DSC190: Machine Learning with Few Labels

Unsupervised Learning

Zhiting Hu Lecture 15, November 1st, 2024

Outline

Unsupervised learning: Variational Inference

Presentations

- Peiyuan Sun: Reasoning with Language Model is Planning with World Model
- Mingyang Yao: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions
- **Zhaoxiang Feng:** Learning Equilibria in Matching Markets from Bandit Feedback
- Bella Wang: Language Models Are Realistic Tabular Data Generators

Recap: EM Algorithm for GMM

- Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k
- Iterate until convergence:
 - E-step: Evaluate the posterior given current parameters

$$p(z^{k} = 1 \mid \boldsymbol{x}) = \frac{\pi_{k} \mathcal{N} \left(\boldsymbol{x} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N} \left(\boldsymbol{x} \mid \mu_{j}, \Sigma_{j}\right)} := \gamma_{k}$$

M-step: Re-estimate the parameters given current posterior

Recap: EM Algorithm for GMM

- Start: "guess" the centroid μ_k and covariance Σ_k of each of the K clusters
- Loop:

Each EM iteration guarantees to improve the likelihood

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \text{KL} \left(q(\mathbf{z}|\mathbf{x}) \mid\mid p(\mathbf{z}|\mathbf{x}, \theta) \right)$$

[PRML, Chap 9.4]

Summary: EM Algorithm

• The EM algorithm is coordinate-decent on $F(q, \theta)$

$$\circ$$
 E-step: $q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right) = p(\mathbf{z}|\mathbf{x}, \theta^{t})$

$$\circ \text{ M-step: } \theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^{t}\right) = \operatorname{argmax}_{\theta} \sum_{\mathbf{z}} q^{t+1}(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$$

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \text{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$
$$= -F(q, \theta) + \text{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$

Summary: EM Algorithm

• The EM algorithm is coordinate-decent on $F(q, \theta)$

$$\circ$$
 E-step: $q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right) = p(\mathbf{z}|\mathbf{x}, \theta^{t})$

$$\circ \text{ M-step: } \theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^{t}\right) = \operatorname{argmax}_{\theta} \sum_{z} q^{t+1}(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$$

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \text{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$
$$= -F(q, \theta) + \text{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$

• Limitation: need to be able to compute $p(\mathbf{z}|\mathbf{x}, \theta)$, not possible for more complicated models --- solution: Variational inference

Inference

- Given a model, the goals of inference can include:
 - \circ Computing the likelihood of observed data $p(x^*)$
 - Computing the marginal distribution over a given subset of variables in the model
 $p(x_A)$
 - Ocomputing the conditional distribution over a subsets of nodes given a disjoint subset of nodes $p(x_A|x_B)$
 - \circ Computing a mode of the density (for the above distributions) $rgmax_{x} p(x)$
 - 0

- ullet Observed variables $oldsymbol{x}$, latent variables $oldsymbol{z}$
- Variational (Bayesian) inference, a.k.a. variational Bayes, is most often used to approximately infer the posterior distribution over the latent variables

$$p(\mathbf{z}|\mathbf{x},\theta) = \frac{p(\mathbf{z},\mathbf{x}|\theta)}{\sum_{z} p(\mathbf{z},\mathbf{x}|\theta)}$$

- We cannot directly compute the posterior distribution for many interesting models
 - I.e. the posterior density is in an intractable form (often involving integrals) which cannot be easily analytically solved.

EM and Variational Inference

The EM algorithm:

$$\begin{array}{ccc} \text{ E-step: } & q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right) \\ \hline & \text{Intractable when} \\ & \text{model } p(\mathbf{z}, \mathbf{x} | \theta) \text{ is} \\ & \text{complex} \end{array} = \frac{p(\mathbf{z} | \mathbf{x}, \theta^{t})}{\sum_{z} p(\mathbf{z}, \mathbf{x} | \theta^{t})} \\ \hline \end{array}$$

 \circ M-step: $heta^{t+1} = rg\min_{a} F\left(q^{t+1}, heta^{t}
ight)$

Need to approximate $p(\mathbf{z}|\mathbf{x}, \theta^t)$ with VI

Example: Bayesian mixture of Gaussians

• The mean μ_k is treated as a (latent) random variable

$$\mu_k \sim \mathcal{N}(0, \tau^2)$$
 for $k = 1, \dots, K$

• For each data i = 1, ..., n

$$z_i \sim \operatorname{Cat}(\pi)$$
.

$$x_i \sim \mathcal{N}(\mu_{z_i}, \sigma^2).$$

- We have
 - \circ observed variables $x_{1:n}$
 - \circ latent variables $\mu_{1:k}$ and $z_{1:n}$
 - \circ parameters $\{\tau^2, \pi, \sigma^2\}$

•
$$p(x_{1:n}, z_{1:n}, \mu_{1:k} | \tau^2, \pi, \sigma^2) = \prod_{k=1}^K p(\mu_k) \prod_{i=1}^n p(z_i) p(x_i | z_i, \mu_{1:K})$$

Example: Bayesian mixture of Gaussians

We can write the posterior distribution as

$$p(\mu_{1:K}, z_{1:n}|x_{1:n}) = \frac{\prod_{k=1}^{K} p(\mu_k) \prod_{i=1}^{n} p(z_i) p(x_i|z_i, \mu_{1:K})}{\int_{\mu_{1:K}} \sum_{z_{1:n}} \prod_{k=1}^{K} p(\mu_k) \prod_{i=1}^{n} p(z_i) p(x_i|z_i, \mu_{1:K})}$$

- The numerator can be computed for any choice of the latent variables
- The problem is the denominator (the marginal probability of the observations)
 - This integral cannot easily be computed analytically
- We need some approximation...

Recall that in EM, we assume q(z|x) can be any distribution. E-step shows the optimal q(z|x) is the posterior distribution.

Recall that in EM, we assume q(z|x) can be any distribution. E-step shows the optimal q(z|x) is the posterior distribution.

The main idea behind variational inference:

• Choose a family of distributions over the latent variables $z_{1:m}$ with its own set of variational parameters ν , i.e.

$$q(z_{1:m}|\nu)$$

- Then, we find the setting of the parameters that makes our approximation *q* closest to the posterior distribution.
 - This is where optimization algorithms come in.
- Then we can use q with the fitted parameters in place of the posterior.
 - E.g. to form predictions about future data, or to investigate the posterior distribution over the hidden variables, find modes, etc.

• We want to minimize the KL divergence between our approximation $q(\mathbf{z}|\mathbf{x}, \mathbf{v})$ and our posterior $p(\mathbf{z}|\mathbf{x})$

$$KL(q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu}) || p(\boldsymbol{z}|\boldsymbol{x}))$$

- \circ But we can't actually minimize this quantity w.r.t q because $p(oldsymbol{z}|oldsymbol{x})$ is unknown
- Question: how can we minimize the KL divergence?
 - \circ **Hin**t: recall the equation that holds for any q:

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \text{KL} \left(q(\mathbf{z}|\mathbf{x}) \mid\mid p(\mathbf{z}|\mathbf{x}, \theta) \right)$$

• We want to minimize the KL divergence between our approximation $q(\mathbf{z}|\mathbf{x}, \mathbf{v})$ and our posterior $p(\mathbf{z}|\mathbf{x})$

$$KL(q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu}) || p(\boldsymbol{z}|\boldsymbol{x}))$$

- \circ But we can't actually minimize this quantity w.r.t q because $p(oldsymbol{z}|oldsymbol{x})$ is unknown
- Question: how can we minimize the KL divergence?

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \text{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$

Evidence Lower Bound (ELBO)

- The ELBO is equal to the negative KL divergence up to a constant $\ell(\theta;x)$
- ullet We maximize the ELBO over q to find an "optimal approximation" to $p(oldsymbol{z}|oldsymbol{x})$

- Choose a family of distributions over the latent variables z with its own set of variational parameters v, i.e. q(z|x,v)
- We maximize the ELBO over q to find an "optimal approximation" to $p(\mathbf{z}|\mathbf{x})$

$$\begin{aligned} & \operatorname{argmax}_{\nu} \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\nu)} \left[\log \frac{p(\mathbf{x},\mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x},\nu)} \right] \\ &= \operatorname{argmax}_{\nu} \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\nu)} [\log p(\mathbf{x},\mathbf{z}|\theta)] - \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\nu)} [\log q(\mathbf{z}|\mathbf{x},\nu)] \end{aligned}$$

- Choose a family of distributions over the latent variables z with its own set of variational parameters v, i.e. q(z|x,v)
- We maximize the ELBO over q to find an "optimal approximation" to $p(\mathbf{z}|\mathbf{x})$

$$\begin{aligned} & \operatorname{argmax}_{\nu} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} \left[\log \frac{p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta})}{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} \right] \\ &= \operatorname{argmax}_{\nu} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} [\log p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} [\log q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})] \end{aligned}$$

Question: How do we choose the variational family $q(\mathbf{z}|\mathbf{x}, \mathbf{v})$?

- Choose a family of distributions over the latent variables z with its own set of variational parameters v, i.e. q(z|x,v)
- We maximize the ELBO over q to find an "optimal approximation" to $p(\mathbf{z}|\mathbf{x})$

$$\begin{aligned} & \operatorname{argmax}_{\nu} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} \left[\log \frac{p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta})}{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} \right] \\ &= \operatorname{argmax}_{\nu} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} [\log p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} [\log q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})] \end{aligned}$$

Question: How do we choose the variational family $q(\mathbf{z}|\mathbf{x}, \mathbf{v})$?

- Factorized distribution -> mean field VI
- Mixture of Gaussian distribution -> black-box VI
- Neural-based distribution -> Variational Autoencoders (VAEs)

Example: Mean Field Variational Inference

- A popular family of variational approximations
- In this type of variational inference, we assume the variational distribution over the latent variables factorizes as

$$q(\mathbf{z}) = q(z_1, \dots, z_m) = \prod_{j=1}^m q(z_j)$$

- \circ (where we omit variational parameters for ease of notation)
- \circ We refer to $q(z_j)$, the variational approximation for a single latent variable, as a "local variational approximation"
- In the above expression, the variational approximation $q(z_j)$ over each latent variable z_i is independent

Black-box Variational Inference

 We have derived variational inference specific for Bayesian Gaussian (mixture) models

There are innumerable models

Can we have a solution that does not entail model-specific work?

- Easily use variational inference with any model
- Perform inference with massive data
- No mathematical work beyond specifying the model

24

- Sample from q(.)
- Form noisy gradients (without model-specific computation)
- Use stochastic optimization

25

- Probabilistic model: x -- observed variables, z -- latent variables
- Variational distribution $q_{\lambda}(\mathbf{z}|\mathbf{x})$ with parameters λ , e.g.,
 - Gaussian mixture distribution:
 - "A Gaussian mixture model is a universal approximator of densities, in the sense that any smooth density can be approximated with any specific nonzero amount of error by a Gaussian mixture model with enough components." (Deep Learning book, pp.65)
 - Deep neural networks
- ELBO:

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(\mathbf{z}|\lambda)}[\log p(\mathbf{x}, \mathbf{z})] - \mathbb{E}_{q(\mathbf{z}|\lambda)}[\log q(\mathbf{z}|\lambda)]$$

ullet Want to compute the gradient w.r.t variational parameters λ

Questions?