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Unsupervised learning: Variational Inference
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Recap: EM Algorithm for GMM

e Initialize the means U, , covariances X; and mixing coefficients 17},

e |terate until convergence:
O E-step: Evaluate the posterior given current parameters
p(Z — ‘ ZB) — K = Tk

Zj:l miN (x| pj, X5)

O M-step: Re-estimate the parameters given current posterior



Recap: EM Algorithm for GMM

e Start: “guess” the centroid U and covariance X, of each of the K clusters

e Loop:




Each EM iteration guarantees to improve the likelihood

p(x,z|0)
£(0;x) = E lo + KL(g(z|x Z|x, 0
(0;x) = Eqzx) |log 210 (q(zlx) || p(zlx, 0))
KL(qllp)I [
KL(qu):O y y y ——————I_—____ -— -
KL(q|p)

A J i N -—

L(q,0) Inp(X|6) L(q,0°%) In p(X|6°Y) L(q,0"") In p(X|6™")
E-step M-step

[PRML, Chap 9.4]




Summary: EM Algorithm

e The EM algorithm is coordinate-decent on F(q, 0)

o E-step: th = argmin £ (Q7‘9t) = p(z|x, Ht)
q

o M-step: @it — arg m@inF (th, Qt) = argmaxgy Z gtt1(z|x) log p(x,z|6)
VA

p(x,z|0)
574 Czlx)

+ KL(q(z|x) || p(z]x, 6))

3(3, x) = Eq(zlx) [lO

= —F(q,0) + KL(q(zlx) || p(zlx,6))




Summary: EM Algorithm

e The EM algorithm is coordinate-decent on F(q, 0)

o E-step: th = argmin £ (Q7‘9t) = p(z|x, Ht)
q

o M-step: @it — arg m@inF (th, Ht) = argmaxgy z gtt1(z|x) log p(x,z|6)
VA

p(x,z|0)
5 4 @l%)

£(0;x) = II3q(z|3nc) [lO + KL(CI(le) 1 p(le, 6))

= —F(q,0) + KL(q(z|x) || p(z|x,6))

e Limitation: need to be able to compute p(Z|x, 0), not possible for more
complicated models --- solution: Variational inference



Variational Inference

Content adapted from CMU 10-708 Spring 2017



Inference
e Given a model, the goals of inference can include:
o Computing the likelihood of observed data p(x™)

o Computing the marginal distribution over a given subset of variables in the model

p(x4)

o Computing the conditional distribution over a subsets of nodes given a disjoint subset of
nodes p(x4|xp)

o Computing a mode of the density (for the above distributions) argmax, p(x)



Variational Inference

e Observed variables x, latent variables Z

e Variational (Bayesian) inference, a.k.a. variational Bayes, is most often used to
approximately infer the posterior distribution over the latent variables

p(z,x|0)
2.z b(z,x|0)

p(z|x,0) =

e We cannot directly compute the posterior distribution for many interesting models

O l.e. the posterior density is in an intfractable form (often involving integrals) which cannot
be easily analytically solved.
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EM and Variational Inference

e The EM algorithm:

t+1 . t
o E-step: — argmin F' (g, 0
g 9 5 q (q’ ) > Need to approximate p(z|x, %)
Intractable when W . p(z,x|0") with VI
model p(z, x|0) is — p(le, v ) — Z p(Z x|9t)
A )

complex ///
.

o M-step: Q1 — arg m@inF (qH—l,Qt)
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Example: Bayesian mixture of Gaussians

e The mean Uy is treated as a (latent) random variable
pe ~N(0,7%) for k=1,...,K

e Foreachdatai=1,...,n
/7 Cat(w).
XL NN(,UZZ.,O'Q).

e We have
O observed variables x;.,

O latent variables Uq., and z;.,
o parameters {12, 1, 0%}

o p(X1.0, Z1;nuu1:k|T2;7T;O-2) = Hle P(Hk) H?ﬂ p(zi)P(il?JZi,/il:K)



Example: Bayesian mixture of Gaussians

e We can write the posterior distribution as

15 () TIy p(2:)p(@il 20, pa:xc )

p(:“’l:Ka Zl:n|x1:n) = -
flh:K ZZl:n nkK=1 p('u“k) Hz':l p(zi)p($i|zi7 ,ulzK)

e The numerator can be computed for any choice of the latent variables

e The problem is the denominator (the marginal probability of the observations)
O This integral cannot easily be computed analytically

e We need some approximation..
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Variational Inference

Recall that in EM, we assume g(z|x) can be
any distribution. E-step shows the optimal
q(z|x) is the posterior distribution.
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Recall that in EM, we assume g(z|x) can be

o any distribution. E-step shows the optimal
Variational Inference q(z|x) is the posterior distribution.

The main idea behind variational inference:

e Choose a family of distributions over the latent variables z;.,,
with its own set of variational parameters v, i.e.

q(z21:m|V)

e Then, we find the setting of the parameters that makes our
approximation ¢ closest to the posterior distribution.

e This is where optimization algorithms come in.

e Then we can use ¢ with the fitted parameters in place of the
posterior.

e E.g.to form predictions about future data, or to investigate the posterior

distribution over the hidden variables, find modes, etc.
15



Variational Inference

e We want to minimize the KL divergence between our approximation q(z|x,v)
and our posterior p(z|x)

KL(q(z|x,v) || p(z]x))

o But we can’t actually minimize this quantity w.r.t g because p(Z|x) is unknown

o how can we minimize the KL divergence?

o Hint: recall the equation that holds for any (:

p(x,z|0)
574 @lx)

£(0;x) = [Eq(z|x) [10 ] + KL(CI(le) 1 p(zlx, 6))
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Variational Inference

e We want to minimize the KL divergence between our approximation q(z|x,v)
and our posterior p(z|x)

KL(q(z|x,v) || p(z|x))

o But we can’t actually minimize this quantity w.r.t g because p(Z|x) is unknown

o how can we minimize the KL divergence?
3(9; X) :i[Eq(z|x) [logp(x,Z| ) i+ KL(CI(le) || p(zlx, 9))
I I q(z]x) ]!

Evidence Lower Bound (ELBO)
e The ELBO is equal to the negative KL divergence up to a constant £(0; x)

e We maximize the ELBO over g to find an “optimal approximation” to p(z|x)
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Variational Inference

e Choose a family of distributions over the latent variables z with its own set of
variational parameters v ,i.e.  q(z|x,v)

e We maximize the ELBO over ¢ to find an “optimal approximation” to p(z|x)
gp(x, z|6)

q(z|x,v)
= argmax,, E;x.)log p(x,2z|0)] — Bz x| log q(z]x, V) |

argmaxy, Egzxv) [lo

palx)

" KL(g(z:v*) || p(z] %)
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Variational Inference

e Choose a family of distributions over the latent variables z with its own set of
variational parameters v ,i.e.  q(z|x,v)

e We maximize the ELBO over ¢ to find an “optimal approximation” to p(z|x)
gp(x, z|6)

q(z|x,v)
= argmax,, E;x.)log p(x,2z|0)] — Bz x| log q(z]x, V) |

argmaxy, Egzxv) [lo

p|x) How do we choose the variational family
’ q(z|x,v)?

" KL(g(z:v*) || p(z] %)
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Variational Inference

e Choose a family of distributions over the latent variables z with its own set of
variational parameters v ,i.e.  q(z|x,v)

e We maximize the ELBO over ¢ to find an “optimal approximation” to p(z|x)
gp(x, z|6)

q(z|x,v)
= argmax,, E;x.)log p(x,2z|0)] — Bz x| log q(z]x, V) |

argmaxy, Egzxv) [lo

p|x) How do we choose the variational family
’ q(z|x,v)?

e Factorized distribution -> mean field VI

" KL(g(z:v*) || p(z] %)

e Mixture of Gaussian distribution -> black-box VI

e Neuvural-based distribution -> Variational Autoencoders
(VAEs)
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Example: Mean Field Variational Inference

e A popular family of variational approximations

e In this type of variational inference, we assume the variational distribution over
the latent variables factorizes as

q(z) = q(21,. .., 2m) = qu(zﬂ
in

O (where we omit variational parameters for ease of notation)

O We refer to q(z;), the variational approximation for a single latent variable, as
“local variational approximation”

e In the above expression, the variational approximation q(z;) over each latent
variable z; is independent
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Black-box Variational Inference



Black-box Variational Inference (BBVI)

e We have derived variational inference specific for Bayesian Gaussian (mixture)
models

e There are innumerable models

e Can we have a solution that does not entail model-specific work?



Black-box Variational Inference (BBVI)

' 1
REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES
variational posterior
ANY MODEL
(P (P \ BLACK BOX q(z|x)
VARIATIONAL
Q\CP INFERENCE
O—-0O—-0O

e Easily use variational inference with any model
e Perform inference with massive data

e No mathematical work beyond specifying the model

(Courtesy: Blei et al., 2018)



Black-box Variational Inference (BBVI)

: ]
REUSABLE A
VARIATIONAL DATA
FAMILIES
variational posterior
ANY MODEL
e a2l

VARIATIONAL
] INFERENCE

e Sample from q(.)
e Form noisy gradients (without model-specific computation)

e Use stochastic optimization

(Courtesy: Blei et al., 2018)



Black-box Variational Inference (BBVI)

e Probabilistic model: x -- observed variables, Z -- latent variables

e Variational distribution q;(z|x) with parameters 4, e.g.,

o Gaussian mixture distribution:

= “A Gaussian mixture model is a universal approximator of densities, in the sense that any
smooth density can be approximated with any specific nonzero amount of error by a Gaussian
mixture model with enough components.” (Deep Learning book, pp.65)

o0 Deep neural networks

e ELBO:

[,(ﬂ) — IIE':q(z|/1) [log p(x, Z)] - IIE:q(z|)l)[ log C[(Zl/l) ]

e Want to compute the gradient w.r.t variational parameters A

26

[Ranganath et al.,14]



Questions?
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