
DSC190: Machine Learning with Few Labels

Reinforcement Learning

Zhiting Hu

Lecture 20, November 15, 2024

Outline

Reinforcement learning

Presentations

● Zhenghao Gong: Learning Transferable Visual Models From Natural Language
Supervision

● Ishaan Chadha: Pearl: A Production-Ready Reinforcement Learning Agent

● Tianhao Chen: Image Augmentation Is All You Need

● Jiangqi Wu: Post-training Quantization for Neural Networks with Provable
Guarantees

● Arul Mathur: The Geometry of Concepts: Sparse Autoencoder Feature Structures

2

Summary: Supervised / Unsupervised Learning

● Supervised Learning

◯ Maximum likelihood estimation (MLE)

● Unsupervised learning

◯ Maximum likelihood estimation (MLE) with latent variables

▪ Marginal log-likelihood

◯ EM algorithm for MLE

▪ ELBO / Variational free energy

◯ Variational Inference

▪ ELBO / Variational free energy

▪ Variational distributions

❑ Factorized (mean-field VI)

❑ Mixture of Gaussians (Black-box VI)

❑ Neural-based (VAEs)

3

4

Reinforcement Learning

RL Conference 2024

5

RL Conference 2024

6

So far… Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,

semantic segmentation, image

captioning, etc.

Cat

Classification

7

So far… Unsupervised Learning

Data: x
no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature

learning, density estimation, etc.

8

Today: Reinforcement Learning

Problems involving an agent
interacting with an environment,

which provides numeric reward

signals

Goal: Learn how to take actions

in order to maximize reward

9

Overview

- What is Reinforcement Learning?

- Markov Decision Processes

- Q-Learning

- Policy Gradients

10

Agent

Reinforcement Learning

Environment

11

Agent

Environment

State st

Reinforcement Learning

12

Agent

Environment

Action at

State st

Reinforcement Learning

13

Agent

Environment

Action at

State st Reward rt

Reinforcement Learning

14

Agent

Environment

Action a
t

State st

Reinforcement Learning

Reward rt

Next state s
t+1

15

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints

Action: Torque applied on joints

Reward: 1 at each time step upright +

forward movement

17

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

18

Go

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Lecture 14 -
19

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Agent

Environment

Action a
t

State st

How can we mathematically formalize the RL

problem?

Reward rt

Next state s
t+1

20

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by:

: set of possible states

: set of possible actions

: distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair

: discount factor

21

Markov Decision Process

- At time step t=0, environment samples initial state s0 ~ p(s0)

- Then, for t=0 until done:

- Agent selects action at

- Environment samples reward rt ~ R(. | st, at)

- Environment samples next state st+1 ~ P(. | st, at)

- Agent receives reward rt and next state st+1

- A policy π is a function from S to A that specifies what action to take in

each state

- Objective: find policy π* that maximizes cumulative discounted reward:

22

A simple MDP: Grid World

★

★

}

Objective: reach one of terminal states (greyed out) in

least number of actions

actions = {

1. right

2. left

3. up

4. down

Set a negative “reward”
for each transition

(e.g. r = -1)

states

23

A simple MDP: Grid World

Random Policy Optimal Policy

★

★

★

★

24

The optimal policy π*

We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

25

The optimal policy π*

We want to find optimal policy π* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

Maximize the expected sum of rewards!

Formally: with

26

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

27

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy

from state s:

28

Definitions: Value function and Q-value function
Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?

The value function at state s, is the expected cumulative reward from following the policy

from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

29

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

Bellman equation

30

Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,

then the optimal strategy is to take the action that maximizes the expected value of

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

31

Bellman equation

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,

then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy π* corresponds to taking the best action in any state as specified by Q*

The optimal Q-value function Q* is the maximum expected cumulative reward achievable

from a given (state, action) pair:

32

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

33

Qi will converge to Q* as i -> infinity

What’s the problem with this?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

34

Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

35

Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Question: how would you solve the issue?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

36

Qi will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g.
current game state pixels, computationally infeasible to compute for entire
state space!

Question: how would you solve the issue?
Solution: use a function approximator to estimate Q(s,a). E.g. a neural

network!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

37

Q-learning: Use a function approximator to estimate the action-value function

Solving for the optimal policy: Q-learning

38

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

If the function approximator is a deep neural network => deep q-learning!

39

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

40

Remember: want to find a Q-function that satisfies the Bellman Equation:

Solving for the optimal policy: Q-learning

41

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass

Loss function:

where

Solving for the optimal policy: Q-learning

42

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass

Loss function:

where

Backward Pass

Gradient update (with respect to Q-function parameters θ):

Solving for the optimal policy: Q-learning

43

Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass

Loss function:

where

Backward Pass

Gradient update (with respect to Q-function parameters θ):

Solving for the optimal policy: Q-learning

close to the target value (y) it

should have, if Q-function

corresponds to optimal Q*
(and optimal policy π*)

44

Presentations

45

Questions?

	Slide 1: DSC190: Machine Learning with Few Labels Reinforcement Learning
	Slide 2: Outline
	Slide 3: Summary: Supervised / Unsupervised Learning
	Slide 4
	Slide 5: RL Conference 2024
	Slide 6: RL Conference 2024
	Slide 7: So far… Supervised Learning
	Slide 8: So far… Unsupervised Learning
	Slide 9: Today: Reinforcement Learning
	Slide 10: Overview
	Slide 11: Reinforcement Learning
	Slide 12: Reinforcement Learning
	Slide 13: Reinforcement Learning
	Slide 14: Reinforcement Learning
	Slide 15: Reinforcement Learning
	Slide 17: Robot Locomotion
	Slide 18: Atari Games
	Slide 19: Go
	Slide 20: How can we mathematically formalize the RL problem?
	Slide 21: Markov Decision Process
	Slide 22: Markov Decision Process
	Slide 23: A simple MDP: Grid World
	Slide 24: A simple MDP: Grid World
	Slide 25: The optimal policy π*
	Slide 26: The optimal policy π*
	Slide 27: Definitions: Value function and Q-value function
	Slide 28: Definitions: Value function and Q-value function
	Slide 29: Definitions: Value function and Q-value function
	Slide 30: Bellman equation
	Slide 31: Bellman equation
	Slide 32: Bellman equation
	Slide 33: Solving for the optimal policy
	Slide 34: Solving for the optimal policy
	Slide 35: Solving for the optimal policy
	Slide 36: Solving for the optimal policy
	Slide 37: Solving for the optimal policy
	Slide 38: Solving for the optimal policy: Q-learning
	Slide 39: Solving for the optimal policy: Q-learning
	Slide 40: Solving for the optimal policy: Q-learning
	Slide 41: Solving for the optimal policy: Q-learning
	Slide 42: Solving for the optimal policy: Q-learning
	Slide 43: Solving for the optimal policy: Q-learning
	Slide 44: Solving for the optimal policy: Q-learning
	Slide 45: Presentations
	Slide 46: Questions?

