DSC190: Machine Learning with Few Labels

Reinforcement Learning

Zhiting Hu Lecture 23, November 22, 2024

HALICIOĞLU DATA SCIENCE INSTITUTE

Outline

Reinforcement learning

Presentations

- Brandon Chiou: Scaling Rectified Flow Transformers for High-Resolution Image Synthesis
- Samuel Zhang: What Matters in Transformers? Not All Attention is Needed
- Andrew Yin: ??
- Gloria Kao: ChatEval: Towards Better LLM-based Evaluators through Multi-Agent
 Debate
- Yi Zhang: Fast Inference from Transformers via Speculative Decoding
- **Bill Wang:** Can AI Be as Creative as Humans?
- Arul Mathur: The Geometry of Concepts: Sparse Autoencoder Feature Structures

Intuition of Policy Gradient

Gradient:
$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} \left[r(\tau) \nabla_{\theta} \log p(\tau; \theta) \right]$$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Intuition of Policy Gradient

Gradient:
$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} \left[r(\tau) \nabla_{\theta} \log p(\tau; \theta) \right]$$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

Intuition of Policy Gradient

Gradient:
$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} \left[r(\tau) \nabla_{\theta} \log p(\tau; \theta) \right]$$

Interpretation:

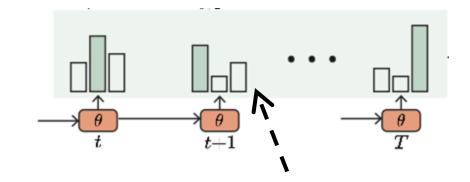
- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

However, this also suffers from high variance because **credit assignment** is really hard.

RL for LLMs

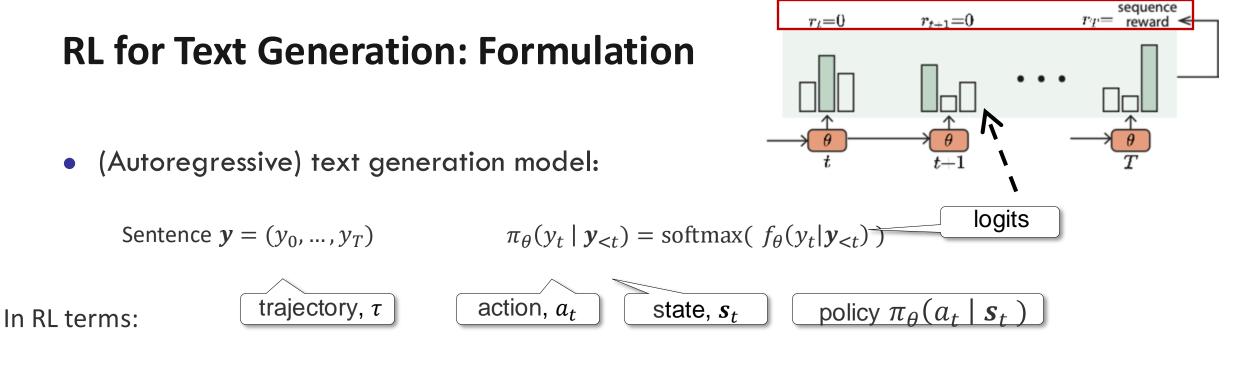
RL for Text Generation: Formulation



• (Autoregressive) text generation model:

Sentence
$$\mathbf{y} = (y_0, \dots, y_T)$$
 $\pi_{\theta}(y_t \mid \mathbf{y}_{< t}) = \operatorname{softmax}(f_{\theta}(y_t \mid \mathbf{y}_{< t}))$ logits

In RL terms: trajectory, τ action, a_t state, s_t policy $\pi_{\theta}(a_t | s_t)$



- Reward $r_t = r(s_t, a_t)$
 - Often sparse: $r_t = 0$ for t < T
- The general RL objective: maximize cumulative reward

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right]$$

• *Q*-function: expected *future* reward of taking action a_t in state s_t

$$Q^{\pi}(\boldsymbol{s}_{t}, \boldsymbol{a}_{t}) = \mathbb{E}_{\pi} \left[\sum_{t'=t}^{T} \gamma^{t'} r_{t'} \mid \boldsymbol{s}_{t}, \boldsymbol{a}_{t} \right]$$

Presentations

Questions?