
DSC190: Machine Learning with Few Labels

Reinforcement Learning

Zhiting Hu

Lecture 21, November 18, 2024

Outline

Reinforcement learning

Presentations

● Jiangqi Wu: Post-training Quantization for Neural Networks with Provable
Guarantees

● Jessica Song: Diffusion Model

● Gautham Kishore: Code Translation with Compiler Representations

● Aleck Wu: UMAP: Uniform Manifold Approximation for Dimension Reduction

2

Agent

Environment

Action a
t

State st

How can we mathematically formalize the RL

problem?

Reward rt

Next state s
t+1

3

Recap: Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Recursive expansion of 𝑄:

5

Recap: Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,

then the optimal strategy is to take the action that maximizes the expected value of

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

6

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

7

Qi will converge to Q* as i -> infinity

What’s the problem with this?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

8

Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

9

Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Question: how would you solve the issue?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

10

Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Question: how would you solve the issue?
Solution: use a function approximator to estimate Q(s,a). E.g. a neural

network!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

11

Q-learning: Use a function approximator to estimate the action-value function

Solving for the optimal policy: Q-learning

12

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

If the function approximator is a deep neural network => deep q-learning!

13

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

14

Remember: want to find a Q-function that satisfies the Bellman Equation:

Solving for the optimal policy: Q-learning

15

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass

Loss function:

where

Solving for the optimal policy: Q-learning

16

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass

Loss function:

where

Backward Pass

Gradient update (with respect to Q-function parameters θ) :

Solving for the optimal policy: Q-learning

17

Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

19

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

20

:
neural network

with weights

Q-network Architecture

Input: state st

Current state st: 84x84x4 stack of last 4 frames

(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

21

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Familiar conv layers,

FC layer

[Mnih et al. NIPS Workshop 2013; Nature 2015]

22

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions),

corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

23

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions),

corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

24

:
neural network

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions),

corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

A single feedforward pass
to compute Q-values for all
actions from the current

state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

25

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand

size) => can lead to bad feedback loops

[Mnih et al. NIPS Workshop 2013; Nature 2015]

26

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand

size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game

(experience) episodes are played

- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples

[Mnih et al. NIPS Workshop 2013; Nature 2015]

27

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand

size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game

(experience) episodes are played

- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute

to multiple weight updates

=> greater data efficiency

[Mnih et al. NIPS Workshop 2013; Nature 2015]

28

Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Initialize state
(starting game
screen pixels) at the

beginning of each
episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

32

Putting it together: Deep Q-Learning with Experience Replay

For each timestep t
of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

With small probability,
select a random
action (explore),

otherwise select
greedy action from
current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

34

Take the action (at),
and observe the
reward rt and next

state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

35

Store transition in
replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

36

Experience Replay:

Sample a random

minibatch of transitions
from replay memory
and perform a gradient

descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

37

Summary so far

● Q-learning:

◯ Bellman equation

◯ Value-based RL

◯ Off-policy RL

● Next: Policy gradient

◯ Policy-based RL

◯ On-policy RL

38

Loss function:

where

Policy Gradients

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard

to learn exact value of every (state, action) pair

39

Policy Gradients

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard

to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly?

40

Formally, let’s define a class of parametrized policies:

For each policy, define its value:

Policy Gradients

41

Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients

42

Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Gradient ascent on policy parameters!

Policy Gradients

43

REINFORCE algorithm
Mathematically, we can write:

Where 𝑟(𝜏) is the reward of a trajectory

44

Expected reward:

REINFORCE algorithm

45

REINFORCE algorithm

Now let’s differentiate this:

Expected reward:

46

REINFORCE algorithm

Intractable! Gradient of an
expectation is problematic when 𝑝
depends on θ

Now let’s differentiate this:

Expected reward:

47

Question: How to estimate the gradient?

REINFORCE algorithm

Intractable! Gradient of an
expectation is problematic when p
depends on θ

Now let’s differentiate this:

However, we can use a nice trick:

Expected reward:

48

REINFORCE algorithm

Intractable! Gradient of an
expectation is problematic when p
depends on θ

Can estimate with
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick:

If we inject this back:

Expected reward:

49

REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have:

50

REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

51

REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:
Doesn’t depend on

transition probabilities!

52

REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:

Therefore when sampling a trajectory 𝜏, we can estimate J(𝜃) with

Doesn’t depend on

transition probabilities!

53

Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

54

Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were

good. But in expectation, it averages out!

55

Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were

good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment

is really hard.

56

Presentations

57

Questions?

	Slide 1: DSC190: Machine Learning with Few Labels Reinforcement Learning
	Slide 2: Outline
	Slide 3: How can we mathematically formalize the RL problem?
	Slide 5: Recap: Q-value function
	Slide 6: Recap: Bellman equation
	Slide 7: Solving for the optimal policy
	Slide 8: Solving for the optimal policy
	Slide 9: Solving for the optimal policy
	Slide 10: Solving for the optimal policy
	Slide 11: Solving for the optimal policy
	Slide 12: Solving for the optimal policy: Q-learning
	Slide 13: Solving for the optimal policy: Q-learning
	Slide 14: Solving for the optimal policy: Q-learning
	Slide 15: Solving for the optimal policy: Q-learning
	Slide 16: Solving for the optimal policy: Q-learning
	Slide 17: Solving for the optimal policy: Q-learning
	Slide 19: Case Study: Playing Atari Games
	Slide 20: Q-network Architecture
	Slide 21: Q-network Architecture
	Slide 22: Q-network Architecture
	Slide 23: Q-network Architecture
	Slide 24: Q-network Architecture
	Slide 25: Q-network Architecture
	Slide 26: Training the Q-network: Experience Replay
	Slide 27: Training the Q-network: Experience Replay
	Slide 28: Training the Q-network: Experience Replay
	Slide 29: [Mnih et al. NIPS Workshop 2013; Nature 2015]
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Summary so far
	Slide 39: Policy Gradients
	Slide 40: Policy Gradients
	Slide 41: Policy Gradients
	Slide 42: Policy Gradients
	Slide 43: Policy Gradients
	Slide 44: REINFORCE algorithm
	Slide 45: REINFORCE algorithm
	Slide 46: REINFORCE algorithm
	Slide 47: REINFORCE algorithm
	Slide 48: REINFORCE algorithm
	Slide 49: REINFORCE algorithm
	Slide 50: REINFORCE algorithm
	Slide 51: REINFORCE algorithm
	Slide 52: REINFORCE algorithm
	Slide 53: REINFORCE algorithm
	Slide 54: Intuition
	Slide 55: Intuition
	Slide 56: Intuition
	Slide 57: Presentations
	Slide 58: Questions?

