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Outline

Unsupervised learning: Variational Auto-Encoders

Reinforcement learning

Presentations

● Jerry Xu: Distilling the Knowledge in a Neural Network

● Yinming Huang: Generalizing Motion Planners with Mixture of Experts for 
Autonomous Driving

● Mohit Sridhar: Integrating Long-Range Regulatory Interactions to Predict Gene 
Expression Using Graph Convolutional Networks
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Recap: Variational Auto-Encoders (VAEs)

● Model 𝑝𝜃 𝒙, 𝒛 = 𝑝𝜃 𝒙 𝒛 𝑝(𝒛)
◯ 𝑝𝜃 𝒙 𝒛 : a.k.a., generative model, generator, (probabilistic) decoder, …

◯ 𝑝(𝒛): prior, e.g., Gaussian

● Assume variational distribution 𝑞𝜙 𝒛|𝒙
◯ E.g., a Gaussian distribution parameterized as deep neural networks  

◯ a.k.a, recognition model, inference network, (probabilistic) encoder, …

● ELBO:
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ℒ 𝜽, 𝝓; 𝒙 = E𝑞𝜙 𝒛 𝒙 log 𝑝𝜃 𝒙, 𝒛 + H(𝑞𝜙 𝒛 𝒙 )

                              = E𝑞𝜙 𝒛 𝒙 log 𝑝𝜃 𝒙|𝒛  − KL(𝑞𝜙 𝒛 𝒙  || 𝑝(𝒛))

Reconstruction Divergence from prior

(KL divergence between two Guassians has 

an analytic form)



Variational Auto-Encoders (VAEs)

● ELBO:

● Reparameterization:

◯ [𝝁; 𝝈] = 𝑓𝜙(𝒙) (a neural network)

◯ 𝒛 = 𝝁 + 𝝈⨀𝝐,  𝝐 ∼ 𝑵(𝟎, 𝟏)
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Variational Auto-Encoders (VAEs)

● ELBO:

● Reparameterization:

◯ [𝝁; 𝝈] = 𝑓𝜙(𝒙) (a neural network)

◯ 𝒛 = 𝝁 + 𝝈⨀𝝐,  𝝐 ∼ 𝑵 𝟎, 𝟏
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ℒ 𝜽, 𝝓; 𝒙 = E𝑞𝜙 𝒛 𝒙 log 𝑝𝜃 𝒙, 𝒛 + H(𝑞𝜙 𝒛 𝒙 )

                              = E𝑞𝜙 𝒛 𝒙 log 𝑝𝜃 𝒙|𝒛  − KL(𝑞𝜙 𝒛 𝒙  || 𝑝(𝒛))

∇𝝓ℒ =E𝜖∼𝑁(𝟎,𝟏)[ ∇𝒛 log 𝑝𝜃 𝒙, 𝒛 − log 𝑞𝜙 𝒛|𝒙  ∇𝜙𝑧 𝜖, 𝝓 ] 

∇𝜃ℒ =E𝑞𝜙 𝒛 𝒙 ∇𝜃log 𝑝𝜃 𝒙, 𝒛



Example: VAEs for images

6[https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder]



Encoder

Example: VAEs for images

7[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Encoder

Example: VAEs for images

8[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Generating samples:

● Use decoder network. Now sample z 
from prior! 

Data manifold for 2-d z 

Vary 𝑧1 

Vary 𝑧2 
[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Generating samples:

● Use decoder network. Now sample z 
from prior! 

Data manifold for 2-d z 

Vary 𝑧1 

Vary 𝑧2 

(Degree of smile)

(head pose)
[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for text
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• Latent code interpolation and sentences generation 

from VAEs [Bowman et al., 2015]. 



Note: Amortized Variational Inference
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• Variational distribution as an inference model 𝑞𝜙 𝒛 𝒙  with 

parameters 𝝓 (which was traditionally factored over samples)

• Amortize the cost of inference by learning a single data-dependent 
inference model

• The trained inference model can be used for quick inference on 
new data



Variational Auto-encoders: Summary

● A combination of the following ideas: 

◯ Variational Inference: ELBO

◯ Variational distribution parametrized as neural networks 

◯ Reparameterization trick

● Pros:

◯ Principled approach to generative models 

◯ Allows inference of 𝑞(𝑧|𝑥), can be useful feature representation for other tasks 

● Cons:

◯ Samples blurrier and lower quality compared to GANs

◯ Tend to collapse on text data
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ℒ 𝜽, 𝝓; 𝒙 = log 𝑝𝜃 𝒙|𝒛  − KL(𝑞𝜙 𝒛 𝒙  || 𝑝(𝒛))

Reconstruction Divergence from prior

(Razavi et al., 2019)



Diffusion model
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Diffusion model
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Summary: Supervised / Unsupervised Learning

● Supervised Learning

◯ Maximum likelihood estimation (MLE)

● Unsupervised learning

◯ Maximum likelihood estimation (MLE) with latent variables

▪ Marginal log-likelihood

◯ EM algorithm for MLE

▪ ELBO / Variational free energy

◯ Variational Inference

▪ ELBO / Variational free energy

▪ Variational distributions

❑ Factorized (mean-field VI)

❑ Mixture of Gaussians (Black-box VI)

❑ Neural-based (VAEs)
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Reinforcement Learning



RL Conference 2024
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RL Conference 2024
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So far… Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 

semantic segmentation, image 

captioning, etc.

Cat

Classification
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So far… Unsupervised Learning

Data: x
no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 

learning, density estimation, etc.
2-d density estimation

2-d density images left and right 

are CC0 public domain

1-d density estimation
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https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Today: Reinforcement Learning

Problems involving an agent 
interacting with an environment, 

which provides numeric reward 

signals

Goal: Learn how to take actions 

in order to maximize reward
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Overview

- What is Reinforcement Learning?

- Markov Decision Processes

- Q-Learning

- Policy Gradients
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Agent

Reinforcement Learning

Environment
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Agent

Environment

State st

Reinforcement Learning
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Agent

Environment

Action at

State st

Reinforcement Learning
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Agent

Environment

Action at

State st Reward rt

Reinforcement Learning
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Agent

Environment

Action a
t

State st

Reinforcement Learning

Reward rt 

Next state s
t+1
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Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity

Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright

This image is CC0 public domain33

https://creativecommons.org/publicdomain/zero/1.0/deed.en


Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints 

Action: Torques applied on joints 

Reward: 1 at each time step upright + 

forward movement
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Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step
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Go

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Lecture 14 -
36

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Agent

Environment

Action a
t

State st

How can we mathematically formalize the RL

problem?

Reward rt 

Next state s
t+1

37



Presentations
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Questions?
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