DSC190: Machine Learning with Few Labels

Reinforcement Learning

Zhiting Hu
Lecture 24, November 25, 2024

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE



Outline

Reinforcement learning

Presentations

Mia Jerphagnon: Feature Selection Strategies: A Comparative Analysis of SHAP-Value

and Importance-Based Methods

Tongxun Hu: Enhancing Sentiment Analysis of FOMC Minutes Using FInBERT-FOMC with

Sentiment Focus

Yuru Feng: Large Language Models as Commonsense Knowledge for Large-Scale Task

Planning

Shentong Li: ChatGPT Based Data Augmentation for Improved Parameter-Efficient
Debiasing of LLMs

Evelyn Huang: Interpretable Reward Redistribution in Reinforcement Learning: A Causal
Approach

Aleck Wu: UMAP: Uniform Manifold Approximation for Dimension Reduction 2



sequence
7= 1 =0 = reward <

DDD DDD D|:|_
—e——e N

e (Autoregressive) text generation model: t t—1 \\ T

logits |

Recap: RL for LLM
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From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and
Reinforcement Learning from Human Feedback (RLHF)

Collect demonstration data,
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From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and
Reinforcement Learning from Human Feedback (RLHF)

Collect demonstration data, Optimize a policy against
and train a supervised policy. the reward model using
reinforcement learning.
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From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and

Reinforcement Learning from Human Feedback (RLHF)

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old
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Some people went

to the moon...

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

Reward model
calculates a
reward for the
output

The reward is
used to update
the policy
using PPO.
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From GPT3.5 to ChatGPT: Supervised Finetuning (SFT) and

Reinforcement Learning from Human Feedback (RLHF)

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old
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Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

Explain gravity. Explain war.
M natural People went to
satellite of . the moon

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

Reward model
calculates a
reward for the
output

The reward is
used to update
the policy
using PPO.
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“Standard Model” of ML



Experience of all kinds

Adversaries

Type-2
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Human learning vs machine learning

Type-2
diabetes is 90%
more common
than type-1
RL SCORE: 107
Data examples  Rules/Constraints Knowledge graphs Rewards Auxiliary agents
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The zoo of ML/AI algorithms

maximum likelihood estimation reinforcement learning as inference

data re-weighting inverse RL nolicy optimization active learning

data augmentation actor-critic reward-augmented maximum likelihood

label smoothing imitation learning softmax policy gradient

adversarial domain adaptation posterior regularization
GANSs

knowledge distillation intrinsic reward

constraint-driven learning

prediction minimization generalized expectation

regularized Bayes |
learning from measurements

energy-based GANs

weak/distant supervision
11



The zoo of ML/AI algorithms
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Standard Model in Physics

Maxwell's Egns: Simplified w/  Further Standard Model  Unification of

original form rotational simplified w/ w/ Yang-Mills fundamental
symmetry symmetry of theory and US(3) forces?
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Toward a ‘Standard Model’ of Machine Learning

Zhiting Hu®"", Eric P. Xinghot™
T Halicioglu Data Science Institute, University of California San Diego, San Diego, USA
! Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA
% Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
¢ Petuum Inc., Pittsburgh, USA

[Hu & Xing, Harvard Data Science Review, 2022]: https://arxiv.org/abs/2108.07783
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https://arxiv.org/abs/2108.07783

A “Standard Model” of ML

3 terms:

q, 6

Uncertainty
(self-regularization)

e.g., Shannon entropy

@ Uncertainty

min — «H(q) + D (q(t), Po (t)) —Eq [f (1) ]

Divergence Experiences
(fitness) (exogenous regularizations)
e.g., Cross Entropy e.g., data examples, rules

Teacher @ Student
g () QI’? '.ﬁ pg(t) Textbook f
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Presentations
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Questions?
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