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BERT

● BERT: A bidirectional model to extract contextual word embedding 



BERT: Pre-training Procedure

● Dataset:

◯ Wikipedia (2.5B words) + a collection of free ebooks (800M words)
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BERT: Pre-training Procedure

● Dataset:

◯ Wikipedia (2.5B words) + a collection of free ebooks (800M words)

● Training procedure

◯ masked language model (masked LM)

▪ Masks some percent of words from the input and has to reconstruct those words from context

◯ Two-sentence task

▪ To understand relationships between sentences

▪ Concatenate two sentences A and B and predict whether B actually comes after A in the 
original text
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BERT: Pre-training Procedure

● Two sentence 
task
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BERT: Downstream Fine-tuning 

● Use BERT for sentence classification
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BERT: Downstream Fine-tuning 
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BERT Results
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• Huge improvements over SOTA on 12 NLP task



SSL from Images, EX (I): masked autoencoder (MAE)

13[He et al., 2021: Masked Autoencoders Are Scalable Vision Learners]



SSL from Images, EX (I): masked autoencoder (MAE)

14[He et al., 2021: Masked Autoencoders Are Scalable Vision Learners]

Question: Why is this (75%) 

much larger than the mask rate 

in BERT (15%)?



SSL from Images, EX (II): relative positioning 

15[Courtesy: Zisserman “Self-supervised Learning”]



SSL from Images, EX (II): relative positioning 
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SSL from Images, EX (II): relative positioning 
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SSL from Images, EX (II): relative positioning 
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SSL from Images, EX (II): relative positioning 

19[Courtesy: Zisserman “Self-supervised Learning”]



SSL from Images, EX (III): colorization 

20[Courtesy: Zisserman “Self-supervised Learning”] Colorful Image Colorization, Zhang et al., ECCV 2016 



SSL from Images, EX (III): colorization 

21[Courtesy: Zisserman “Self-supervised Learning”] Colorful Image Colorization, Zhang et al., ECCV 2016 



SSL from Images, EX (IV): exemplar networks  

● Exemplar Networks (Dosovitskiy et al., 2014) 

● Perturb/distort image patches, e.g. by cropping and affine transformations 

● Train to classify these exemplars as same class 

22[Courtesy: Zisserman “Self-supervised Learning”]



SSL from Videos

Three example tasks: 

● Video sequence order 

◯ Sequential Verification: Is this a valid sequence? 

23[Courtesy: Zisserman “Self-supervised Learning”] Wei et al., 2018 Arrow of Time 



SSL from Videos

Three example tasks: 

● Video sequence order 

◯ Sequential Verification: Is this a valid sequence? 

● Video direction
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SSL from Videos

Three example tasks: 

● Video sequence order 

◯ Sequential Verification: Is this a valid sequence? 

● Video direction

◯ Predict if video playing forwards or backwards 

● Video tracking 

◯ Given a color video, colorize all frames of a gray scale version using a reference frame 

25[Courtesy: Zisserman “Self-supervised Learning”] Vondric  et al., 2018



Key Takeaways

● Self supervision learning

◯ Predicting any part of the observations given any available information

◯ The prediction task forces models to learn semantic representations

◯ Massive/unlimited data supervisions

● SSL for text:

◯ Language models: next word prediction

◯ BERT text representations: masked language model (MLM)

● SSL for images/videos:

◯ Various ways of defining the prediction task
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Enhancing LLM Training



LLMs Lack World and Agent Knowledge

As we discussed before:

28

… I can't determine 

the actual need for 

help …

GPT-4V

Does this person need help?

Limitation I:



LLMs Lack World and Agent Knowledge
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the actual need for 

help …
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Large Language (Vision) Models trained merely with large-scale text 

(vision) corpora lack fundamental real-world experience:

• tracking and interacting with objects

• understanding real-world physics and spatiotemporal relationships

• sensing and tracking the world states 

• recognizing other agents’ behaviors 

Limitation I:

As we discussed before:
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LLMs Lack World and Agent Knowledge
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… I can't determine 

the actual need for 

help …

GPT-4V

Does this person need help?

Limitation I:

Large Language (Vision) Models trained merely with large-scale text 

(vision) corpora lack fundamental real-world experience:

• tracking and interacting with objects

• understanding real-world physics and spatiotemporal relationships

• sensing and tracking the world states 

• recognizing other agents’ behaviors 

Need richer learning mechanisms!

• Embodied experiences

• Social learning

As we discussed before:



Inefficiency of the language modality

● Language is often not the most efficient medium to describe all 
information during reasoning

● Other modalities (e.g., images/videos) can be more efficient
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Limitation II:



Inefficiency of the language modality

● Language is often not the most efficient medium to describe all 
information during reasoning

● Other sensory modalities (e.g., images/videos) can be more 
efficient
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In auto-driving: describe the street scene

• Vehicles’ locations & movements

Pour liquid into a glass without spilling 

• Viscosity & volume of the fluid 

• shape & position of the container

Limitation II:



Inefficiency of the language modality

● Language is often not the most efficient medium to describe all 
information during reasoning

● Other modalities (e.g., images/videos) can be more efficient

34

In auto-driving: describe street scene

• Vehicles’ locations & movements

Pour liquid into a glass without spilling 

• Viscosity & volume of the fluid 

• shape & position of the container

Need multi-modal capabilities for 

world and agent modeling!

Limitation II:



Outline: Enhancing the Backend Beyond LMs

● Richer learning mechanisms

◯ Learning with Embodied Experiences

◯ Social Learning

● Multi-modal capabilities 

● Latent-space reasoning

● Agent models with external augmentations (e.g., tools)
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Outline: Enhancing the Backend Beyond LMs

● Richer learning mechanisms

◯ Learning with Embodied Experiences

▪ Where to get experiences

▪ How to get experiences

▪ How to learn with the experiences

◯ Social Learning
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Learning from Embodied Experiences

● Embodied simulators

37

Virtual Home Habitat 3.0

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

Everyday household activities
Goal: Goal: Goal:



Learning from Embodied Experiences

● Embodied simulators

38

Minecraft
exploring a 3D infinite world and 

conducting rich tasks 

Touchdown
navigating in urban scenes

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences



Learning from Embodied Experiences

● Embodied simulators
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Learning from Embodied Experiences

40

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Wang et al., 2023]

● Embodied simulators
Minecraft
exploring a 3D infinite world and 

conducting rich tasks 

Touchdown
navigating in urban scenes



Learning from Embodied Experiences
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Wang et al., 2023]

● Embodied simulators
Minecraft
exploring a 3D infinite world and 

conducting rich tasks 

Touchdown
navigating in urban scenes



Learning from Embodied Experiences

● Other simulators

42

OS Simulated websites
(shopping, navigating, search)

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences



Learning from Embodied Experiences

● Goal-oriented

◯ Collecting experiences by completing a given task

43[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

Goal: Goal: Goal:
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Learning from Embodied Experiences

45

Monte Carlo Tree Search (MCTS)

Goal:

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

● Goal-oriented

◯ Collecting experiences by completing a given task



Learning from Embodied Experiences

46

Monte Carlo Tree Search (MCTS)

Goal:

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

● Goal-oriented

◯ Collecting experiences by completing a given task

Convert experiences 

into training data 

(question answering)



Learning from Embodied Experiences

● Auto curriculum

◯ Proposing new tasks automatically

47[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

• Collect experiences by 

completing the task

• Learn with the experiences 

Prompt GPT-4 to generate new tasks



Learning from Embodied Experiences

● Auto curriculum

◯ Proposing new tasks automatically

48[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

Examples:
Prompt GPT-4 to generate new tasks



Learning from Embodied Experiences

● Random Exploration

49

Child learns about different textures and sensations by 

randomly picking up various objects 

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences



Learning from Embodied Experiences

● Random Exploration

50

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

Goal: Goal: Goal:



Learning from Embodied Experiences

● Random Exploration

51

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

Convert experiences 

into training data 

(question answering)



Learning from Embodied Experiences

● Finetuning LMs with the experiences

52

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

Training 

data



Learning from Embodied Experiences

● Finetuning LMs with the experiences

● Also wanting to preserve the original language capabilities of LMs
◯ Instead of overfitting to the finetuning data

◯ Solution: continual learning with EWC (Elastic Weight Consolidation)

53

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Training 

data



Learning from Embodied Experiences

● Finetuning LMs with the experiences

● Also wanting to preserve the original language capabilities of 
LMs
◯ Instead of overfitting to the finetuning data

◯ Solution: continual learning with EWC (Elastic Weight Consolidation)
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Fisher matrix to measure the 

importance of each weight for 

original language tasks



Learning from Embodied Experiences
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Fisher matrix to measure the 

importance of each weight for 

original language tasks

Conventional 

finetuning 

objective Regularizor to preserve 

important weights

● Finetuning LMs with the experiences

● Also wanting to preserve the original language capabilities of 
LMs
◯ Instead of overfitting to the finetuning data

◯ Solution: continual learning with EWC (Elastic Weight Consolidation)



Learning from Embodied Experiences

● Finetuning LMs with the experiences

● Also wanting to preserve the original language capabilities of 
LMs

◯ Instead of overfitting to the finetuning data

◯ Solution: continual learning with EWC (Elastic Weight 
Consolidation)
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Fisher matrix to measure the 

importance of each weight for 

original language tasks

Conventional 

finetuning objective

Regularizor to preserve 

important weights

Finetuned GPT-J-6B

outperforms ChatGPT on 7

out of 11 tasks



Learning from Embodied Experiences

● Updating external memory

◯ Instead of changing LM parameters

57

(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]
Figure 2: VOYAGER consists of three key components: an automatic curriculum for open-ended
exploration, a skill library for increasingly complex behaviors, and an iterative prompting mechanism
that uses code as action space.

1 Introduction

Building generally capable embodied agents that continuously explore, plan, and develop new skills
in open-ended worlds is a grand challenge for the AI community [1–5]. Classical approaches
employ reinforcement learning (RL) [6, 7] and imitation learning [8–10] that operate on primitive
actions, which could be challenging for systematic exploration [11–15], interpretability [16–18], and
generalization [19–21]. Recent advances in large language model (LLM) based agents harness the
world knowledge encapsulated in pre-trained LLMs to generate consistent action plans or executable
policies [16, 22, 19]. They are applied to embodied tasks like games and robotics [23–27], as well as
NLP tasks without embodiment [28–30]. However, these agents are not lifelong learners that can
progressively acquire, update, accumulate, and transfer knowledge over extended time spans [31, 32].

Let us consider Minecraft as an example. Unlike most other games studied in AI [33, 34, 10],
Minecraft does not impose a predefined end goal or a fixed storyline but rather provides a unique
playground with endless possibilities [23]. Minecraft requires players to explore vast, procedurally
generated 3D terrains and unlock a tech tree using gathered resources. Human players typically start
by learning the basics, such asmining wood and cooking food, before advancing to more complex
tasks likecombating monstersand crafting diamond tools. Wearguethat an effective lifelong learning
agent should have similar capabilities as human players: (1) propose suitable tasks based on its
current skill level and world state, e.g., learn to harvest sand and cactus before iron if it finds itself in
adesert rather than a forest; (2) refine skills based on environmental feedback and commit mastered
skills to memory for future reuse in similar situations (e.g. fighting zombies is similar to fighting
spiders); (3) continually explore the wor ld and seek out new tasks in a self-driven manner.

Towards these goals, we introduce VOYAGER, the first LLM-powered embodied lifelong learning
agent to drive exploration, master a wide range of skills, and make new discoveries continually
without human intervention in Minecraft. VOYAGER is made possible through three key modules
(Fig. 2): 1) an automatic cur r iculum that maximizes exploration; 2) a skill library for storing
and retrieving complex behaviors; and 3) a new iterative prompting mechanism that generates
executable code for embodied control. We opt to use code as the action space instead of low-level
motor commands because programs can naturally represent temporally extended and compositional
actions [16, 22], which are essential for many long-horizon tasks in Minecraft. VOYAGER interacts
with ablackbox LLM (GPT-4 [35]) through prompting and in-context learning [36–38]. Our approach
bypasses the need for model parameter access and explicit gradient-based training or finetuning.

More specifically, VOYAGER attempts to solve progressively harder tasks proposed by the automatic
curr iculum, which takes into account the exploration progress and the agent’s state. The curriculum
is generated by GPT-4 based on the overarching goal of “discovering as many diverse things as
possible” . Thisapproach can beperceived asan in-context form of novelty search [39, 40]. VOYAGER

incrementally builds a skill library by storing the action programs that help solve a task successfully.

2

• Collect experiences by 

completing the task

• Learn with the experiences 



Learning from Embodied Experiences

● Updating external memory

◯ Instead of changing LM parameters
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(1) Where to get experiences

(2) How to get experiences

(3) How to learn w/ experiences

[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]

Figure 2: VOYAGER consists of three key components: an automatic curriculum for open-ended
exploration, a skill library for increasingly complex behaviors, and an iterative prompting mechanism
that uses code as action space.

1 Introduction

Building generally capable embodied agents that continuously explore, plan, and develop new skills
in open-ended worlds is a grand challenge for the AI community [1–5]. Classical approaches
employ reinforcement learning (RL) [6, 7] and imitation learning [8–10] that operate on primitive
actions, which could be challenging for systematic exploration [11–15], interpretability [16–18], and
generalization [19–21]. Recent advances in large language model (LLM) based agents harness the
world knowledge encapsulated in pre-trained LLMs to generate consistent action plans or executable
policies [16, 22, 19]. They are applied to embodied tasks like games and robotics [23–27], as well as
NLP tasks without embodiment [28–30]. However, these agents are not lifelong learners that can
progressively acquire, update, accumulate, and transfer knowledge over extended time spans [31, 32].

Let us consider Minecraft as an example. Unlike most other games studied in AI [33, 34, 10],
Minecraft does not impose a predefined end goal or a fixed storyline but rather provides a unique
playground with endless possibilities [23]. Minecraft requires players to explore vast, procedurally
generated 3D terrains and unlock a tech tree using gathered resources. Human players typically start
by learning the basics, such asmining wood and cooking food, before advancing to more complex
tasks likecombating monstersand crafting diamond tools. Wearguethat an effective lifelong learning
agent should have similar capabilities as human players: (1) propose suitable tasks based on its
current skill level and world state, e.g., learn to harvest sand and cactus before iron if it finds itself in
adesert rather than a forest; (2) refine skills based on environmental feedback and commit mastered
skills to memory for future reuse in similar situations (e.g. fighting zombies is similar to fighting
spiders); (3) continually explore the wor ld and seek out new tasks in a self-driven manner.

Towards these goals, we introduce VOYAGER, the first LLM-powered embodied lifelong learning
agent to drive exploration, master a wide range of skills, and make new discoveries continually
without human intervention in Minecraft. VOYAGER is made possible through three key modules
(Fig. 2): 1) an automatic cur r iculum that maximizes exploration; 2) a skill library for storing
and retrieving complex behaviors; and 3) a new iterative prompting mechanism that generates
executable code for embodied control. We opt to use code as the action space instead of low-level
motor commands because programs can naturally represent temporally extended and compositional
actions [16, 22], which are essential for many long-horizon tasks in Minecraft. VOYAGER interacts
with ablackbox LLM (GPT-4 [35]) through prompting and in-context learning [36–38]. Our approach
bypasses the need for model parameter access and explicit gradient-based training or finetuning.

More specifically, VOYAGER attempts to solve progressively harder tasks proposed by the automatic
curr iculum, which takes into account the exploration progress and the agent’s state. The curriculum
is generated by GPT-4 based on the overarching goal of “discovering as many diverse things as
possible” . Thisapproach can beperceived asan in-context form of novelty search [39, 40]. VOYAGER

incrementally builds a skill library by storing the action programs that help solve a task successfully.

2

Skill represented 

as code



Summary: Learning with Embodied Experiences

● Where to get experiences

◯ Simulators (embodied env., OS, simulated websites, …)

● How to get experiences

◯ Goal-oriented planning

◯ Auto-curriculum

◯ Random exploration

● How to learn with the experiences

◯ Finetuning LMs while preserving original language capabilities: 

continual learning

◯ Updating external memory

59



Questions?


	Slide 1: DSC190: Machine Learning with Few Labels   Self-Supervised Learning
	Slide 2: BERT
	Slide 3: BERT: Pre-training Procedure
	Slide 4: BERT: Pre-training Procedure
	Slide 5: BERT: Pre-training Procedure
	Slide 7: BERT: Pre-training Procedure
	Slide 8: BERT: Pre-training Procedure
	Slide 9: BERT: Downstream Fine-tuning 
	Slide 10: BERT: Downstream Fine-tuning 
	Slide 11: BERT Results
	Slide 13: SSL from Images, EX (I): masked autoencoder (MAE)
	Slide 14: SSL from Images, EX (I): masked autoencoder (MAE)
	Slide 15: SSL from Images, EX (II): relative positioning 
	Slide 16: SSL from Images, EX (II): relative positioning 
	Slide 17: SSL from Images, EX (II): relative positioning 
	Slide 18: SSL from Images, EX (II): relative positioning 
	Slide 19: SSL from Images, EX (II): relative positioning 
	Slide 20: SSL from Images, EX (III): colorization 
	Slide 21: SSL from Images, EX (III): colorization 
	Slide 22: SSL from Images, EX (IV): exemplar networks  
	Slide 23: SSL from Videos
	Slide 24: SSL from Videos
	Slide 25: SSL from Videos
	Slide 26: Key Takeaways
	Slide 27
	Slide 28: LLMs Lack World and Agent Knowledge
	Slide 29: LLMs Lack World and Agent Knowledge
	Slide 30: LLMs Lack World and Agent Knowledge
	Slide 31: LLMs Lack World and Agent Knowledge
	Slide 32: Inefficiency of the language modality
	Slide 33: Inefficiency of the language modality
	Slide 34: Inefficiency of the language modality
	Slide 35: Outline: Enhancing the Backend Beyond LMs
	Slide 36: Outline: Enhancing the Backend Beyond LMs
	Slide 37: Learning from Embodied Experiences
	Slide 38: Learning from Embodied Experiences
	Slide 39: Learning from Embodied Experiences
	Slide 40: Learning from Embodied Experiences
	Slide 41: Learning from Embodied Experiences
	Slide 42: Learning from Embodied Experiences
	Slide 43: Learning from Embodied Experiences
	Slide 44: Learning from Embodied Experiences
	Slide 45: Learning from Embodied Experiences
	Slide 46: Learning from Embodied Experiences
	Slide 47: Learning from Embodied Experiences
	Slide 48: Learning from Embodied Experiences
	Slide 49: Learning from Embodied Experiences
	Slide 50: Learning from Embodied Experiences
	Slide 51: Learning from Embodied Experiences
	Slide 52: Learning from Embodied Experiences
	Slide 53: Learning from Embodied Experiences
	Slide 54: Learning from Embodied Experiences
	Slide 55: Learning from Embodied Experiences
	Slide 56: Learning from Embodied Experiences
	Slide 57: Learning from Embodied Experiences
	Slide 58: Learning from Embodied Experiences
	Slide 59: Summary: Learning with Embodied Experiences
	Slide 60: Questions?

