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Logistics

e Class webpage: http://zhiting.ucsd.edu/teaching /dsc190fall2024

DSC190-Fall2024 Logistics Lectures Homework Project

Machine Learning with Few Labels

DSC 190 - Fall 2024 - UC San Diego

Machine learning is about computational methods that enable machines to learn concepts from experience. Many of
the successful results of machine learning rely on learning with massive amounts of data labels. However, in many real
problems we do not have enough labeled data, but instead have access to other forms of experience, such as
structured knowledge, constraints, feedback signals from the environment, auxiliary models from related tasks, etc.
This course focuses on those learning settings with few labels. This course is designed to give students a holistic
understanding of related problems and methodologies (such as large language/multi-modal models, world models,
self/weakly/un-supervised learning, transfer learning, meta-learning, reinforcement learning, adversarial
learning, knowledge constrained learning, panoramic learning), different possible perspectives of formulating the
same problems, the underlying connections between the diversity of algorithms, and open questions in the field.
Students will read, present, and discuss papers, and complete course projects.



Logistics

Instructor: Zhiting Hu

Email: zhh019@ucsd.edu
Office hours: Mon 3:30-4:30pm
Location: HDSI 442

e Discussion forum: Piazza

e Homework & writeup submission: Gradescope

TA: Yuheng Zha

Email: yzha@ucsd.edu
Office hours: Thu 3:30-4:30pm
Location: HDSI 437



Logistics: grading

2 Homework assignments (30% of grade)
Paper presentation (20%)

Course project (46%)

Participation (4%)



Logistics: grading

e 2 Homework assignments (30% of grade)
© Theory exercises, implementation exercises

o 3 total late days without penalty
e Paper presentation (20%)
e Course project (46%)
e Participation (4%)



Logistics: grading

e 2 Homework assignments (30% of grade)

e Paper presentation (20%)
o Each individual student will give an oral presentation on a research paper
= 10 mins = 8 mins presentation + 2 mins QA (tentative)

o Timing -- hard time constraint: if you run over the expected time limit (8min), there will be no QA session for
your presentation, and thus no credits for the QA component

= Critical thinking: discuss both strengths and limitations of the paper
=  Sign up in a google sheet (TBA)
= Design quiz questions for audience
o Peer grading: other students will rate and give feedback (5% of grade)

o Starting later part of the quarter, after the class size is stabilized
e Course project (46%)
e Participation (4%)



Logistics: grading

e 2 Homework assignments (30% of grade)
e Paper presentation (20%)

e Course project (46%)
0 3 or 4-member team to be formed and sign up in a google sheet (TBA)
o Designed to be as similar as possible to researching and writing a conference-style
paper:
= Due to tight timeline, fine to use synthetic/toy data for proof-of-concept experiments +
explanation of theory /intuition of why your approach is likely to work

o Proposal : 2 pages excluding references (10%) -- due in 2 or 3 weeks (TBA)
=  Qverview of project idegq, literature review, potential datasets and evaluation, milestones
o Midway Report : 4-5 pages excluding references (20%)
O Presentation : oral presentation, 15-20mins (20%)
= Peer grading (5%)
o Final Report : 6-8 pages excluding references (50%)



Logistics: grading

2 Homework assignments (30% of grade)

Paper presentation (20%)

Course project (46%)

Participation (4%)
o Submission of quiz answers and feedback on paper/project presentations
o0 Contribution to discussion on Piazza

0 Completion of mid-quarter and final course evaluation
O Any constructive suggestions



Have Large Language Models (LLMs) Solved ML/AI?

What are a couple of meals | can make with this?

. Based on the items visible in the fridge, here are a couple of meal ideas:

1) Yogurt parfait: Layer yogurt, strawberries, and blueberries in a bowl or
jar. Top with honey or nuts for added texture and flavor.

2) Carrot and hummus wrap: Spread hummus on a tortilla or wrap. Top with
shredded carrots and any other desired veggies. Roll up and enjoy!

GPT-4



Have Large Language Models (LLMs) Solved ML/AI?
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Have Large Language Models (LLMs) Solved ML/AI?

A year ago

Blog

Introducing ChatGPT

We've trained a model called ChatGPT which interactsina
conversational way. The dialogue format makes it possible
for ChatGPT to answer followup questions, admit its
mistakes, challenge incorrect premises, and reject
inappropriate requests.

\ Try ChatGPT ‘ Read about ChatGPT Plus

Al doomsday imagined by
ChatGPT + DALL-E3




LLMs are great... but fundamentally limited

Language Embodied Social
Reasoning Reasoning Reasoning

12



Language
Reasoning

Limitations in LLMs

e Language reasoning (e.g., math, logics, common sense, ...)

Explain the process of 3452X253

10356 (3452 x 3)
6904 (3452 x 5, shifted one position to the left)
+3452 (3452 x 2, shifted two positions to the left)

873256 (correct answer:
So, 3452x253 = 873256. 873356)

13



Language
Reasoning

Limitations in LLMs
e Language reasoning (e.g., math, logics, common sense, ...)

Here is a plan for surveying the mental health of
Problem: Track the sameundergraduate students on our campus. This year, we will
group of students over sk freshmen; next year, sophomores; the year after,
fime juniors; and the year after that, seniors.

Are there any problems with this plan?

Ocr14

1. Longitudinal Data and Cohort Effects: This approach
doesn't track the same group of students over time...

2. ...

14



Language
Reasoning

Limitations in LLMs

e Language reasoning (e.g., math, logics, common sense, ...)

Emily found a desk and place the cell phone on top
of it. [Irrelevant Actions] ... putting the lime down
next to the cell phone. [Irrelevant Actions] ... She
final finally put an apple on the desk. How many
items are there on the desk?

Human: Internal world model

* Physical common sense

* Object permanence

* Spatial relation (e.g., support)

GPT-4
There are two items
(correct answer: three)

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]



Embodied
Reasoning

Limitations in LLMs

e Building embodied agents requires embodied reasoning

16



Limitations in LLMs

How to move the blocks to the goal state?

Goal:

—

LLMs: Autoregressive plan generation

GPT-4

Invalid Action!
The yellow| | block is still
under the redD one.

1. Pick up the orange| |block.
2. Stack it on the blue| | block.

3. Pick up the yellow|  block| »

4. Stack it on the orange| |block.
5. Pick up the red | |block.
6. Put it on the table.

Embodied
Reasoning

Human: strategic planning

Internal world model to predict states

Simulation of alternative plans

Assess outcomes to refine /pick the best

I

)

Pick up orange I \Pick up blue
]

Stack on blue l \

Stack on orange

Better than

17



Social
Reasoning

Limitations in LLMs

e Building socially intelligent systems requires social reasoning

Al Assistants




PRICE $8.99 T H E NOV. 20, 2023 Social

Limitations in LLMs NEWY. YORKER
] |

e Social reasoning:
understanding humans

W
Q
W/

J
—

Explain why this is funny

GPT-4V

... The final panel reveals the punchline: the
robot has merely produced a pile of
crumpled paper, just like the human did,
suggesting that the robot also suffers from
writer's block ... highlighting a situation
where the human and the Al are equally
challenged

19



Social
Reasoning

Limitations in LLMs

e Social reasoning: understanding humans

,.

Does this person need help?

"' > e
/ ‘\.\, _

20



Social
Reasoning

Limitations in LLMs

e Social reasoning: understanding humans

Social reasoning also requires a world
model: Humans’ actions are constrained
by physics

GPT-4V Does this person need help?

It looks like the person in the image is carrying a
heavy load of boxes, which might suggest they
are in the process of moving. While | can't
determine the actual need for help without
context or the ability to interact with the situation,

21



Social
Reasoning

Limitations in LLMs

e Social reasoning: understanding humans

Is the person on the right helping?

22



Social
Reasoning

Limitations in LLMs

e Social reasoning: understanding humans

Understanding humans #

understanding actions

S aga/r%= -

Is the ers‘ohkc; ’.rhe}li" ht helping?
© crrav s Lk

The person on the right appears to be helping by | ~ . qction: Holding the chair
holding the chair, probably to steady it or to Wrong intent: Helping

move it into place. The way they are reaching out

and positioning themselves suggests they are

assisting the person who is reaching across the

table.

23



Social
Reasoning

/

Goal: Sit down

Belief: The chair was not moved

Limitations in LLMs

e Social reasoning: Theory of Mind

Reasoning about hidden mental variables that
drive observable actions

/@

False belief
caused by the person on the right

24



Social
Reasoning

Limitations in LLMs

e Social reasoning: Theory of Mind

Large Language Models Fail on Trivial Alterations to

Th -of-Mind Task
Neural Theory-of-Mind? eory-of-vlind lasks

On the Limits of Social Intelligence in Large LMs

Tomer D. Ullman

Maarten Sap*® Ronan Le Bras® Daniel Fried® Yejin Choi*” T i bl
# Allen Institute for Al Seattle, WA, USA Cambridge, MA, 02138

tullman@fas.harvard.edu

<>Lanf:{uage Technologies Institute, Carnegie Mellon University, Pittsburgh, USA
“Paul G. Allen School of Computer Science, University of Washington, Seattle, WA, USA
Clever Hans or Neural Theory of Mind?

“Aodels

menemese | LMs still lack Theory of Mind 2

Authors: Michal Kosinski*!

Affiliations: 3 Vector Institute for Al * Carnegie Mellon University
> Allen Institute for Artificial Intelligence ° University of Washington
!Stanford University, Stanford, CA94305, USA nd1234@gmail.com

MMTOM-QA: MULTIMODAL THEORY OF MIND

Towards A Holistic Landscape of QUESTION ANSWERING

Situated Theory of Mind in Large Language Models

Chuanyang Jin'> Yutong Wu® Jing Cao®> Jiannan Xiang? Yen-Ling Kuo®®

Ziqgiao Ma Jacob Sansom Run Peng Joyce Chai
Computer Science and Engineering Division, University of Michigan Zhiting Hu* Tomer Ullman® Antonio Torralba®? Joshua B. Tenenbaum? Tianmin Shu?®
{marstin, jhsansom, roihn, chaijy}@umich.edu INew York University 2Massachusetts Institute of Technology 3Harvard University

4UC San Diego ®University of Virginia ®Johns Hopkins University



Summary so far

e LLMs have limited language, embodied, and social reasoning abilities; not
human-level yet

Language Embodied Social
Reasoning Reasoning Reasoning

e Humans conduct model-based reasoning based on models of the world and
agents

27



World models in humans

* Perceiving physical properties (e.g., materials, viscosity)

Stimuli from Vivian Paulun

28



World models in humans

* Predicting dynamics

49% _ 51%

76%

24%

84%

16%

Kubricht et al. (2017)

29



World models in humans

« Predicting dynamics

Kubricht et al. (2017)

30



World models in humans

« Predicting dynamics

Kubricht et al. (2017)

31



World models in humans

« Model-based control /planning

Bates et al. (2015)

32



World models in humans

« Model-based control /planning

Human tool use
Unlike model-free RL, humans can learn to use tools through just a few trials
Get the red ball into the green goal

v
_
[ E—

Remaining:

Score:
i I U ’ Allen et al. (2020)

33




World models in humans

« Model-based control /planning

Too use via model-based planning
Key is to use a world model to simulate the outcomes of possible plans

Allen et al. (2020)

34



World models in robotics and embodied Al

e Model-based planning

e Model-based reinforcement learning

W

action 4
.

percept

LeCun (2022)

35



World models in robotics and embodied Al

e World model as state transition probabilities

e Causal relationship between action and state change

P(s'|s,a)

hext state current state

action

36



Agent models

e An agent is more than just an
object and actions

Heider & Simmel (1944) 37



Agent models

e An agent is more than just an
object and actions

Strengths
strong, weak

Goals
helping, hurting, escaping

Relationships
friends, enemies

wh -

Moral judgment (size / velocity / angle...)
good guy, bully A big triangle moves back and forth, while a small
triangle and a small circle rotate 360°...

Beliefs

he is locked, i am safe 38



The minimum definition of an agent model

39



Formulation
Partially observable Markov decision process (POMDP)

| World Model | State S € S
P [ _: Action a € A
World  Agent .
state  state : mm) State transition probabilities P(s’|s, a)
\\ // I Observation probabilities 0(0‘5)
l
Observation ! ) Belief b(s)
Belief < . : Belief Update b/(S/) X O(O/|S/)P(S/|S7 a)b(s)
update Belief Goal J : m) Goal g € G
: m) Reward function R(s, a,g) = R(s,g) — C(a)
Agent’s Planning : Discounted factor 7y € [0, 1]
mind :

Action - - —- > Planning max E

> A'R(s',d", 9)]

t=0

Baker et al. (2017) 40



Level-0 agent models for embodied reasoning

//. Goal

Current state
* Simulate plans via world model

World

model

* Choose the best plan

41



Level-1 agent models for social reasoning

ofFICE

/ Goal: Office or coffee shop?

An observer

42



Level-1 agent models for social reasoning

World
model

Level-1
agent
model

Level-0
agent Planning
model
/ A
Belief
World °re
model Codl

| Belief |

| Goal |

43



Level-1 agent models for social reasoning

Model-based Theory of Mind

P(mind|state, actions) o« P(actions|state, mind)P(mind)

Level-O agent model

FFICE

(o)
oo
s
® 3
,V TN B

Goal: Office or coffee shop?

An observer

44



Level-1 agent models for social reasoning

Model-based Theory of Mind

P(mind|state, actions) o« P(actions|state, mind)P(mind)

Level-O agent model

Human Behavior Prediction
P(future actions|state, mind)

Human-Al Interaction
m(actionar|state, mind a1, mindypuman )

45



Higher-order agent models for recursive social reasoning

Level-0
agent
model
Level-1 g:;g
agent Planning
model
World Belief
model Gol
@
Level-2 ln\
agent Planning
model P
/1 A
Belief
World
model Goal

Gmytrasiewicz & Doshi (2005)

46




Summary so far: world models and agent models

Agent
model @

A

47



Summary so far: world models and agent models

Level-0
agent
model

World
model

| Belief |

| Goal |

48



What is Machine Learning?

e Computational methods that enable machines to learn concepts and improve
performance from experience.

49



Experience of all kinds

Adversaries

Type-2
diabetes is 90%
more common

than type-1

Rules/Constraints

; .r-'.Tﬁ'lissingj

= =
target \ =

Knowledge graphs

24 8 should be‘eonceived
as a kind of intimate reverie

Master classes

107

Rewards Auxiliary agents

And all combinations thereof
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Experience of all kinds

Auxiliary agents

o jtions thereof

Adversaries Master classes

51



Experience of all kinds

Adversaries

Type-2
diabetes is 90%
more common

than type-1

Rules/Constraints

; .r-'.Tﬁ'lissingj

= =
target \ =

Knowledge graphs

24 8 should be‘eonceived
as a kind of intimate reverie

Master classes

107

Rewards Auxiliary agents

And all combinations thereof
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Experience: (massive) data examples

Google Translate
' .nmu HoL

HALLD HELLO finas

Machine translation

Language modeling
(BERT, GPT-2, GPT-3, ...)

A5TB of text data: CommonCrawl, WebText,
Wikipedia, corpus of books, ...

53



Experience: (massive) data examples

TECH ARTIFICIAL INTELLIGENCE \

OpenAl's text-generating system GPT-3 is now
spewing out 4.5 billion words a day

Robot-generated writing looks set to be the next big thing

By James Vincent | Mar 29, 2021, 8:24am EDT

Loud and clear
Speech-recognition word-error rate, selected benchmarks, %

Switchboard — Switchboard cellular

O— o Meeting speech

Broadcast

speech IBM, Switchboard

The Switchboard corpus is a collection of recorded
telephone conversations widely used to train and
test speech-recognition systems

Log scale
100

10

T T T T T T T T
1993 96 98 2000 02 04 06 08 10 12 14 16
Sources: Microsoft; research papers

[The Economist]

[
Speak easy

Human scorers’ rating* of Google Translate and human translation

Translation method | Phrase-based® | Neural-networkt | Human

A3 4 5 Perfect translation=6
Spanish I |
English E French I |
Chinese I I
Spanish — English | |
French — English I |
Chinese — English | |

TT—— Pour | ancienne sefcretglrg d’Etat, il s'agit de,falre olulbller un m0|s’d.e cafouillages
et de convaincre l'auditoire que M. Trump na pas I'étoffe d'un président

Phrase-basedt Neural-network®

For the former secretary of For the former secretary of state,
state, this is to forgeta month it is a question of forgetting a

of bungling and convince the month of muddles and convincing
audience that Mr Trump has the audience that Mr Trump does

not the makings of a president  not have the stuff of a president

Source: Google *0=completely nonsense translation, 6=perfect translation tMachine translation
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Problems with few data (labels)

e Privacy, security issues

Assistive diagnosis

Normal findings Abnormal findings

b4 <

3 v
O l

“The heart size and mediastinal contours appear thhm
normal limits. There is blunting of the right lateral’
costophrenic sulcus which could be secondary to a small
effusion versus scarring ...”

55



Problems with few data (labels)

e Expensive to collect/annotate

Controllable content generation

Controlling sentiment Controlling writing style

e ' 'LeBron James contributed 26 points, 8

Plain :rebounds, 7 assists.

e N =

|
Neg The film is strictly routine! ! LeBron James rounded out the box score with an |
“““““““““““““ ‘all around impressive performance, scoring 26

|
|
Elaborate | points, grabbing 8 rebounds and dishing out 7
|
L assists. |

|

Applications: personalized chatbot, live sports commentary production 56



Problems with few data (labels)

e Expensive to collect/annotate

Controllable content generation

Source image Generated images under different poses

Applications: virtual clothing try-on system

57



Problems with few data (labels)

e Expensive to collect/annotate

Robotic control

58



Problems with few data (labels)

o Difficult / expertise-demanding to annotate

Adversarial attack

"entailment

f

Entailment classifier

/

The Old One always comforted Ca'daan, except today.

Your gift is appreciated by each and every student ... ‘

At the other end of Pennsylvania Avenue, people ...
premises

Applications: test model robustness

neutral” “contradiction”

The person saint-pierre-et-saint-paul is ..

hypothesis (attack)

59



Problems with few data (labels)

o Difficult / expertise-demanding to annotate

Prompt generation: automatically generating prompts to steer pretrained LMs

Pretrained LM
(e.g., GPT3)

T T l

Generate a story about cat: once upon atime,

prompt continuation

60



Problems with few data (labels)

e Specific domain Low-resource languages

~7K languages in the world

61



Problems with few data (labels)

e Specific domain

Low-resource languages

Written languages
(3.5K)

Languages with
NER Annotation

(30?)

[Figure courtesy: Dan Roth, CIS620]

All languages |
(7K)
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Problems with few data (labels)

e Specific domain

Low-resource languages

Written languages
(3.5K)

Languages with
NER Annotation

(30?)

[Figure courtesy: Dan Roth, CIS620]

All languages
(7K)
Can we translate the
annotation to other
languages?
Requires parallel data
for training

63



Problems with few data (labels)

e Specific domain

Low-resource languages

Written languages
(3.5K)

Languages with Wikipedia
parallel text languages
(1007?) (300)
Languages with

NER Annotation

(307)

[Figure courtesy: Dan Roth, CIS620]

All languages
(7K)

Can we use the
multilingual links in
Wikipedia?

64



Problems with few data (labels)

e Specific domain

Question answering QA based on car manual?

v

QUOTA | Sscn s osior, s, i

Entertainment

Related Topics

uora S S

ovios Bl
‘What is one moment in your life you thought could only happen in A9 chowess
amovie?

o Corey Rippeto

0t

On January 14, 2016, I went to meet this girl at a McDonald's parking lot. We'd been
talking for about a week, waiting for the work week to be over with to finally meet up.
Anyway, when Iarrived, I ... (more)

‘Why is the Grammys so important to BTS?
Grace Yang, Most viewed writer in BTS Topic
werod Nov 12, 2018 - Author has 111 answors and 382.4k answer views
This is something I've been wanting to get off my chest for a while. It's gonna be
pretty long. As much a e winning, most of said
awards are fan-voted. Fan-voted — mea... (more)

Whatisa bout aparents
perspective?
9 Jessica Newbrook, Hair Colour
Updated Nov 21, 2018 - ——
Iwas the non gami in i ago. Here's what I /-~

DRIVER

65



Problems with few data (labels)

Privacy, security issues
Expensive to collect/annotate
Difficult / expertise-demanding to annotate

Specific domain

66



Machine learning solutions given few data (labels)

e How can we make more efficient use of data?
O Clean but small-size
©  Noisy

0 Qut-of-domain

e Can we incorporate other types of experience in learning?

Type'2 ﬁi:_\r‘vba‘ni ) y
diabetes is 90%  E—. /=/
interact &: /‘
more common B ¥ -'é’"'“‘”i
than type-1 ot =
o SCORE: 107
Data examples  Rules/Constraints Knowledge graphs Rewards Auxiliary agents
=
% ! And all combinations thereof

Adversaries Master classes

67



Components of a ML solution (roughly)

e Loss
e Experience
e Optimization solver

e Model architecture

jming (g, €) .
L ¥ Y T~a
Optimization Model Experience
solver architecture

68



Components of a ML solution (roughly)

° This course does not discuss model architecture

e Model architecture

ming L(0, &)
/ /! N o -
2 " Sa

Optimization Model Experience
solver architecture

69



Components of a ML solution (roughly)

o This course does not discuss model architecture
° Model of certain architecture whose parameters are the
. subject to be learned, pg(x,y) or pg (Y|x)

. o Neural networks
e Model architecture o Graphical models

o Compositional architectures

70



Components of a ML solution (roughly)

° This course does not discuss model architecture

° Model of certain architecture whose parameters are the
subject to be learned, pg(x,y) or pg (Y|x)

. o Neuvural networks
e Model architecture o Graphical models

o Compositional architectures

| 11x11 conv, 96, /4, pool/2 |

Multi-head attention

| 5x5 conv, 256, pool/2 |

| 3x3 conv, 384 |

4

| 3x3 conv, 384 |

Scaled dot-product attention

| 3x3 conv, 256, pool/2 |

| fc, 4096 |

\J

| fc, 4096 |

nputs utputs
\ Ir (shifted right)

| fc, 1000 |
Convolutional networks Transformers
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Components of a ML solution (roughly)

° This course does not discuss model architecture

° Model of certain architecture whose parameters are the
subject to be learned, pg(x,y) or pg (Y|x)

. o Neural networks
e Model architecture o Graphical models

o Compositional architectures

A=A S SRR C SN

SEQUENCE GENERAL
Maive Bayes HMMs GRAPHS Generative directed models
CONDITIDNAL CONDITIDNAL Gﬂﬂﬁbﬂﬂl
~ ~ S~
—> OO0 :> E P
 — -y
Oﬂ) SEQUENCE (% é) g) GENERAL O‘EC;\O
Logistic Regression Linear-chain CRFs GRAPHS General CRFs
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Components of a ML solution (roughly)

o This course discusses a little about optimization

e Optimization solver Assuming you know basic procedures:
O (Stochastic) gradient descent

o Backpropagation

O Lagrange multiplier
O

ming L(0, &)
/ /! N o -
2 " Sa

Optimization Model Experience
solver architecture
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Components of a ML solution (roughly)

o This course discusses a lot of loss & experience
e Experience

° Core of most learning algorithms

ming L(0, E)
/ /I VN o -
£ v S~

Optimization Model Experience
solver architecture



Machine learning solutions given few data (labels)

e (1) How can we make more efficient use of data?

o0 Clean but small-size, Noisy, Out-of-domain

e (2) Can we incorporate other types of experience in learning?

Type-2 By
diabetes is 90% |~ E—. &/' ({
more common ki 4?;61'1?;&/
th T — g\ LI
-1 e =
antype «;&‘/ SCORE: 107
Data examples  Rules/Constraints Knowledge graphs Rewards Auxiliary agents
- |
% ! And all combinations thereof

Adversaries Master classes
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Machine learning solutions given few data (labels)

e (1) How can we make more efficient use of data?

o Clean but small-size, Noisy, Out-of-domain, ...

e Algorithms

O Supervised learning: MLE, maximum entropy principle
o Unsupervised learning: EM, variational inference, VAEs

o Self-supervised learning: successful instances, e.g., BERT, GPT-3, contrastive learning,

applications to downstream tasks
o Distant/weakly supervised learning: successful instances
0 Data manipulation: augmentation, re-weighting, curriculum learning, ...

o0 Meta-learning

Mostly first half of the course
76



Machine learning solutions given few data (labels)

e (2) Can we incorporate other types of experience in learning?

O Learning from auxiliary models, e.g., adversarial models:

=  Generative adversarial learning (GANs and variants), co-training, ...

“" And all combinations thereof

O Learning from structured knowledge

= Posterior regularization, constraint-driven learning, ...

O Learning from rewards

= Reinforcement learning: model-free vs model-based, policy-based vs value-
based, on-policy vs off-policy, extrinsic reward vs intrinsic reward, ...

O Learning in dynamic environment (not covered)

" Online learning, lifelong/continual learning, ...

Second half of the course

77

Dataexamples  Rules/Constraints Knowledge graphs Rewards Auxiliary agents



Algorithm marketplace

Designs driven by: experience, task, loss function, training procedure ...

maximum likelihood estimation reinforcement learning as inference
data re-weighting . ~ InverseRL - tive learning
policy optimization
data augmentation reward-augmented maximum likelihood

label smoothing softmax policy gradient

imitation learning

actor-critic adversarial domain adaptation
GANSs posterior regularization
knowledge distillation _ _ _
intrinsic reward constraint-driven learning

prediction minimization generalized expectation

regularized Bayes |
learning from measurements

energy-based GANs
weak/distant supervision

78



Where we are now? Where we want to be?

e Alchemy vs chemistry

maximum likelihood estimation  reinforcement learning as inference
ghting inverse RL active learning
B " policy optimization -
data augmentation  reward-augmented maximum likelihood

data re-w

label smoothing imitation learning sof
actor-critic

GANs J
knowledge distillation .
ntrinsic re constraint-driven learning

ediction minimiz generalized expectation
regularized Bayes

‘L‘,u‘\‘\f\g from measurements
energy-based GANs

weaNd\stam supervision

Genera(or Network D)scnmlnator Network

Notwork

B Hm]}'lmm: Ao




Quest for more standardized, unified ML principles

Machine Learning 3: 253-259, 1989
© 1989 Kluwer Academic Publishers — Manufactured in The Netherlands

EDITORIAL

Toward a Unified Science of Machine Learning

[P. Langley, 1989]

* Padey Domings dearyitibes sachme luarwng aod shaws

o ISR
- ALGORITHM

HOW THE QUEST FOR
THE ULTINATE
LEARNING MACHINE WILL
REMAKE OUR WORLD

PEORO BOMINGDS

REVIEW m——C ommunicated by Steven Nowlan

A Unifying Review of Linear Gaussian Models

Sam Roweis*
Computation and Neural Systems, California Institute of Technology, Pasadena, CA
91125, U.S.A.

Zoubin Ghahramani*
Department of Computer Science, University of Toronto, Toronto, Canada
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Physics in the 1800’s

e Electricity & magnetism:
o Coulomb’s law, Ampére, Faraday, ...

e Theory of light beams: - 9
O Particle theory: Isaac Newton, Laplace, Plank J
© Woave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell
\VAVAVAVAV S
\N\N\N\NS
\N\N\N\N\N.

e Law of gravity
o Aristotle, Galileo, Newton, ...
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“Standard equations” in Physics

Diverse
electro-
magnetic
theories

o N
§ = 1
8 7
I~ p
Al 4
ﬂ

Y.
Ve
(4
2 I
0‘/"

Ay

\

Maxwell’s EqQns:
original form

e+2—£+%+%=0 (1) Gauss’ Law
dH dG
B =———
dy dz
dF dH Equivalent to Gauss’ Law
e = 2z dx ) for magnetism
d _dv
i dx dy
dy dz| dF d¥
P= ——p— |-
‘{701: ﬁdt] & &
Faraday's Law
Q= u(dﬁ - rﬂJ ﬁ— ﬂ (3) (with the Lorentz Force
dt dt dtdy and Poisson’s Law)
dx dvy dH d¥
R= —_——— |- ——-—
#(ﬂ dt dt ] dt dz
dy dg
i % df
dy dz x 2. P"’Z
da dy d.
—_——-—=4m o g &re-
s g q'= q-;-I (4) Ampére-Maxwell Law
dg _da dh
——-—=4 =r+=
dx dy at
Pu-fp Q== R=-¢ Ohm’s Law
P=ikf Q=kg R=kk The electric elasticity

equation (E = D/e)

f.;.@ +d_q +d_r =0 Continuity of charge
dt dx dy dz

1861

Maxwell’'s Eqns  Maxwell’s Eqns
simplified w/ further simplified

rotational w/ symmetry of
symmetry special relativity
V-D=p,
WA, Fiy = 0
V' B = vl kN —
oB
VxE =-— u Am ”
% ot avF V= ?]
Vx H= D +J

1910s

Standard Model
w/ Yang-Mills

Unification of

fundamental
theory and US(3) forces?
symmetry
1 2
Lo = -3 Tr(F*)
1 M T
- _EF 't FF‘"

& ’ O~
4 8]
I U {
- y i,
S ‘ D
+ B
!
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A “standardized formalism” of ML
N T
r e w T EERms

Type-2 diabetes
1S 90% more
common than

‘ s ) ] £ Y 3
type-l i -+ "' 7 ( *should be conceived
e SCORE: 107 — < _ = ] asa kind of intimate reverie
e h ) e - — e = 3

Data examples Constraints Rewards Auxiliary agents Adversaries Imitation

min —H+D-—FE
/7

/ N
7.0 , .
Iz Vv 2\
Uncertainty Divergence Experience

e Panoramically learn from all types of experience
e Subsumes many existing algorithms as special cases

Will discuss in later in the class 83



Questions?
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