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Outline

Unsupervised learning: EM

Presentations

● Yuan Gao: TD-MPC2: Scalable, Robust World Models for Continuous Control

● Ana Truong: Jailbreaking LLM-Controlled Robots

● Kevin Chan: Reverse Forward Curriculum Learning for Extreme Sample and 
Demonstration Efficiency in Reinforcement Learning

● Gabriel Cha: VLG-CBM: Training Concept Bottleneck Models with Vision-Language 
Guidance
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Recap: EM Algorithm

● Observed variables 𝒙, latent variables 𝒛

● To learn a model 𝑝 𝒙, 𝒛|𝜃 , we want to maximize the marginal log-likelihood

◯ But it’s too difficult

● EM algorithm: 

◯ maximize a lower bound of ℓ 𝜃; 𝒙

◯ Or equivalently, minimize an upper bound of −ℓ 𝜃; 𝒙

● Key equation:
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ℓ 𝜃; 𝒙 = 𝔼𝑞(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃

𝑞 𝒛 𝒙
+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙  || 𝑝 𝒛 𝒙, 𝜃

ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = log 
𝑧

𝑝(𝒙, 𝒛|𝜃)

Evidence Lower Bound (ELBO)

Variational free energy



Recap: EM Algorithm

● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

◯ E-step:

▪ the posterior distribution over the latent variables given the data and the current 

parameters

◯ M-step: 
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= 𝑝(𝒛|𝒙, 𝜃𝑡)

ℓ 𝜃; 𝒙 = 𝔼𝑞(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃

𝑞 𝒛 𝒙
+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙  || 𝑝 𝒛 𝒙, 𝜃

= argmax𝜃 
𝑧

𝑞𝑡+1 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Example: Gaussian Mixture Models (GMMs)

● Consider a mixture of K Gaussian components:
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Example: Gaussian Mixture Models (GMMs)

● E-step: computing the posterior of 𝑧𝑛 given the current estimate of the parameters 
(i.e., 𝜋 , 𝜇, Σ)
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Example: Gaussian Mixture Models (GMMs)

● M-step: computing the parameters given the current estimate of 𝑧𝑛

◯ Once we have 𝑞𝑡+1 𝑧𝑘 𝑥 = 𝑝 𝑧𝑘 𝑥, 𝜃𝑡 = 𝛾𝑘 , we can compute the expected 

likelihood:

◯ We need to fit 𝐾 Gaussians, just need to weight examples by 𝛾𝑘  
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𝜃𝑡+1 = argmax𝜃 
𝑘

𝑞𝑡+1 𝑧𝑘 = 1 𝑥 log 𝑝(𝑥, 𝑧𝑘 = 1|𝜃)



Example: Gaussian Mixture Models (GMMs)

● M-step: computing the parameters given the current estimate of 𝑧𝑛
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EM Algorithm for GMM: Quick Summary

● Initialize the means 𝜇𝑘 , covariances Σ𝑘 and mixing coefficients 𝜋𝑘 

● Iterate until convergence: 

◯ E-step: Evaluate the posterior given current parameters

◯ M-step: Re-estimate the parameters given current posterior 
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Example: Gaussian Mixture Models (GMMs)

● Start: “guess” the centroid 𝜇𝑘 and covariance Σ𝑘 of each of the K clusters 

● Loop:
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Summary: EM Algorithm

● A way of maximizing likelihood function for latent variable models. Finds MLE of 
parameters when the original (hard) problem can be broken up into two (easy) pieces 

◯ Estimate some “missing” or “unobserved” data from observed data and current parameters. 

◯ Using this “complete” data, find the maximum likelihood parameter estimates. 
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Summary: EM Algorithm

● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

◯ E-step:

◯ M-step:
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= 𝑝(𝒛|𝒙, 𝜃𝑡)

ℓ 𝜃; 𝒙 = 𝔼𝑞(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃

𝑞 𝒛 𝒙
+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙  || 𝑝 𝒛 𝒙, 𝜃

= argmax𝜃 
𝑧

𝑞𝑡+1 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Each EM iteration guarantees to improve the likelihood 
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ℓ 𝜃; 𝒙 = 𝔼𝑞(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃

𝑞 𝒛 𝒙
+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

E-step M-step

[PRML, Chap 9.4]



Summary: EM Algorithm

● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

◯ E-step:

◯ M-step:

● Limitation: need to be able to compute 𝑝 𝒛 𝒙, 𝜃 , not possible for more 
complicated models --- solution: Variational inference
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= 𝑝(𝒛|𝒙, 𝜃𝑡)

ℓ 𝜃; 𝒙 = 𝔼𝑞(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃

𝑞 𝒛 𝒙
+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙  || 𝑝 𝒛 𝒙, 𝜃

= argmax𝜃 
𝑧

𝑞𝑡+1 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)
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Variational Inference

Content adapted from CMU 10-708 Spring 2017



Inference

● Given a model, the goals of inference can include:

◯ Computing the likelihood of observed data 𝑝(𝒙∗)

◯ Computing the marginal distribution over a given subset of variables in the model 

𝑝(𝒙𝐴)

◯ Computing the conditional distribution over a subsets of nodes given a disjoint subset of 

nodes 𝑝(𝒙𝐴|𝒙𝐵)

◯ Computing a mode of the density (for the above distributions) argmax𝒙 𝑝 𝒙

◯ ….
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Variational Inference

● Observed variables 𝒙, latent variables 𝒛

● Variational (Bayesian) inference, a.k.a. variational Bayes, is most often used to 
approximately infer the conditional distribution over the latent variables given the 
observations (and parameters)

◯ i.e., the posterior distribution over the latent variables 
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𝑝 𝒛 𝒙, 𝜃 =
𝑝(𝒛, 𝒙|𝜃)

σ𝑧 𝑝(𝒛, 𝒙|𝜃)



Motivating Example 

● Why do we often need to use an approximate inference methods (such as 
variational Bayes) to compute the posterior distribution? 

● It’s because we cannot directly compute the posterior distribution for many 
interesting models 

◯ I.e. the posterior density is in an intractable form (often involving integrals) which cannot 
be easily analytically solved. 
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EM and Variational Inference

● The EM algorithm:

◯ E-step:

◯ M-step:
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= 𝑝 𝒛 𝒙, 𝜃𝑡 =
𝑝(𝒛, 𝒙|𝜃𝑡)

σ𝑧 𝑝(𝒛, 𝒙|𝜃𝑡)

Intractable when 

model 𝑝 𝒛, 𝒙 𝜃  is 

complex

Approximate 𝑝 𝒛 𝒙, 𝜃𝑡 : 
◯ find a tractable 𝑞 𝒛 𝒙, 𝝂∗  that is 

closest to 𝑝 𝒛 𝒙, 𝜃𝑡



Motivating Example 

● Why do we often need to use an approximate inference methods (such as 
variational Bayes) to compute the posterior distribution? 

● It’s because we cannot directly compute the posterior distribution for many 
interesting models 

◯ I.e. the posterior density is in an intractable form (often involving integrals) which cannot 
be easily analytically solved. 

● As a motivating example, we will try to compute the posterior for a (Bayesian) 
mixture of Gaussians. 
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Bayesian mixture of Gaussians

● The mean 𝜇𝑘 is treated as a (latent) random variable

● For each data 𝑖 = 1, … , 𝑛

● We have 

◯ observed variables 𝑥1:𝑛 

◯ latent variables 𝜇1:𝑘 and 𝑧1:𝑛

◯ parameters {𝜏2, 𝜋, 𝜎2}

● 𝑝 𝑥1:𝑛, 𝑧1:𝑛, 𝜇1:𝑘 𝜏2, 𝜋, 𝜎2 =
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Bayesian mixture of Gaussians

● We can write the posterior distribution as 

● The numerator can be computed for any choice of the latent variables

● The problem is the denominator (the marginal probability of the observations)

◯ This integral cannot easily be computed analytically

● We need some approximation..
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Variational Inference
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The main idea behind variational inference:



Variational Inference

● We want to minimize the KL divergence between our approximation 𝑞(𝒛|𝒙) and 
our posterior 𝑝(𝒛|𝒙) 

◯ But we can’t actually minimize this quantity w.r.t 𝑞 because 𝑝(𝒛|𝒙) is unknown

● Question: how can we minimize the KL divergence?

◯ Hint: recall what we did in EM:
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KL 𝑞 𝒛|𝒙  || 𝑝(𝒛|𝒙)

ℓ 𝜃; 𝒙 = 𝔼𝑞(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃

𝑞 𝒛 𝒙
+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃



Variational Inference

● We want to minimize the KL divergence between our approximation 𝑞(𝒛|𝒙) and 
our posterior 𝑝(𝒛|𝒙) 

◯ But we can’t actually minimize this quantity w.r.t 𝑞 because 𝑝(𝒛|𝒙) is unknown

● Question: how can we minimize the KL divergence?

● The ELBO is equal to the negative KL divergence up to a constant ℓ 𝜃; 𝒙

● We maximize the ELBO over 𝑞 to find an “optimal approximation” to 𝑝(𝒛|𝒙)
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KL 𝑞 𝒛|𝒙  || 𝑝(𝒛|𝒙)

ℓ 𝜃; 𝒙 = 𝔼𝑞(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃

𝑞 𝒛 𝒙
+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

Evidence Lower Bound (ELBO)



Variational Inference

● Choose a family of distributions over the latent variables 𝒛 with its own set of 
variational parameters 𝜈 , i.e. 

● We maximize the ELBO over 𝑞 to find an “optimal approximation” to 𝑝 𝒛 𝒙
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argmax𝜈 𝔼𝑞(𝒛|𝒙,𝝂) log
𝑝 𝒙, 𝒛|𝜃

𝑞 𝒛 𝒙, 𝝂

= argmax𝜈  𝔼𝑞(𝒛|𝒙,𝝂) log 𝑝 𝒙, 𝒛|𝜃 − 𝔼𝑞(𝒛|𝒙,𝝂)  log 𝑞 𝒛 𝒙, 𝝂  

𝑞(𝒛|𝒙, 𝒗)



Variational Inference

● Choose a family of distributions over the latent variables 𝒛 with its own set of 
variational parameters 𝜈 , i.e. 

● We maximize the ELBO over 𝑞 to find an “optimal approximation” to 𝑝 𝒛 𝒙

27

argmax𝜈 𝔼𝑞(𝒛|𝒙,𝝂) log
𝑝 𝒙, 𝒛|𝜃

𝑞 𝒛 𝒙, 𝝂

= argmax𝜈  𝔼𝑞(𝒛|𝒙,𝝂) log 𝑝 𝒙, 𝒛|𝜃 − 𝔼𝑞(𝒛|𝒙,𝝂)  log 𝑞 𝒛 𝒙, 𝝂  

𝑞(𝒛|𝒙, 𝒗)

Question: How do we choose the variational family 
𝑞(𝒛|𝒙, 𝒗)?



Variational Inference

● Choose a family of distributions over the latent variables 𝒛 with its own set of 
variational parameters 𝜈 , i.e. 

● We maximize the ELBO over 𝑞 to find an “optimal approximation” to 𝑝 𝒛 𝒙
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argmax𝜈 𝔼𝑞(𝒛|𝒙,𝝂) log
𝑝 𝒙, 𝒛|𝜃

𝑞 𝒛 𝒙, 𝝂

= argmax𝜈  𝔼𝑞(𝒛|𝒙,𝝂) log 𝑝 𝒙, 𝒛|𝜃 − 𝔼𝑞(𝒛|𝒙,𝝂)  log 𝑞 𝒛 𝒙, 𝝂  

𝑞(𝒛|𝒙, 𝒗)

Question: How do we choose the variational family 
𝑞(𝒛|𝒙, 𝒗)?

● Factorized distribution -> mean field VI

● Mixture of Gaussian distribution -> black-box VI

● Neural-based distribution -> Variational Autoencoders 
(VAEs)



Presentations
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Questions?
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