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Outline

Reinforcement learning

Presentations

● Jiangqi Wu: Post-training Quantization for Neural Networks with Provable 
Guarantees

● Jessica Song: Diffusion Model 

● Gautham Kishore: Code Translation with Compiler Representations

● Aleck Wu: UMAP: Uniform Manifold Approximation for Dimension Reduction
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Agent

Environment

Action a
t

State st

How can we mathematically formalize the RL

problem?

Reward rt 

Next state s
t+1
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Recap: Q-value function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from 

taking action a in state s and then following the policy:

Recursive expansion of 𝑄:
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Recap: Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known, 

then the optimal strategy is to take the action that maximizes the expected value of

The optimal Q-value function Q* is the maximum expected cumulative reward achievable 

from a given (state, action) pair:
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Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

What’s the problem with this?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. 
current game state pixels, computationally infeasible to compute for entire 
state space!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. 
current game state pixels, computationally infeasible to compute for entire 
state space!

Question: how would you solve the issue?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
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Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. 
current game state pixels, computationally infeasible to compute for entire 
state space!

Question: how would you solve the issue?
Solution: use a function approximator to estimate Q(s,a). E.g. a neural

network!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
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Q-learning: Use a function approximator to estimate the action-value function

Solving for the optimal policy: Q-learning
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Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

If the function approximator is a deep neural network => deep q-learning!
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Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Solving for the optimal policy: Q-learning
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 

Loss function:

where

Solving for the optimal policy: Q-learning
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 

Loss function:

where

Backward Pass

Gradient update (with respect to Q-function parameters θ)   : 

Solving for the optimal policy: Q-learning
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Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Input: state st

Current state st: 84x84x4 stack of last 4 frames

(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Familiar conv layers, 

FC layer

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions), 

corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions), 

corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 

with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d

output (if 4 actions), 

corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

A single feedforward pass 
to compute Q-values for all 
actions from the current 

state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand

size) => can lead to bad feedback loops

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand

size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game 

(experience) episodes are played

- Train Q-network on random minibatches of transitions from the replay memory, 

instead of consecutive samples

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand

size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game 

(experience) episodes are played

- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute 

to multiple weight updates

=> greater data efficiency

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Initialize state 
(starting game 
screen pixels) at the 

beginning of each 
episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

32



Putting it together: Deep Q-Learning with Experience Replay

For each timestep t 
of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]



With small probability, 
select a random 
action (explore), 

otherwise select 
greedy action from 
current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Take the action (at), 
and observe the 
reward rt and next 

state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Store transition in
replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Experience Replay:

Sample a random 

minibatch of transitions 
from replay memory 
and perform a gradient 

descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay
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Summary so far

● Q-learning:

◯ Bellman equation

◯ Value-based RL

◯ Off-policy RL

● Next: Policy gradient

◯ Policy-based RL

◯ On-policy RL

38

Loss function:

where



Policy Gradients

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 

to learn exact value of every (state, action) pair

39



Policy Gradients

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 

to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly?
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients
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Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Gradient ascent on policy parameters!

Policy Gradients
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REINFORCE algorithm
Mathematically, we can write:

Where 𝑟(𝜏) is the reward of a trajectory
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Expected reward:

REINFORCE algorithm
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REINFORCE algorithm

Now let’s differentiate this:

Expected reward:
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REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when 𝑝
depends on θ

Now let’s differentiate this:

Expected reward:
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Question: How to estimate the gradient?



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Now let’s differentiate this:

However, we can use a nice trick:

Expected reward:
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REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Can estimate with 
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick: 

If we inject this back:

Expected reward:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:

And when differentiating:
Doesn’t depend on 

transition probabilities!
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REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:

And when differentiating:

Therefore when sampling a trajectory 𝜏, we can estimate J(𝜃) with

Doesn’t depend on 

transition probabilities!
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Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen
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Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 

good. But in expectation, it averages out!
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Intuition
Gradient estimator:

Interpretation:

- If r(𝜏) is high, push up the probabilities of the actions seen

- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 

good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment 

is really hard. 
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Presentations
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Questions?
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