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Outline
“Standard Model” of ML

Presentations

Junyue Lin: NeMo Guardrails: A Toolkit for Controllable and Safe LLM Applications with
Programmable Rails

Charlie Gillet: NeuralKart: A Real-Time Mario Kart 64 Al

Chojung (Angela) Tsai: A Study on the Implementation Method of an Agent-Based
Advanced RAG System Using Graph

Jason Dai: Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena
Kevin Chan: Discretization Drift in Two-Player Games
Ishaan Chadha: Pearl: A Production-Ready Reinforcement Learning Agent

Asif Mahdin: Solving Integrated Process Planning and Scheduling Problem via Graph
Neural Network Based Deep Reinforcement Learning

Xiu Yuan: Diffusion Policy 2
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Human learning vs machine learning
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The zoo of ML/AI algorithms

maximum likelihood estimation reinforcement learning as inference

data re-weighting inverse RL nolicy optimization active learning

data augmentation actor-critic reward-augmented maximum likelihood

label smoothing imitation learning softmax policy gradient

adversarial domain adaptation posterior regularization
GANSs

knowledge distillation intrinsic reward

constraint-driven learning

prediction minimization generalized expectation

regularized Bayes |
learning from measurements

energy-based GANs
weak/distant supervision



The zoo of ML/AI algorithms
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Standard Model in Physics

Maxwell's Egns: Simplified w/  Further Standard Model  Unification of

original form rotational simplified w/ w/ Yang-Mills fundamental
symmetry symmetry of theory and US(3) forces?
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Toward a ‘Standard Model’ of Machine Learning

Zhiting Hu®"", Eric P. Xinghot™
T Halicioglu Data Science Institute, University of California San Diego, San Diego, USA
! Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA
% Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
¢ Petuum Inc., Pittsburgh, USA

[Hu & Xing, Harvard Data Science Review, 2022]: https://arxiv.org/abs/2108.07783
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https://arxiv.org/abs/2108.07783

A “Standard Model” of ML

min — «H(q) + D (q(t), Po (t)> —Eq [f (1) ]

q, 6
3 terms:
Uncertainty Divergence Experiences
(self-regularization) (fitness) (exogenous regularizations)
e.g., Shannon entropy e.g., Cross Entropy e.g., data examples, rules

Teacher @ Student
Uncertainty q(®) Ql’? '.ﬁ po(t) Textbook f{

Check out more: Toward a ‘Standard Model’ of Machine Learning
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Questions?
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