DSC190: Machine Learning with Few Labels

Unsupervised Learning

Zhiting Hu Lecture 14, October 30, 2024

HALICIOĞLU DATA SCIENCE INSTITUTE

Outline

Unsupervised learning: EM

Presentations

- Yuan Gao: TD-MPC2: Scalable, Robust World Models for Continuous Control
- Ana Truong: Jailbreaking LLM-Controlled Robots
- Kevin Chan: Reverse Forward Curriculum Learning for Extreme Sample and Demonstration Efficiency in Reinforcement Learning
- Gabriel Cha: VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance

Recap: EM Algorithm

- Observed variables x, latent variables z
- To learn a model $p(\mathbf{x}, \mathbf{z} | \theta)$, we want to maximize the marginal log-likelihood

$$\ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{z} p(\mathbf{x}, \mathbf{z}|\theta)$$

But it's too difficult

• EM algorithm:

Ο

- maximize a lower bound of $\ell(\theta; x)$
- Or equivalently, minimize an upper bound of $-\ell(\theta; x)$
- Key equation:

$$\ell(\theta; \mathbf{x}) = \begin{bmatrix} \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \mathrm{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta)) \\ = -\frac{F(q, \theta)}{F(q, \theta)} + \mathrm{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational free energy

Recap: EM Algorithm

• The EM algorithm is coordinate-decent on $F(q, \theta)$

• E-step:
$$q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right) = p(\mathbf{z}|\mathbf{x}, \theta^{t})$$

 the posterior distribution over the latent variables given the data and the current parameters

• M-step:
$$\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^t\right) = \operatorname{argmax}_{\theta} \sum_{z} q^{t+1}(z|x) \log p(x, z|\theta)$$

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \mathrm{KL} \left(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta) \right)$$
$$= -F(q, \theta) + \mathrm{KL} \left(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta) \right)$$

- Consider a mixture of K Gaussian components:
 - *Z* is a latent class indicator vector:

$$p(z_n) = \operatorname{multi}(z_n : \pi) = \prod_k (\pi_k)^{z_n^k}$$

 \square X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(x_n \mid z_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2}(x_n - \mu_k)^T \Sigma_k^{-1}(x_n - \mu_k)\right\}$$

• The likelihood of a sample:

mixture component

$$p(x_n|\mu,\Sigma) = \sum_k p(z^k = 1 | \pi) p(x, | z^k = 1, \mu, \Sigma)$$

=
$$\sum_{z_n} \prod_k \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_k \pi_k N(x, | \mu_k, \Sigma_k)$$

• E-step: computing the posterior of z_n given the current estimate of the parameters (i.e., π , μ , Σ)

$$p(z^{k} = 1 \mid \boldsymbol{x}) = \frac{p(z^{k} = 1)p(\boldsymbol{x} \mid z^{k} = 1)}{p(\boldsymbol{x})}$$
$$= \frac{p(z^{k} = 1)p(\boldsymbol{x} \mid z^{k} = 1)}{\sum_{j=1}^{K} p(z^{j} = 1)p(\boldsymbol{x} \mid z^{j} = 1)}$$
$$= \frac{\pi_{k} \mathcal{N} (\boldsymbol{x} \mid \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N} (\boldsymbol{x} \mid \mu_{j}, \Sigma_{j})}$$
$$:= \gamma_{k}$$

- M-step: computing the parameters given the current estimate of Z_n
 - Once we have $q^{t+1}(z^k | x) = p(z^k | x, \theta^t) = \gamma^k$, we can compute the expected likelihood:

$$\theta^{t+1} = \operatorname{argmax}_{\theta} \sum_{k} q^{t+1} (z^{k} = 1 | x) \log p(x, z^{k} = 1 | \theta)$$
$$\mathbb{E}_{q^{t+1}} [\log (p(x, z | \theta))]$$
$$= \sum_{k} \gamma_{k} (\log p(z^{k} = 1 | \theta) + \log P(x | z^{k} = 1, \theta))$$
$$= \sum_{k} \gamma_{k} \log \pi_{k} + \sum_{k} \gamma_{k} \log \mathcal{N}(x; \mu_{k}, \Sigma_{k})$$

• We need to fit K Gaussians, just need to weight examples by γ_k

• M-step: computing the parameters given the current estimate of Z_n

$$\pi_{k}^{*} = \arg \max \langle l_{c}(\boldsymbol{\theta}) \rangle, \qquad \Rightarrow \ \frac{\partial}{\partial \pi_{k}} \langle l_{c}(\boldsymbol{\theta}) \rangle = 0, \forall k, \quad \text{s.t.} \sum_{k} \pi_{k} = 1$$
$$\Rightarrow \ \pi_{k}^{*} = \frac{\sum_{n} \langle z_{n}^{k} \rangle_{q^{(t)}}}{N} = \frac{\sum_{n} \tau_{n}^{k(t)}}{N} = \frac{\langle n_{k} \rangle}{N}$$

$$\mu_k^* = \arg \max \langle l(\mathbf{\theta}) \rangle, \quad \Rightarrow \quad \mu_k^{(t+1)} = \frac{\sum_n \tau_n^{k(t)} x_n}{\sum_n \tau_n^{k(t)}}$$

$$\Sigma_k^* = \arg \max \langle l(\boldsymbol{\theta}) \rangle, \quad \Rightarrow \quad \Sigma_k^{(t+1)} = \frac{\sum_n \tau_n^{k(t)} (x_n - \mu_k^{(t+1)}) (x_n - \mu_k^{(t+1)})^T}{\sum_n \tau_n^{k(t)}}$$

Fact:

$$\frac{\partial \log |A^{-1}|}{\partial A^{-1}} = A^{T}$$

$$\frac{\partial \mathbf{x}^{T} A \mathbf{x}}{\partial A} = \mathbf{x} \mathbf{x}^{T}$$

EM Algorithm for GMM: Quick Summary

- Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k
- Iterate until convergence:
 - E-step: Evaluate the posterior given current parameters

$$p(z^{k} = 1 \mid \boldsymbol{x}) = \frac{\pi_{k} \mathcal{N} \left(\boldsymbol{x} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N} \left(\boldsymbol{x} \mid \mu_{j}, \Sigma_{j}\right)} := \gamma_{k}$$

• M-step: Re-estimate the parameters given current posterior

- Start: "guess" the centroid μ_k and covariance Σ_k of each of the K clusters
- Loop:

Summary: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces
 - Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - Using this "complete" data, find the maximum likelihood parameter estimates.

Summary: EM Algorithm

• The EM algorithm is coordinate-decent on $F(q, \theta)$

• E-step:
$$q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right) = p(\mathbf{z}|\mathbf{x}, \theta^{t})$$

• M-step:
$$\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^t\right) = \operatorname{argmax}_{\theta} \sum_{z} q^{t+1}(z|x) \log p(x, z|\theta)$$

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \mathrm{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$
$$= -F(q, \theta) + \mathrm{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$

Each EM iteration guarantees to improve the likelihood

$$\ell(\theta; \boldsymbol{x}) = \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z}|\theta)}{q(\boldsymbol{z}|\boldsymbol{x})} \right] + \mathrm{KL} \left(q(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}|\boldsymbol{x}, \theta) \right)$$

Summary: EM Algorithm

• The EM algorithm is coordinate-decent on $F(q, \theta)$

• E-step:
$$q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right) = p(\mathbf{z}|\mathbf{x}, \theta^{t})$$

• M-step:
$$\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^t\right) = \operatorname{argmax}_{\theta} \sum_{z} q^{t+1}(z|x) \log p(x, z|\theta)$$

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \mathrm{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$
$$= -F(q, \theta) + \mathrm{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$

• Limitation: need to be able to compute $p(\mathbf{z}|\mathbf{x}, \theta)$, not possible for more complicated models --- solution: Variational inference

Content adapted from CMU 10-708 Spring 2017

Inference

- Given a model, the goals of inference can include:
 - Computing the likelihood of observed data $p(x^*)$
 - Computing the marginal distribution over a given subset of variables in the model $p(\mathbf{x}_A)$
 - Computing the conditional distribution over a subsets of nodes given a disjoint subset of nodes $p(x_A | x_B)$
 - Computing a mode of the density (for the above distributions) $\operatorname{argmax}_{x} p(x)$

0

- Observed variables x, latent variables z
- Variational (Bayesian) inference, a.k.a. **variational Bayes**, is most often used to approximately infer the conditional distribution over the latent variables given the observations (and parameters)
 - i.e., the **posterior distribution** over the latent variables

$$p(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta}) = \frac{p(\boldsymbol{z},\boldsymbol{x}|\boldsymbol{\theta})}{\sum_{z} p(\boldsymbol{z},\boldsymbol{x}|\boldsymbol{\theta})}$$

Motivating Example

- Why do we often need to use an approximate inference methods (such as variational Bayes) to compute the posterior distribution?
- It's because we cannot directly compute the posterior distribution for many interesting models
 - I.e. the posterior density is in an intractable form (often involving integrals) which cannot be easily analytically solved.

EM and Variational Inference

• The EM algorithm:

• E-step:
$$q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right)$$

Intractable when
model $p(\mathbf{z}, \mathbf{x}|\theta)$ is
complex
• M-step: $\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^{t}\right)$

Approximate $p(z|x, \theta^t)$: • find a tractable $q(z|x, \nu^*)$ that is closest to $p(z|x, \theta^t)$

Motivating Example

- Why do we often need to use an approximate inference methods (such as variational Bayes) to compute the posterior distribution?
- It's because we cannot directly compute the posterior distribution for many interesting models
 - I.e. the posterior density is in an intractable form (often involving integrals) which cannot be easily analytically solved.
- As a motivating example, we will try to compute the posterior for a (Bayesian) mixture of Gaussians.

Bayesian mixture of Gaussians

• The mean μ_k is treated as a (latent) random variable

$$\mu_k \sim \mathcal{N}(0, \tau^2)$$
 for $k = 1, \ldots, K$

- For each data i = 1, ..., n
 - $z_i \sim \operatorname{Cat}(\pi).$ $x_i \sim \mathcal{N}(\mu_{z_i}, \sigma^2).$
- We have
 - \circ observed variables $x_{1:n}$
 - \circ latent variables $\mu_{1:k}$ and $z_{1:n}$
 - parameters $\{\tau^2, \pi, \sigma^2\}$
- $p(x_{1:n}, z_{1:n}, \mu_{1:k} | \tau^2, \pi, \sigma^2) = \prod_{k=1}^{K} p(\mu_k) \prod_{i=1}^{n} p(z_i) p(x_i | z_i, \mu_{1:K})$

Bayesian mixture of Gaussians

• We can write the posterior distribution as

$$p(\mu_{1:K}, z_{1:n} | x_{1:n}) = \frac{\prod_{k=1}^{K} p(\mu_k) \prod_{i=1}^{n} p(z_i) p(x_i | z_i, \mu_{1:K})}{\int_{\mu_{1:K}} \sum_{z_{1:n}} \prod_{k=1}^{K} p(\mu_k) \prod_{i=1}^{n} p(z_i) p(x_i | z_i, \mu_{1:K})}$$

- The numerator can be computed for any choice of the latent variables
- The problem is the denominator (the marginal probability of the observations)
 - This integral cannot easily be computed analytically
- We need some approximation..

The main idea behind variational inference:

• Choose a family of distributions over the latent variables $z_{1:m}$ with its own set of variational parameters ν , i.e.

 $q(z_{1:m}|
u)$

- Then, we find the setting of the parameters that makes our approximation *q* closest to the posterior distribution.
 - This is where optimization algorithms come in.
- Then we can use q with the fitted parameters in place of the posterior.
 - E.g. to form predictions about future data, or to investigate the posterior distribution over the hidden variables, find modes, etc.

• We want to minimize the KL divergence between our approximation $q(\mathbf{z}|\mathbf{x})$ and our posterior $p(\mathbf{z}|\mathbf{x})$

$$KL(q(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}|\boldsymbol{x}))$$

- But we can't actually minimize this quantity w.r.t q because $p(\boldsymbol{z}|\boldsymbol{x})$ is unknown
- Question: how can we minimize the KL divergence?
 - **Hint:** recall what we did in EM:

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \mathrm{KL} \left(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta) \right)$$

• We want to minimize the KL divergence between our approximation $q(\mathbf{z}|\mathbf{x})$ and our posterior $p(\mathbf{z}|\mathbf{x})$

$$\mathrm{KL}(q(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}|\boldsymbol{x}))$$

- But we can't actually minimize this quantity w.r.t q because $p(\boldsymbol{z}|\boldsymbol{x})$ is unknown
- **Question:** how can we minimize the KL divergence?

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \text{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$

Evidence Lower Bound (ELBO)

- The ELBO is equal to the negative KL divergence up to a constant $\ell(\theta; x)$
- We maximize the ELBO over q to find an "optimal approximation" to $p(\boldsymbol{z}|\boldsymbol{x})$

- Choose a family of distributions over the latent variables z with its own set of variational parameters v, i.e. q(z|x, v)
- We maximize the ELBO over q to find an "optimal approximation" to $p(\boldsymbol{z}|\boldsymbol{x})$

$$\begin{aligned} \arg \max_{\nu} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta})}{q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})} \right] \\ = \arg \max_{\nu} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})} [\log p(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})} [\log q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})] \end{aligned}$$

- Choose a family of distributions over the latent variables z with its own set of variational parameters v, i.e. q(z|x, v)
- We maximize the ELBO over q to find an "optimal approximation" to $p(\boldsymbol{z}|\boldsymbol{x})$

$$\begin{aligned} \arg \max_{\nu} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta})}{q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})} \right] \\ = \arg \max_{\nu} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})} [\log p(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})} [\log q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})] \end{aligned}$$

Question: How do we choose the variational family q(z|x, v)?

- Choose a family of distributions over the latent variables z with its own set of variational parameters v, i.e. q(z|x, v)
- We maximize the ELBO over q to find an "optimal approximation" to $p(\boldsymbol{z}|\boldsymbol{x})$

$$\begin{aligned} \arg \max_{\nu} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\nu})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta})}{q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})} \right] \\ = \arg \max_{\nu} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})} [\log p(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})} [\log q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\nu})] \end{aligned}$$

Question: How do we choose the variational family q(z|x,v)?

- Factorized distribution -> mean field VI
- Mixture of Gaussian distribution -> black-box VI
- Neural-based distribution -> Variational Autoencoders (VAEs)

Presentations

Questions?