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Outline

Reinforcement learning

Presentations

● Kaijie Zhang: Addition is All You Need for Energy-efficient Language Models

● Yunshan Li: Dance Dance Convolution

● Runyi Yan: ??

● Brandon Chiou: Scaling Rectified Flow Transformers for High-Resolution Image 
Synthesis
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Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Initialize state 
(starting game 
screen pixels) at the 

beginning of each 
episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Putting it together: Deep Q-Learning with Experience Replay

For each timestep t 
of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]



With small probability, 
select a random 
action (explore), 

otherwise select 
greedy action from 
current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Take the action (at), 
and observe the 
reward rt and next 

state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Store transition in
replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Experience Replay:

Sample a random 

minibatch of transitions 
from replay memory 
and perform a gradient 

descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Summary so far

● Q-learning:

◯ Bellman equation

◯ Value-based RL

◯ Off-policy RL

● Next: Policy gradient

◯ Policy-based RL

◯ On-policy RL
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Loss function:

where



Formally, let’s define a class of parametrized policies:

For each policy, define its value:

Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Gradient ascent on policy parameters!

Policy Gradients
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REINFORCE algorithm
Mathematically, we can write:

Where 𝑟(𝜏) is the reward of a trajectory
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Expected reward:

REINFORCE algorithm
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REINFORCE algorithm

Now let’s differentiate this:

Expected reward:
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REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when 𝑝
depends on θ

Now let’s differentiate this:

Expected reward:
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Question: How to estimate the gradient?



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Now let’s differentiate this:

Expected reward:
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We can use a nice trick:



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Can estimate with 
Monte Carlo sampling

Now let’s differentiate this:

If we inject this back:

Expected reward:
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We can use a nice trick:



REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:

And when differentiating:
Doesn’t depend on 

transition probabilities!
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Intuition
Gradient:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen
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Intuition
Gradient:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 

good. But in expectation, it averages out!
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Intuition
Gradient:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 

good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment 

is really hard. 
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RL for LLMs



RL for Text Generation: Formulation

● (Autoregressive) text generation model:

Sentence 𝒚 = (𝑦0, … , 𝑦𝑇)

In RL terms: state, 𝒔𝑡action, 𝑎𝑡trajectory, 𝜏 policy 𝜋𝜃 𝑎𝑡  𝒔𝑡  )

𝜋𝜃 𝑦𝑡 𝒚<𝑡) = softmax(  𝑓𝜃 𝑦𝑡 𝒚<𝑡  )
logits



RL for Text Generation: Formulation

● (Autoregressive) text generation model:

𝜋𝜃 𝑦𝑡 𝒚<𝑡) = softmax(  𝑓𝜃 𝑦𝑡 𝒚<𝑡  )Sentence 𝒚 = (𝑦0, … , 𝑦𝑇)

In RL terms: state, 𝒔𝑡action, 𝑎𝑡trajectory, 𝜏

• Reward 𝑟𝑡 = 𝑟(𝒔𝑡 , 𝑎𝑡)

• Often sparse: 𝑟𝑡 = 0 for 𝑡 < 𝑇

• The general RL objective: maximize cumulative reward

• 𝑄-function: expected future reward of taking action 𝑎𝑡  in state 𝒔𝑡    

𝑄𝜋 𝒔𝑡 , 𝑎𝑡 = 𝔼𝜋  σ𝑡′=𝑡
𝑇 𝛾𝑡′

 𝑟𝑡′ | 𝒔𝑡 , 𝑎𝑡  

policy 𝜋𝜃 𝑎𝑡  𝒔𝑡  )

logits



Presentations
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Questions?
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