to preserve the original language capabilities of LMs
◯ Instead of overfitting to the finetuning data

◯ Solution: continual learning with EWC (Elastic Weight Consolidation)
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Training 

data
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LMs
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences
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Fisher matrix to measure the 

importance of each weight for 

original language tasks



Learning from Embodied Experiences
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Fisher matrix to measure the 

importance of each weight for 

original language tasks

Conventional 

finetuning 

objective Regularizor to preserve 

important weights

● Finetuning LMs with the experiences

● Also wanting to preserve the original language capabilities of 
LMs
◯ Instead of overfitting to the finetuning data

◯ Solution: continual learning with EWC (Elastic Weight Consolidation)



Learning from Embodied Experiences

● Finetuning LMs with the experiences

● Also wanting to preserve the original language capabilities of 
LMs

◯ Instead of overfitting to the finetuning data

◯ Solution: continual learning with EWC (Elastic Weight 
Consolidation)
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Fisher matrix to measure the 

importance of each weight for 

original language tasks

Conventional 

finetuning objective

Regularizor to preserve 

important weights

Finetuned GPT-J-6B

outperforms ChatGPT on 7

out of 11 tasks



Learning from Embodied Experiences

● Updating external memory

◯ Instead of changing LM parameters
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]
Figure 2: VOYAGER consists of three key components: an automatic curriculum for open-ended
exploration, a skill library for increasingly complex behaviors, and an iterative prompting mechanism
that uses code as action space.

1 Introduction

Building generally capable embodied agents that continuously explore, plan, and develop new skills
in open-ended worlds is a grand challenge for the AI community [1–5]. Classical approaches
employ reinforcement learning (RL) [6, 7] and imitation learning [8–10] that operate on primitive
actions, which could be challenging for systematic exploration [11–15], interpretability [16–18], and
generalization [19–21]. Recent advances in large language model (LLM) based agents harness the
world knowledge encapsulated in pre-trained LLMs to generate consistent action plans or executable
policies [16, 22, 19]. They are applied to embodied tasks like games and robotics [23–27], as well as
NLP tasks without embodiment [28–30]. However, these agents are not lifelong learners that can
progressively acquire, update, accumulate, and transfer knowledge over extended time spans [31, 32].

Let us consider Minecraft as an example. Unlike most other games studied in AI [33, 34, 10],
Minecraft does not impose apredefined end goal or a fixed storyline but rather provides a unique
playground with endless possibilities [23]. Minecraft requires players to explore vast, procedurally
generated 3D terrains and unlock a tech tree using gathered resources. Human players typically start
by learning the basics, such asmining wood and cooking food, before advancing to more complex
tasks likecombating monstersand crafting diamond tools. Wearguethat an effective lifelong learning
agent should have similar capabilities as human players: (1) propose suitable tasks based on its
current skill level and world state, e.g., learn to harvest sand and cactus before iron if it finds itself in
adesert rather than a forest; (2) refineskills based on environmental feedback and commit mastered
skills to memory for future reuse in similar situations (e.g. fighting zombies is similar to fighting
spiders); (3) continually explore the wor ld and seek out new tasks in a self-driven manner.

Towards these goals, we introduce VOYAGER, the first LLM-powered embodied lifelong learning
agent to drive exploration, master a wide range of skills, and make new discoveries continually
without human intervention in Minecraft. VOYAGER is made possible through three key modules
(Fig. 2): 1) an automatic cur r iculum that maximizes exploration; 2) a skill library for storing
and retrieving complex behaviors; and 3) a new iterative prompting mechanism that generates
executable code for embodied control. We opt to use code as the action space instead of low-level
motor commands because programs can naturally represent temporally extended and compositional
actions [16, 22], which are essential for many long-horizon tasks in Minecraft. VOYAGER interacts
with ablackbox LLM (GPT-4 [35]) through prompting and in-context learning [36–38]. Our approach
bypasses the need for model parameter access and explicit gradient-based training or finetuning.

Morespecifically, VOYAGER attempts to solve progressively harder tasks proposed by the automatic
curr iculum, which takes into account the exploration progress and theagent’s state. The curriculum
is generated by GPT-4 based on the overarching goal of “discovering as many diverse things as
possible” . Thisapproach can beperceived asan in-context form of novelty search [39, 40]. VOYAGER

incrementally builds a skill library by storing the action programs that help solve a task successfully.
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● Updating external memory

◯ Instead of changing LM parameters
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(2) How to get experiences

(3) How to learn w/ experiences
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that uses code as action space.
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Summary: Learning with Embodied Experiences

● Where to get experiences

◯ Simulators (embodied env., OS, simulated websites, …)

● How to get experiences

◯ Goal-oriented planning

◯ Auto-curriculum

◯ Random exploration

● How to learn with the experiences

◯ Finetuning LMs while preserving original language capabilities: 

continual learning

◯ Updating external memory
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Outline: Enhancing LLMs

● Richer learning mechanisms

◯ Learning with Embodied Experiences

◯ Social Learning

● Multi-modal capabilities 

● Latent-space reasoning

● Agent models with external augmentations (e.g., tools)
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Social Learning

21

● Learn by observing, imitating, and interacting with other 
agents



Example: Learning Alignment with Interactions

22[Liu et al., 2023. Training Socially Aligned Language Models on Simulated Social Interactions]

Figure 2: We model the social interactions in SANDBOX with Back-Scatter. By considering the
collective feedback from peers, social agentsare ablebetter to align their responses to social values
through thorough communication. We also demonstrate how we construct three types of alignment
data—Imitation, Self-Critic, and Realignment—from the simulated interactions. In total, we con-
struct 169k datasamples for our alignment training.

3 APPROACH

3.1 SIMULATING SOCIAL INTERACTIONS IN SANDBOX

Our approach deviates from the conventional practice of adopting predefined rules akin to Super-
vised Fine Tuning (SFT) or solely depending on scalar rewards as seen in Reinforcement Learning
from Human Feedback (RLHF). Instead, wetake inspiration from theway humanslearn to navigate
social norms, a process inherently involving experiential learning and iterative refinement. There-
fore, we create SANDBOX, an innovative learning environment in which Language Model (LM)
based social agentscan interact and learn social alignment in amanner that mirrorshuman learning.
We encourage the emergence of social norms by instigating discussions on controversial societal
topics or risk-associated questions. Simultaneously, we introduce a latent rule as an incentive for
agents to refine their responses (shown in Figure 1), fostering improved alignment and impression
management. While our study focuses on social alignment, this rule can be adapted to suit varying
requirements. Further detailson the SANDBOX setup can be found in Appendix A.1.

We adopt a three-tiered method, termed Back-Scatter, to simulate social interactions among agents
(Figure2). Upon receiving asocietal question, thecentral agent generatesan initial response, which
is then shared with nearby agents for feedback. This feedback, comprising ratings and detailed ex-
planations, informs the central agent’s revisions to its initial response. We equip each agent with
a memory to keep track of their response history. Furthermore, we employ an embedding-based
semantic search to retrieverelevant Question-Answer (QA) pairs from thishistory, providing agents
with acontext that promotesconsistency with past opinions. Apart from thesesocial agents, wealso

4

The alignment problem :

?
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Sorry but I cannot help 

you with that…

Aligned response

Figure 2: We model the social interactions in SANDBOX with Back-Scatter. By considering the
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with acontext that promotesconsistency with past opinions. Apart from thesesocial agents, wealso
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Example: Learning Alignment with Interactions

24[Liu et al., 2023. Training Socially Aligned Language Models on Simulated Social Interactions]

Figure 1: Rather than incorporating an additional proxy model like RLHF, Stable Alignment es-
tablishes direct alignment between LMs and simulated social interactions. Fine-grained interaction
data is collected through a rule-guided simulated society, which includescollectiveratings, detailed
feedback, and “step-by-step” revised responses. In contrast to existing methods, Stable Alignment
effectively addresses instability and reward gaming concernsassociated with reward-based RL opti-
mization while reducing theneed for expensivehuman labeling in large-scaleSFT.

2023). Therefore, optimizing the LM based on this reward model could lead to reward gam-
ing (Krakovnaet al., 2020; Lehman et al., 2018) or tampering (Pan et al., 2022; Everitt et al., 2021),
where the LM systematically exploits themisspecified elementsof the reward (Kenton et al., 2021).
For instance, the LM may generate nonsensical and prolonged outputs to maximize rewards while
evading direct answers to controversial questions (Steinhardt, 2022).

In contrast to these methods, humans acquire social norms and values through social interac-
tions—we interact, receive feedback, and adjust our behaviors to create positive impressions. How-
ever, LMs are essentially trained in social isolation (Krishnaet al., 2022)—they neither experience
actual social activities firsthand nor receive iterative feedback for improvement. Instead, they often
recite predetermined “safe answers” such as “ I’m an AI language model, so I refuse to answer.”
without displaying theempathy or understanding typical of genuinesocial agents (Lee, 2021).

To address these limitations, we introducea novel alignment learning paradigm that enablesLMsto
benefit from simulated social interactions. We create a simulated human society, SANDBOX, com-
prising numerousLM-basedsocial agentsinteractingandwerecord their behaviors. Therecorded in-
teraction data isdistinct from traditional alignment data; it includesnot only aligned and misaligned
demonstrationsbut also collectiveratings, detailed feedback, and iteratively revised responses. Com-
pared to the reward modeling method, the use of offline simulation shifts the responsibility of pro-
viding accurate supervision onto autonomous social agents. These agents, guided by an incentive
(i.e., the SANDBOX Rule, asshown in Figure1 [c]), aim to improvetheir alignment by refining their

2

Conventional learning approaches:
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Learning from richer interactions with other LLMs
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Example: Learning Alignment with Interactions

27[Liu et al., 2023. Training Socially Aligned Language Models on Simulated Social Interactions]

Figure 2: We model the social interactions in SANDBOX with Back-Scatter. By considering the
collective feedback from peers, social agentsare ablebetter to align their responses to social values
through thorough communication. We also demonstrate how we construct three types of alignment
data—Imitation, Self-Critic, and Realignment—from the simulated interactions. In total, we con-
struct 169k datasamples for our alignment training.

3 APPROACH

3.1 SIMULATING SOCIAL INTERACTIONS IN SANDBOX

Our approach deviates from the conventional practice of adopting predefined rules akin to Super-
vised Fine Tuning (SFT) or solely depending on scalar rewards as seen in Reinforcement Learning
from Human Feedback (RLHF). Instead, wetake inspiration from theway humanslearn to navigate
social norms, a process inherently involving experiential learning and iterative refinement. There-
fore, we create SANDBOX, an innovative learning environment in which Language Model (LM)
based social agentscan interact and learn social alignment in amanner that mirrorshuman learning.
We encourage the emergence of social norms by instigating discussions on controversial societal
topics or risk-associated questions. Simultaneously, we introduce a latent rule as an incentive for
agents to refine their responses (shown in Figure 1), fostering improved alignment and impression
management. While our study focuses on social alignment, this rule can be adapted to suit varying
requirements. Further detailson the SANDBOX setup can be found in Appendix A.1.

We adopt a three-tiered method, termed Back-Scatter, to simulate social interactions among agents
(Figure2). Upon receiving asocietal question, thecentral agent generatesan initial response, which
is then shared with nearby agents for feedback. This feedback, comprising ratings and detailed ex-
planations, informs the central agent’s revisions to its initial response. We equip each agent with
a memory to keep track of their response history. Furthermore, we employ an embedding-based
semantic search to retrieverelevant Question-Answer (QA) pairs from thishistory, providing agents
with acontext that promotesconsistency with past opinions. Apart from thesesocial agents, wealso
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Learning from richer interactions with other LLMs



Outline: Enhancing LLMs

● Richer learning mechanisms

◯ Learning with Embodied Experiences

◯ Social Learning

● Multi-modal capabilities 

● Latent-space reasoning

● Agent models with external augmentations (e.g., tools)

28



● Language is often not the most efficient medium to describe all information during 
reasoning

● Other sensory modalities (e.g., images/videos) can be more efficient

29

In auto-driving: describe the street state

• Vehicles’ locations & movements

Pour liquid into a glass without spilling 

• Viscosity & volume of the fluid 

• shape & position of the container

Inefficiency of the language modality

Limitation II:



Existing Multi-Modal Models
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GPT-4V LLaVA [Liu et al., 2023. Visual Instruction Tuning]

Existing multi-modal models and limitations (i)

• Can understand images

• Cannot generate images for, e.g., describing a world state

(Others: Gemini, Flamingo, BLIP, …)



Existing Multi-Modal Models

31(Others: Emu, GILL, …)

Existing multi-modal models and limitations (ii)

• Can do interleaved generation of image and text

DreamLLM [Dong et al., 2023]



Existing Multi-Modal Models
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Existing multi-modal models and limitations (ii)

• Can do interleaved generation of image and text

DreamLLM [Dong et al., 2023]

Imagine you are a robot agent in the house … How would you walk through the house 

to grab the mobile phone …?

DreamLLM

...

I would look for the mobile phone on the table, as 

shown in the image.

…

I would then move closer to it and extend my 

robot arm to grab it, as shown in the image.



Existing Multi-Modal Models
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Existing multi-modal models and limitations (ii)

• Can do interleaved generation of image and text

• Generated images are not describing the same world consistently

DreamLLM [Dong et al., 2023]

Imagine you are a robot agent in the house … How would you walk through the house 

to grab the mobile phone …?

DreamLLM

...

I would look for the mobile phone on the table, as 

shown in the image.

…

I would then move closer to it and extend my 

robot arm to grab it, as shown in the image.

not the same 

phone



Existing Multi-Modal Models
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Existing multi-modal models and limitations (iii): Video Simulation Models

• Generate videos given actions

[Yang et al., 2023]



Existing Multi-Modal Models
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Existing multi-modal models and limitations (iii): Video Simulation Models

• Generate videos given actions

[Yang et al., 2023]



Existing Multi-Modal Models
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Existing multi-modal models and limitations (iii): Video Simulation Models

• Generate videos given actions

[Yang et al., 2023]

• A video diffusion model trained to predict future video 

frames given previous frames and an action

• Training data

• Simulated execution and renderings

• Real robot data

• Human activity videos

• Panorama scans

• Internet text-image data



Existing Multi-Modal Models
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Existing multi-modal models and limitations (iii): Video Simulation Models

• Generate videos given actions

Prompted with a couple of 

seconds of the same starting 

context. Then it can unroll 

multiple possible futures. 

[Hu, Russell, Yeo, et al., 2023]

GAIA-1 
for auto-driving 



Existing Multi-Modal Models
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Existing multi-modal models and limitations (iii): Video Simulation Models

• Generate videos given actions

Inject a natural language prompt 

“It’s night, and we have turned on our 

headlights. ”after three seconds.

[Hu, Russell, Yeo, et al., 2023]

GAIA-1 
for auto-driving 



Existing Multi-Modal Models
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Existing multi-modal models and limitations (iii): Video Simulation Models

• Generate videos given actions

• Not (yet) generalist models (v.s. LLMs): domain-specific states and actions

• Reasoning only in pixel space

GAIA-1 



Existing Multi-Modal Models
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Existing multi-modal models and limitations (iii): Text-to-video generation

• Generate videos given text prompts

(Others: Runway, Pika, …)

Prompt: “Several giant wooly 

mammoths approach treading 

through a snowy meadow, …”

Sora
by OpenAI 



Existing Multi-Modal Models
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Existing multi-modal models and limitations (iii): Text-to-video generation

• Generate videos given text prompts

• Limited length of reasoning (60s)

• Limited control with actions

• Reasoning only in pixel space

Prompt: “Several giant wooly 

mammoths approach treading 

through a snowy meadow, …”

Sora
by OpenAI 

(Others: Runway, Pika, …)



Existing Multi-Modal Models

Summary of existing works

● Multi-modal LMs (I)

◯ Can understand images

◯ Can not generate images for describing a world state

● Multi-modal LMs (II)

◯ Can do interleaved generation of image and text

◯ Not describing the same world consistently

● Video Simulation Models

◯ Generate videos given actions

◯ Not (yet) generalist models: domain-specific states/actions

◯ Reasoning only in pixel space

● Text-to-video Models

◯ Generate videos given text prompts

◯ Limited length of reasoning (60s)

◯ Limited control with actions

◯ Reasoning only in pixel space 42



What’s needed for a more general world model

1) Integrating different spaces for simulation / reasoning: text, video, ...

2) Generalist language capability (like LLMs) + generalist vision capability (video 
pretraining)

3) Real-time control of the simulation through action inputs

◯ Controllability allows to simulate many counterfactual worlds, and pick the best to actualize

45

Goal

Current state

Counterfactual worlds



What’s needed for a more general world model 

1) Integrating different spaces for simulation / reasoning: text, video, ...

2) Generalist language capability (like LLMs) + generalist vision capability (video 
pretraining)

3) Real-time control of the simulation through action inputs

46

www.world-model.ai

[Xiang*, Gu*, Liu*, et al., 2024]



Simulative reasoning beyond LM-based world models

What’s needed for a more general world model: 

1) Integrating different spaces for simulation / reasoning: text, video, ...

2) Generalist language capability (like LLMs) + generalist vision capability (video 
pretraining)

3) Real-time control of the simulation through action inputs
◯ Controllability allows to simulate many counterfactual worlds, and pick the best to actualize

47

www.world-model.ai

[Xiang*, Gu*, Liu*, et al., 2024]



1) Integrating different spaces for simulation / reasoning: text, video, ...

3) Real-time control of the simulation through action inputs

48

initial state 𝑠0 state 𝑠1 state 𝑠2 state 𝑠3

action 𝑎1: 

The car moves along 

the path

action 𝑎2: 

Explosions happen in 

background

action 𝑎3: 

The car continues moving 

forward

: stepping towards more general world models



1) Integrating different spaces for simulation / reasoning: text, video, ...

3) Real-time control of the simulation through action inputs
◯ Controllability allows to simulate many counterfactual worlds, and pick the best to actualize

49

Action planning for 

robots

: stepping towards more general world models



Questions?
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