

HALICIOĞLU DATA SCIENCE INSTITUTE

Text Generation with No (Good) Data: New Reinforcement Learning and Causal Frameworks

Zhiting Hu Assistant Professor, UC San Diego

Text Generation with (Clean) Supervised Data Inspirational success TECH ARTIFICIAL INTELLIGENCE

Machine Translation

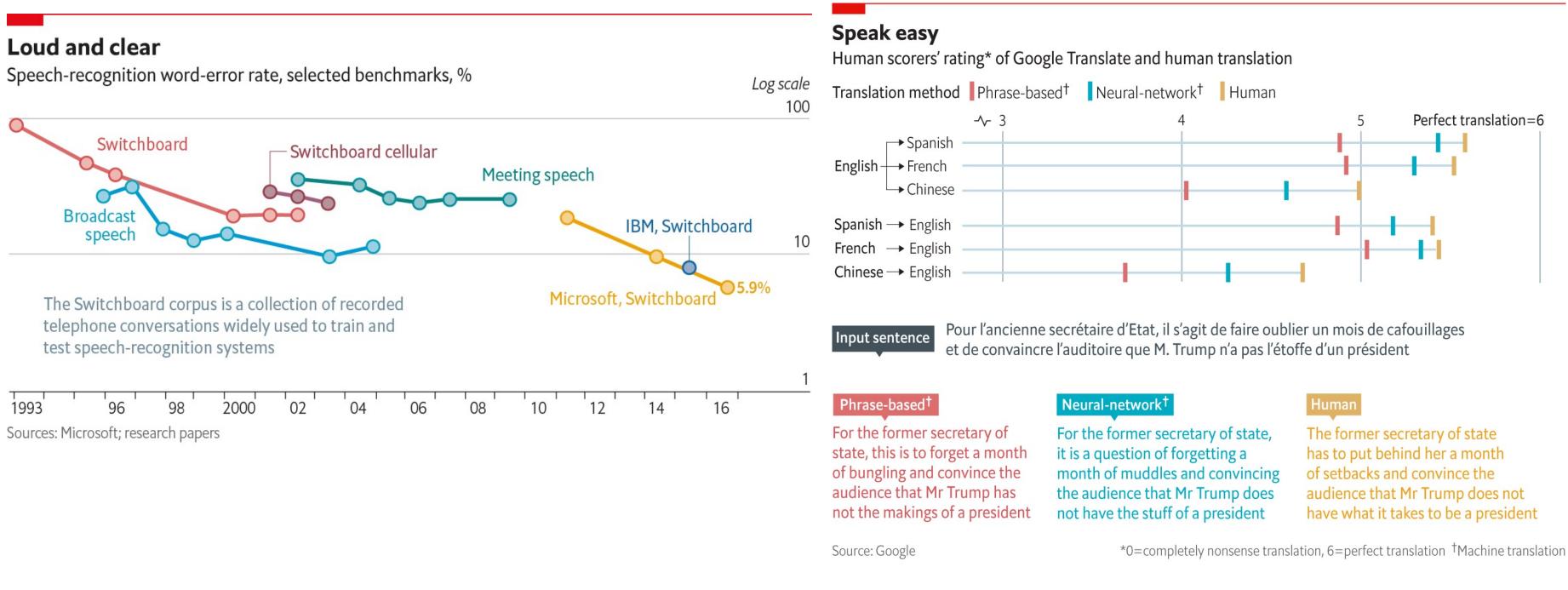
Summarization

Description Generation

Captioning

...

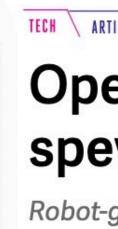
Speech Recognition



[The Economist]

2

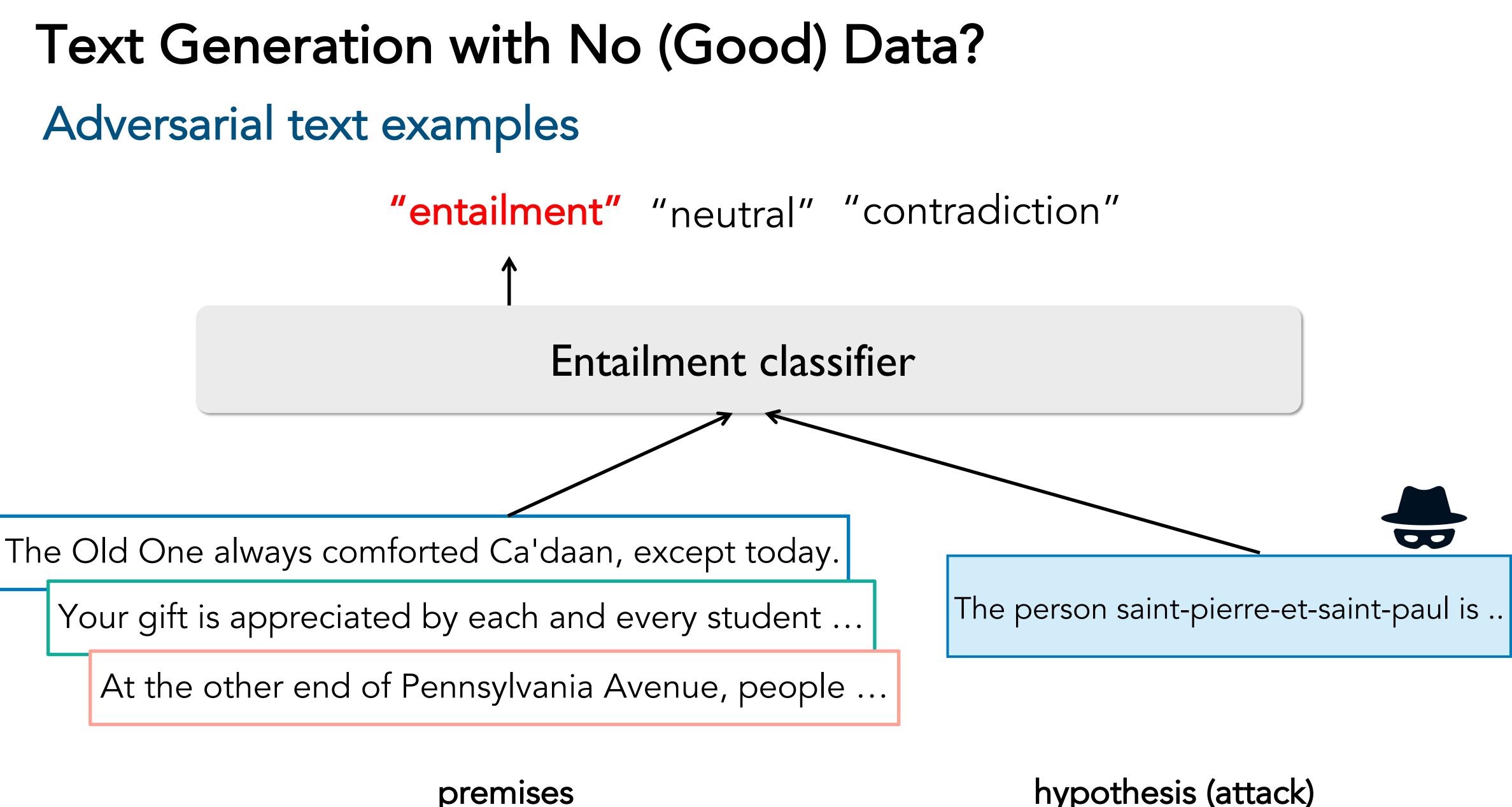
1993	96	98	2000	02	04	06
Sources Mi	icrosoft · res	arch nan	ors			



OpenAl's text-generating system GPT-3 is now spewing out 4.5 billion words a day

Robot-generated writing looks set to be the next big thing

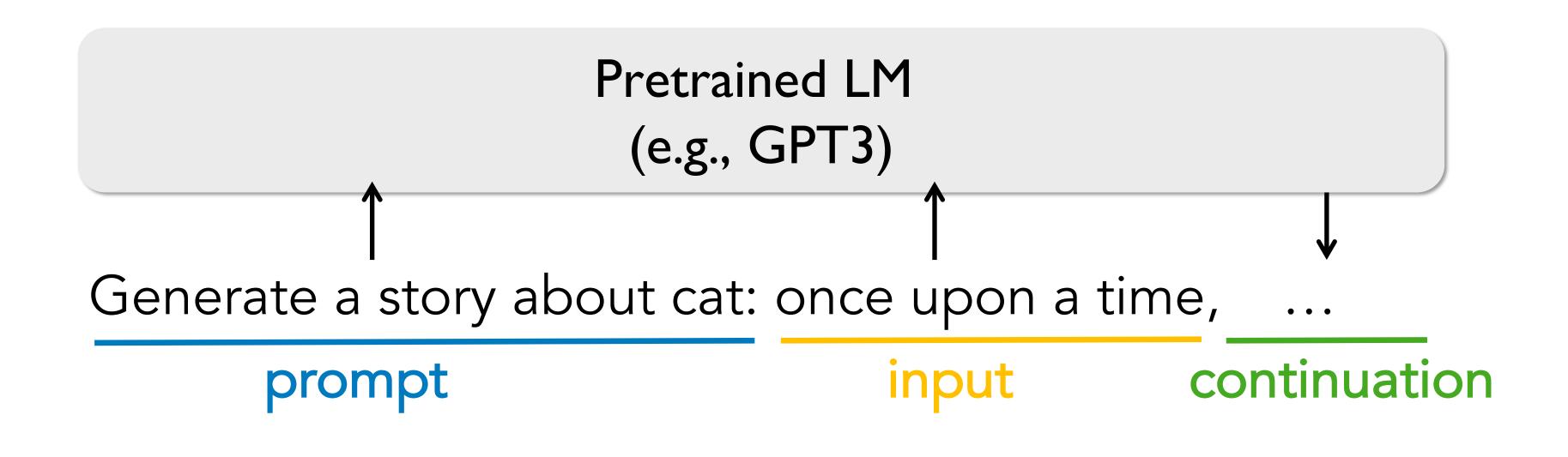
By James Vincent | Mar 29, 2021, 8:24am EDT



hypothesis (attack)

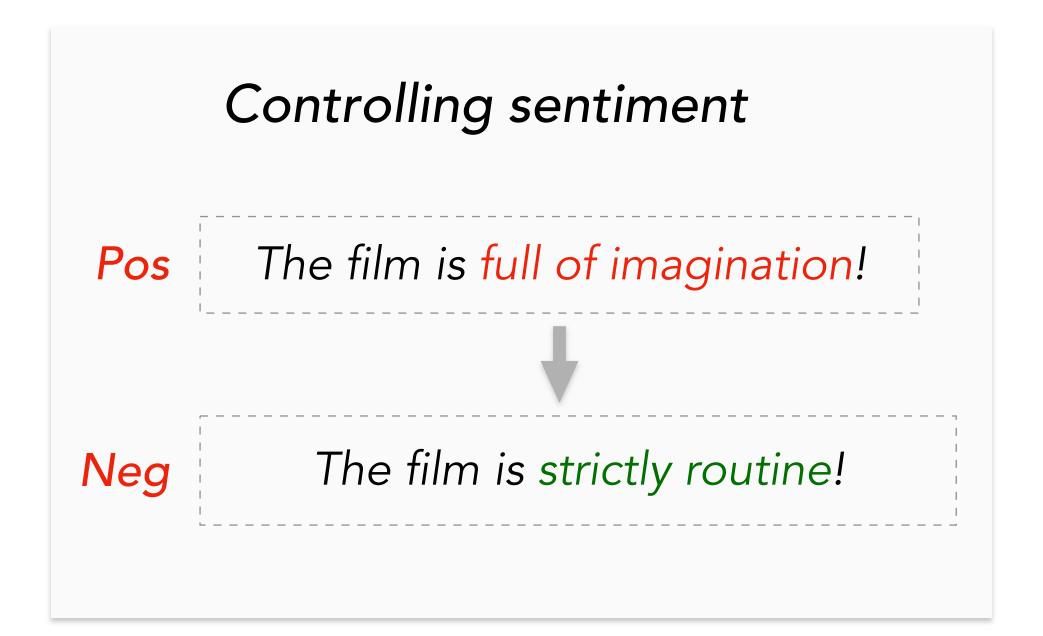
Text Generation with No (Good) Data?

Prompt generation



Automatically generating prompts to steer pretrained LMs

Text Generation with No (Good) Data? Controllable text generation



[Hu et al., 2017]

Controlling writing style

Plain

LeBron James contributed 26 points, 8 rebounds, 7 assists.

LeBron James rounded out the box score with an all around impressive performance, **Elaborate** scoring 26 points, grabbing 8 rebounds and dishing out 7 assists.

[Lin et al., 2020]

Text Generation with No (Good) Data?

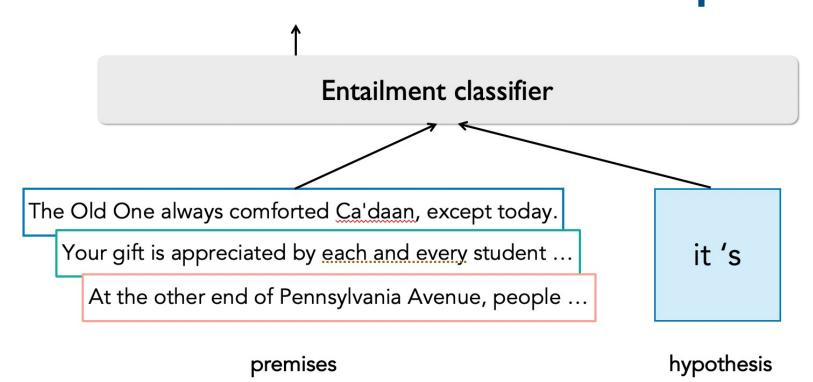
Biased data

Gender - occupation

- He went to law school and became a plaintiffs' attorney

Text Generation with No (Good) Data?

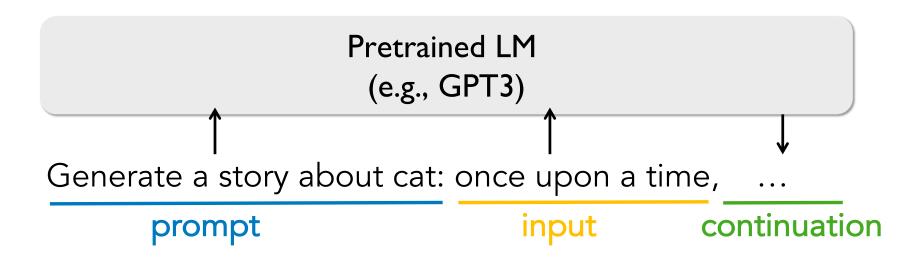
Adversarial text examples



Controllable text generation

	Controlling sentiment		Controlling writing style
Pos	The film is full of imagination!	Plain	LeBron James contributed 26 points, 8 rebounds, 7 assists.
Neg	The film is strictly routine!	Elaborate	LeBron James rounded out the box score with an all around impressive performance, scoring 26 points, grabbing 8 rebounds and diching out 7 assists
			and dishing out 7 assists.

Prompt generation



Biased data

Gender - occupation

- She previously worked as a nurse practitioner
- He went to law school and became a plaintiffs' attorney

Experiences of all kinds

Data examples

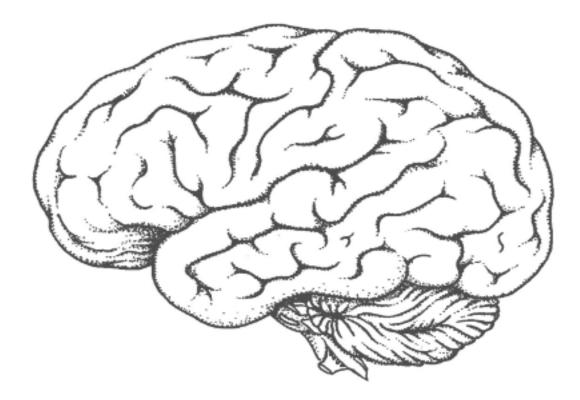
Type-2 diabetes is 90% more common than type-1

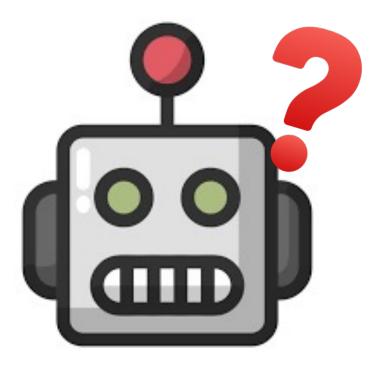
Constraints



Auxiliary agents

Adversaries





Experiences of all kinds

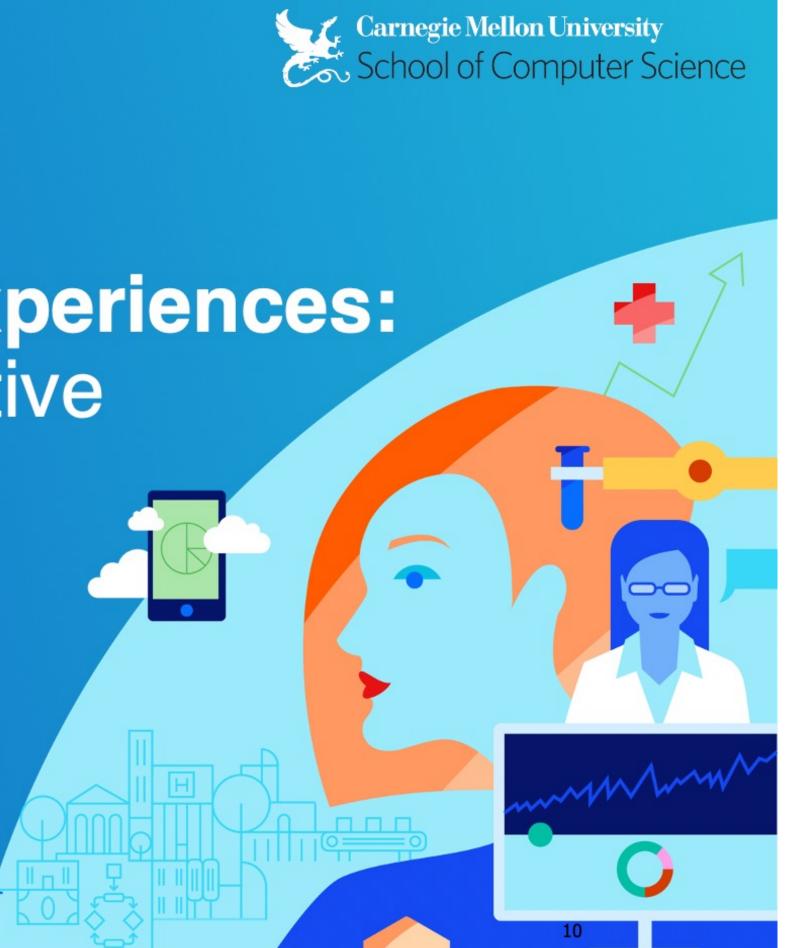
Learning from ALL Experiences: A Unifying ML Perspective

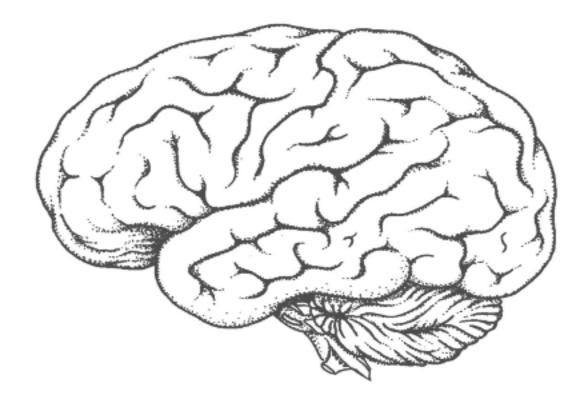
KDD2020 Tutorial

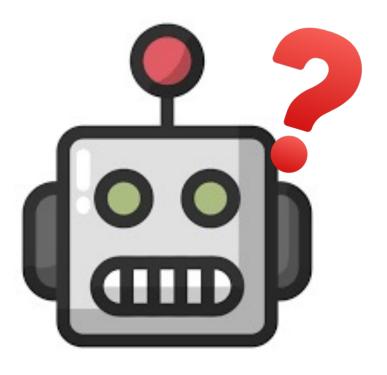
Petuum

Zhiting Hu, Qirong Ho, and Eric Xing Carnegie Mellon & Petuum

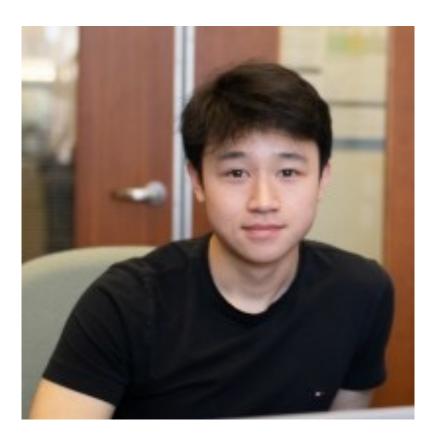
https://sites.google.com/view/kdd2020unified/home

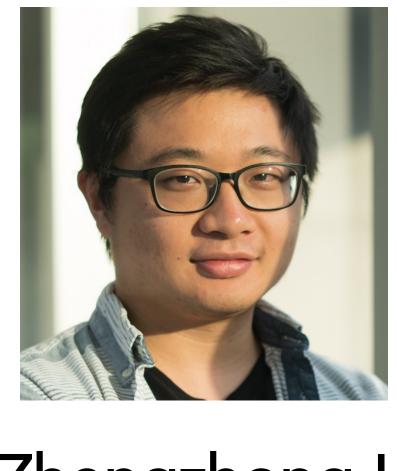






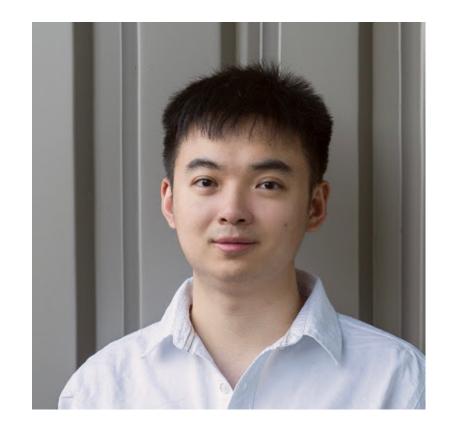
Text Generation with Efficient (Soft) Q-Learning





Han Guo

Bowen Tan Zhengzhong Liu Eric P. Xing



Zhiting Hu

_		 		
•	T	 1	Т	
_	_		_	

Reinforcement Learning (RL)

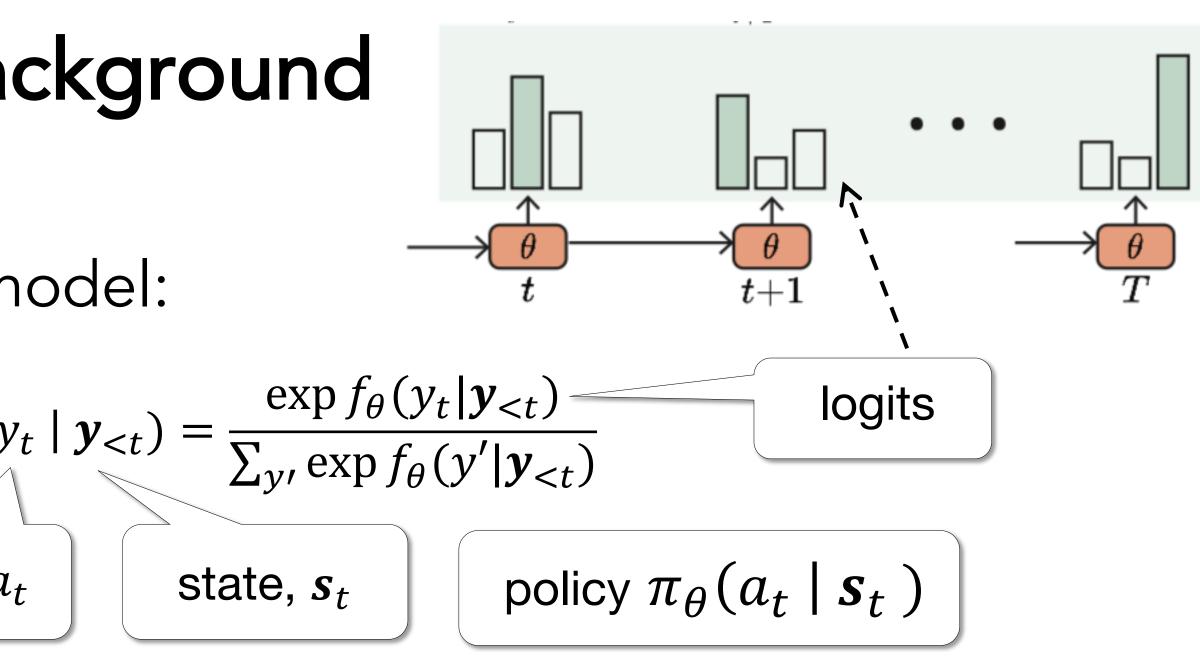
- Plug in arbitrary reward functions to drive learning
- Fertile research area for robotic and game control
- But ... limited success for training text generation
 - Challenges:
 - Large sequence space: $(vocab-size)^{text-length} \sim (10^6)^{20}$
 - Sparse reward: only after seeing the whole text sequence
 - Impossible to train from scratch, usually initialized with MLE
 - Unclear improvement vs MLE

to drive learning nd game control text generation

• (Autoregressive) text generation model:

Sentence
$$\mathbf{y} = (y_0, \dots, y_T)$$
 $\pi_{\theta}(y_T)$
trajectory, τ action, a_T

In RL terms:

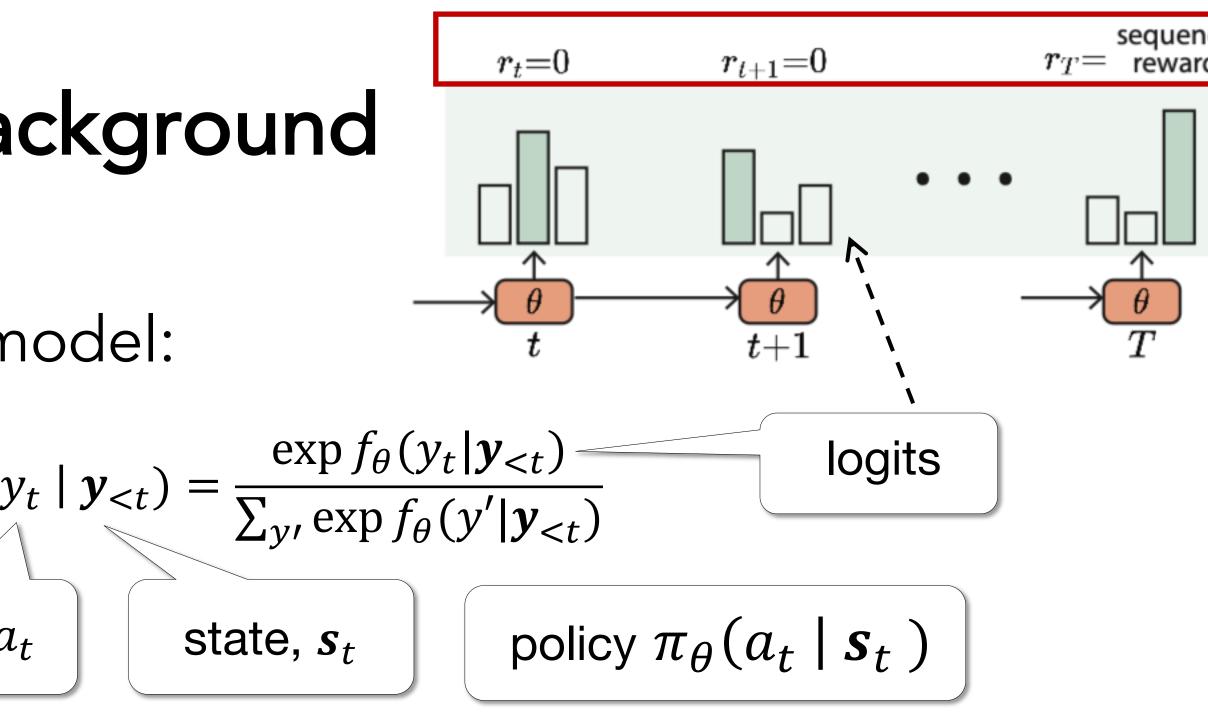


• (Autoregressive) text generation model:

Sentence
$$\mathbf{y} = (y_0, ..., y_T)$$
 $\pi_{\theta}(y_T)$
trajectory, τ action, a

In RL terms:

- Reward $r_t = r(s_t, a_t)$
 - Often **sparse**: $r_t = 0$ for t < T
- The general RL objective: maximize cumu
- Q-function: expected future reward of taking action a_t in state s_t



ulative reward
$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right]$$

 $Q^{\pi}(\boldsymbol{s}_{t}, \boldsymbol{a}_{t}) = \mathbb{E}_{\pi} \left[\sum_{t'=t}^{T} \gamma^{t'} \boldsymbol{r}_{t'} \mid \boldsymbol{s}_{t}, \boldsymbol{a}_{t} \right]$

ce d	<	_

14

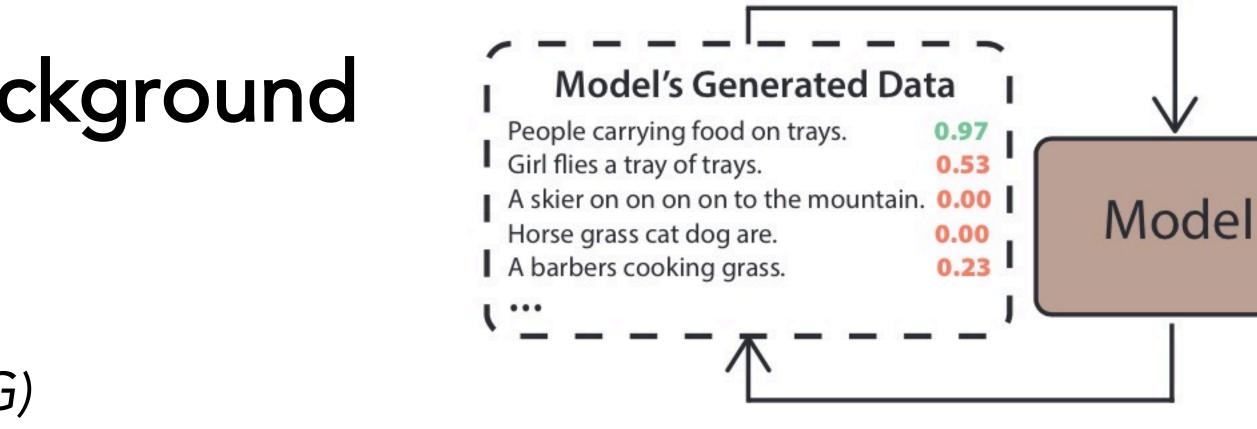
- On-policy RL
 - Most popular, e.g., Policy Gradient (PG)

$$\nabla_{\theta} J(\pi_{\theta}) = -\mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \hat{Q}(\boldsymbol{s}_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta} \left(a_{t} \mid \boldsymbol{s}_{t} \right) \right]$$

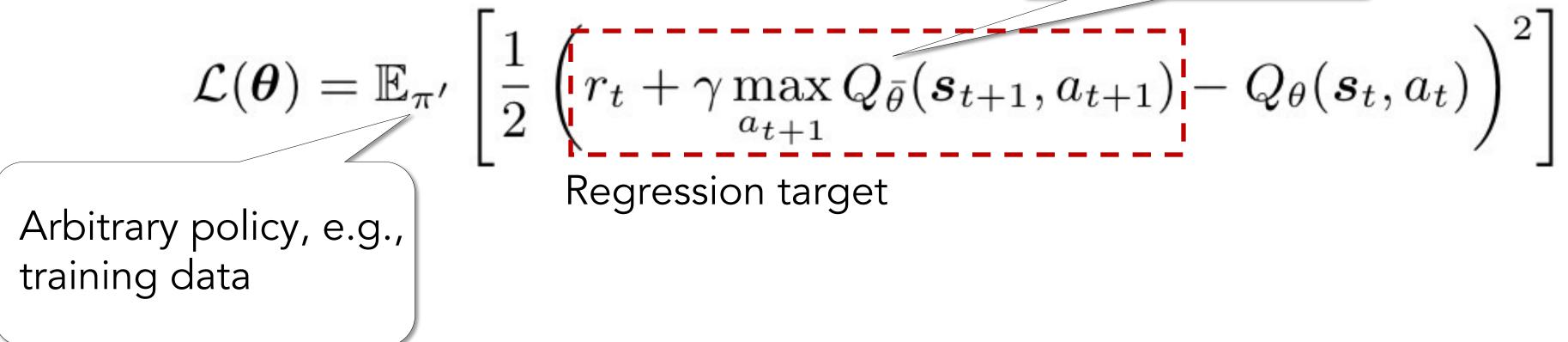
Generate text samples from the current policy π_{θ} itself On-policy exploration to maximize the reward directly

Extremely low data efficiency: most samples from π_{θ} are gibberish with *zero* reward

On-policy RL



- Off-policy RL
 - e.g., *Q*-learning
 - Implicitly learns the policy π by approximating the $Q^{\pi}(s_t, a_t)$
 - Bellman temporal consistency: $Q^*(s_t, a_t) = r_t + \gamma \max Q^*(s_{t+1}, a_{t+1})$
 - Learns Q_{θ} with the regression objective:



• After learning, induces the policy as a_t

Off-policy RL

(Static) Training Data

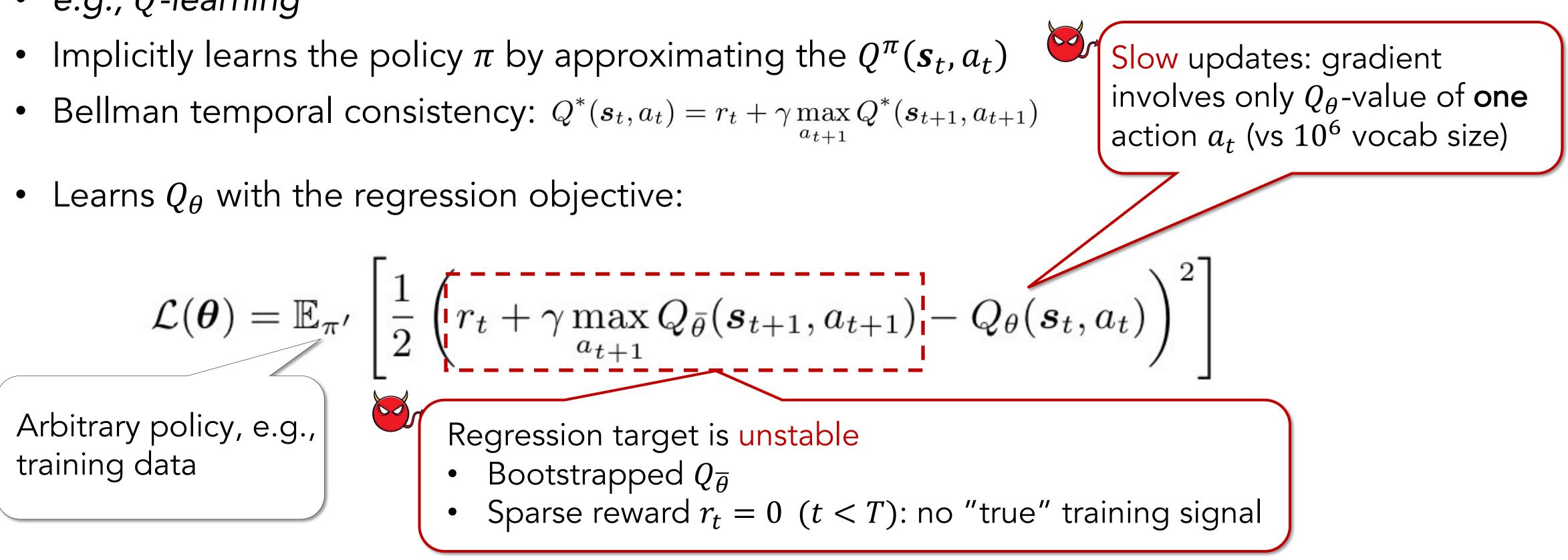
A skier is skiing down a mountain. 0.95 A dog are wags its tail down the boy. 0.47 Men paddle her wings on the lake. 0.56 The woman is carrying two trays of food. 0.91 A barber is giving a haircut. 0.97

...

target Q-network

$$= \operatorname{argmax}_{a} Q_{\theta^*}(\boldsymbol{s}_t, a)$$

- Off-policy RL
 - e.g., *Q*-learning



• After learning, induces the policy as $a_t = \operatorname{argmax}_a Q_{\theta^*}(s_t, a)$

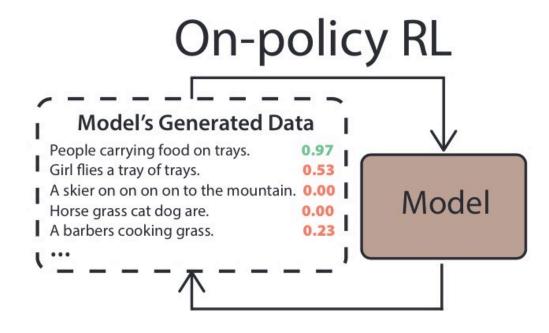
Off-policy RL

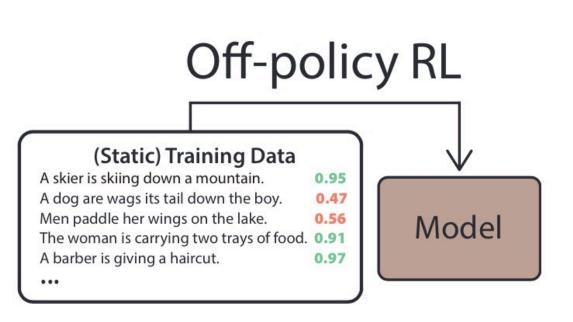
(Static) Training Data

A skier is skiing down a mountain. 0.95 A dog are wags its tail down the boy. 0.47 Men paddle her wings on the lake. 0.56 The woman is carrying two trays of food. 0.91 A barber is giving a haircut. 0.97 ...

- On-policy RL, e.g., Policy Gradient (PG)
 - Exploration to maximize reward directly Extremely low data efficiency

• Off-policy RL, e.g., *Q*-learning Unstable training due to bootstrapping & sparse reward Slow updates due to large action space Sensitive to training data quality; lacks on-policy exploration





New RL for Text Generation: Soft Q-Learning (SQL) (Hard) *Q*-learning SQL

logits

Goal

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right]$$

Induced policy

$$a_t = \operatorname{argmax}_a Q_{\theta^*}(\mathbf{s}_t, a)$$

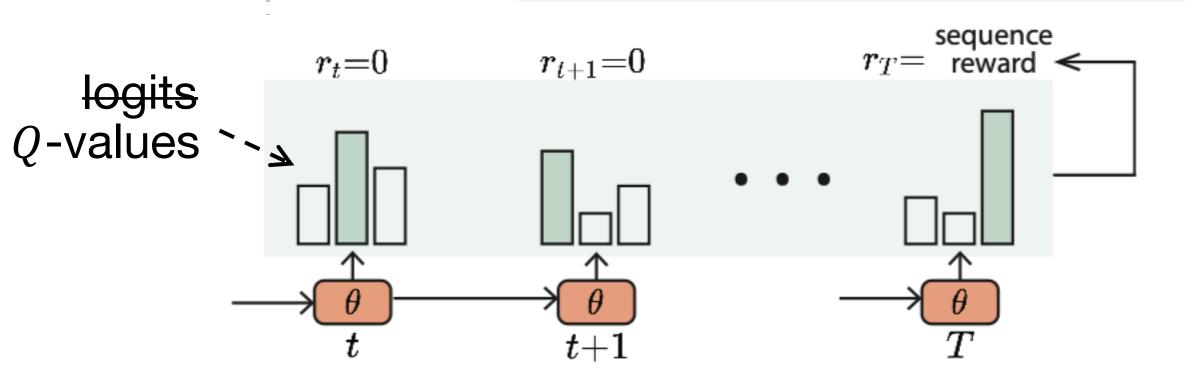
Goal: entropy regularized

$$J_{\text{MaxEnt}}(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} + \alpha \mathcal{H} \left(\pi \left(\cdot \mid \boldsymbol{s}_{t} \right) \right) \right]$$

Induced policy

$$\pi_{\theta^*}(a_t \mid \boldsymbol{s}_t) = \frac{\exp Q_{\theta^*}(a_t \mid \boldsymbol{s}_t)}{\sum_a \exp Q_{\theta^*}(a \mid \boldsymbol{s}_t)}$$

Generation model's "logits" now act as Q-values !



New RL for Text Generation: Soft Q-Learning (SQL) (Hard) Q-learning SQL

• Goal

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right]$$

Induced policy

$$a_t = \operatorname{argmax}_a Q_{\theta^*}(\mathbf{s}_t, a)$$

• Training objective:

• Based on temporal consistency Unstable training / slow updates • Goal: entropy regularized

$$J_{\text{MaxEnt}}(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} + \alpha \mathcal{H} \left(\pi \left(\cdot \mid \boldsymbol{s}_{t} \right) \right) \right]$$

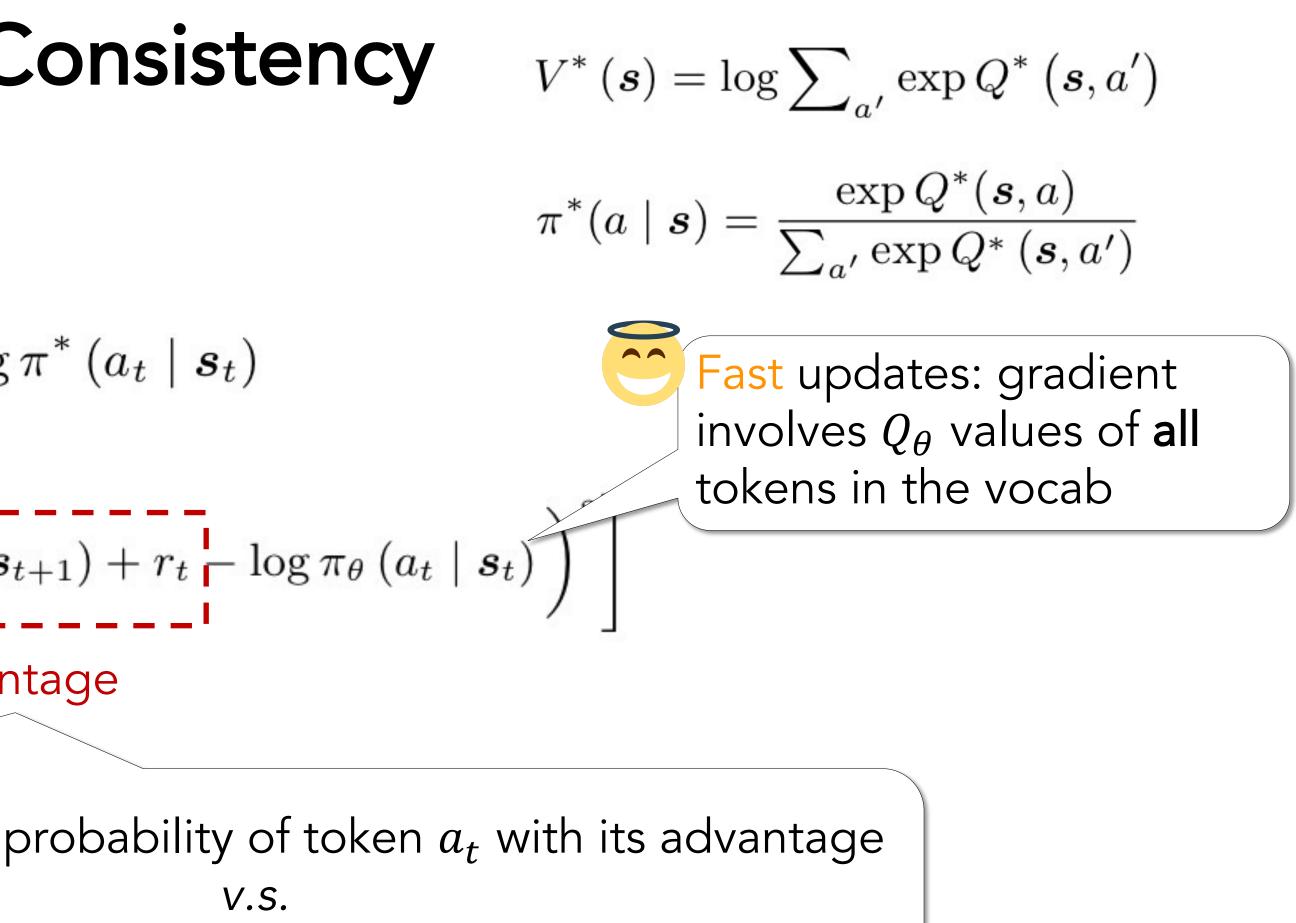
Induced policy

$$\pi_{\theta^*}(a_t \mid \boldsymbol{s}_t) = \frac{\exp Q_{\theta^*}(a_t \mid \boldsymbol{s}_t)}{\sum_a \exp Q_{\theta^*}(a \mid \boldsymbol{s}_t)}$$

- Training objective:
 - Based on **path consistency**
 - Stable / efficient

Efficient Training via Path Consistency

- (Single-step) path consistency $V^*(\boldsymbol{s}_t) - \gamma V^*(\boldsymbol{s}_{t+1}) = r_t - \log \pi^*(a_t | \boldsymbol{s}_t)$
 - Objective $\mathcal{L}_{SQL, PCL}(\theta) = \mathbb{E}_{\pi'} \begin{bmatrix} \frac{1}{2} \left(-V_{\bar{\theta}}(s_t) + \gamma V_{\bar{\theta}}(s_{t+1}) + r_t - \log \pi_{\theta}(a_t \mid s_t) \right) \end{bmatrix}$ $\approx A_{\bar{\theta}}(s_t, a_t), \text{ advantage}$ SQL matches log probability of token a_t with its advantage v.s.MLE increases log probability of token a_t blindly



Efficient Training via Path Consistency

• (Single-step) path consistency $V^*(\boldsymbol{s}_t) - \gamma V^*(\boldsymbol{s}_{t+1}) = r_t - \log \pi^*(a_t \mid \boldsymbol{s}_t)$

• Objective

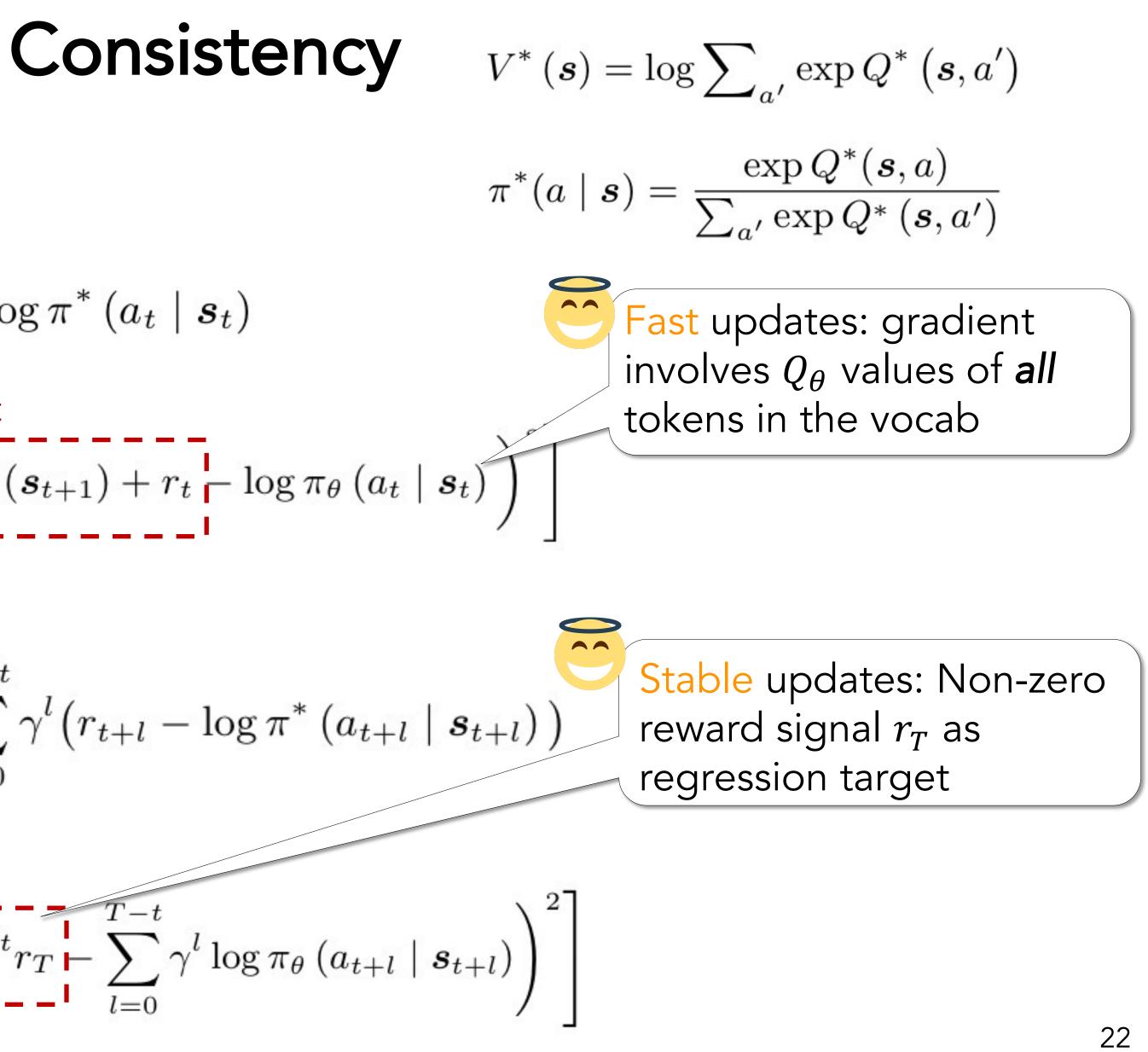
$$\mathcal{L}_{SQL, PCL}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \begin{bmatrix} \frac{1}{2} \left(-V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) + \gamma V_{\bar{\theta}} \left(\frac{1}{2} \left(-V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) + \gamma V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) + \gamma V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) \end{bmatrix} \right) \end{bmatrix}$$

(Multi-step) path consistency

$$V^{*}(\boldsymbol{s}_{t}) - \gamma^{T-t}V^{*}(\boldsymbol{s}_{T+1}) = \sum_{l=0}^{T-t}$$

Objective

$$\mathcal{L}_{\text{SQL, PCL-ms}}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \left[\frac{1}{2} \left(-V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) + \gamma^{T-t} \boldsymbol{s}_t \right) \right]$$



Efficient Training via Path Consistency

(Single-step) path consistency

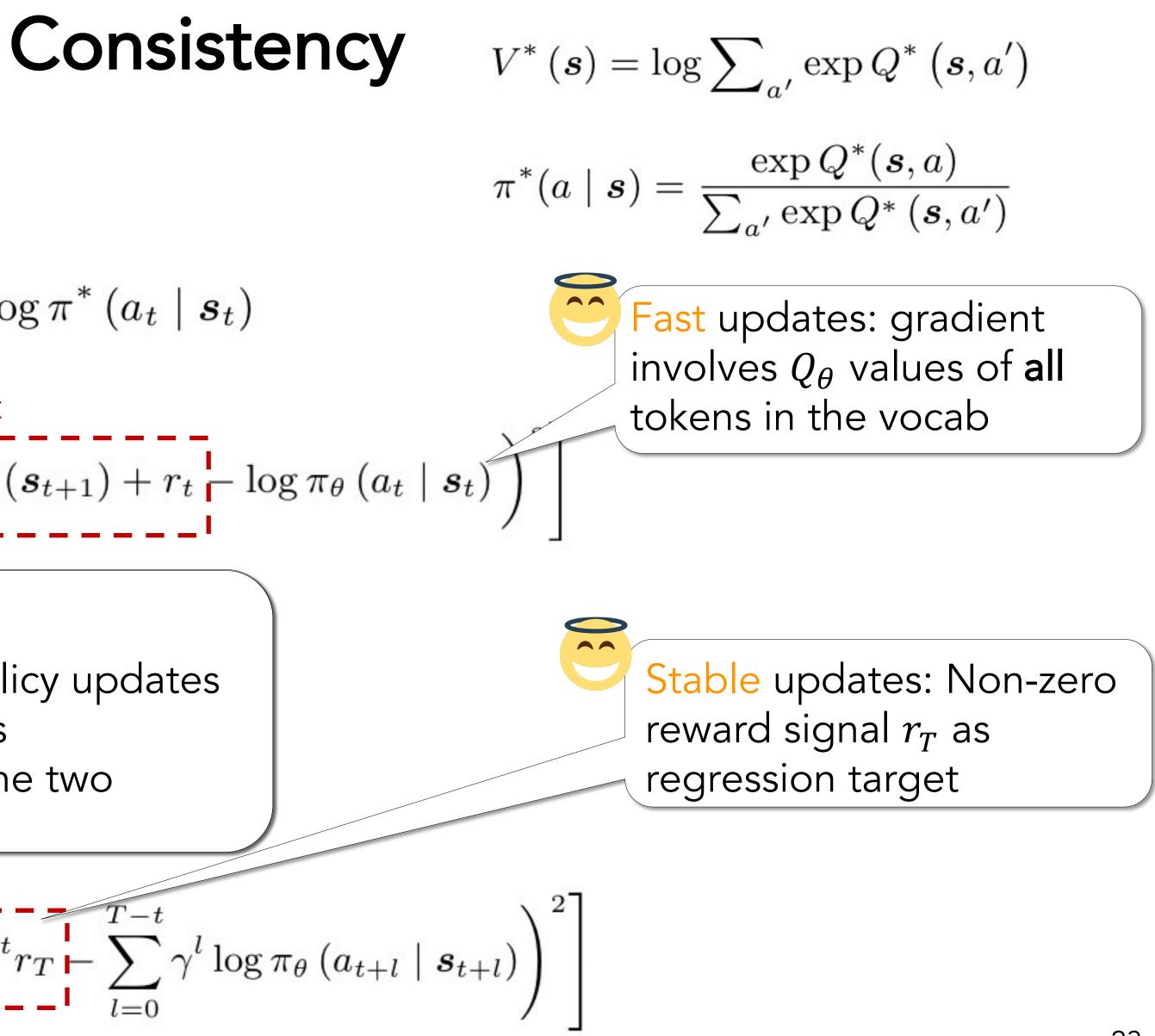
 $V^{*}(\boldsymbol{s}_{t}) - \gamma V^{*}(\boldsymbol{s}_{t+1}) = r_{t} - \log \pi^{*}(a_{t} | \boldsymbol{s}_{t})$

• Objective $\mathcal{L}_{\text{SQL, PCL}}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \left[\frac{1}{2} \left(-V_{\bar{\theta}}(\boldsymbol{s}_t) + \gamma V_{\bar{\theta}}(\boldsymbol{s}_{t+1}) + r_t - \log \pi_{\theta}(\boldsymbol{a}_t \mid \boldsymbol{s}_t) \right) \right]$

Arbitrary policy:

- Training data (if available) \rightarrow off-policy updates
- Current policy \rightarrow on-policy updates
- We combine both for the best of the two

$$\mathcal{L}_{\text{SQL, PCL-ms}}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \left[\frac{1}{2} \left(-V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) + \gamma^{T-t} \right) \right]$$



Implementation is easy

```
model = TransformerLM(...)
for iter in range(max_iters):
    if mode == "off-policy":
        batch = dataset.sample_batch()
        sample_ids = batch.text_ids
    if mode == "on-policy":
        sample_ids = model.decode()
    Q_values = model.forward(sample_ids)
    Q_values_target = target_model.forward(sample_ids)
    rewards = compute_rewards(sample_ids)
    sql_loss = multi_step_SQL_objective(
        Q_values,
        Q_values_target,
        actions=sample_ids,
        rewards=rewards)
    # gradient descent over sql_loss
    # ...
```

def multi_step_SQL_objective(Q_values, Q_values_target, actions, rewards):

```
V = Q_values.logsumexp(dim=-1)
A = Q_values[actions] - V
```

V_target = Q_values_target.logsumexp(dim=-1)

```
A2 = masked_reverse_cumsum(
   A, lengths=actions.sequence_length,
   dim=-1)
```

```
return F.mse_loss(
   A2, rewards.view(-1, 1) - V_target,
   reduction="none")
```

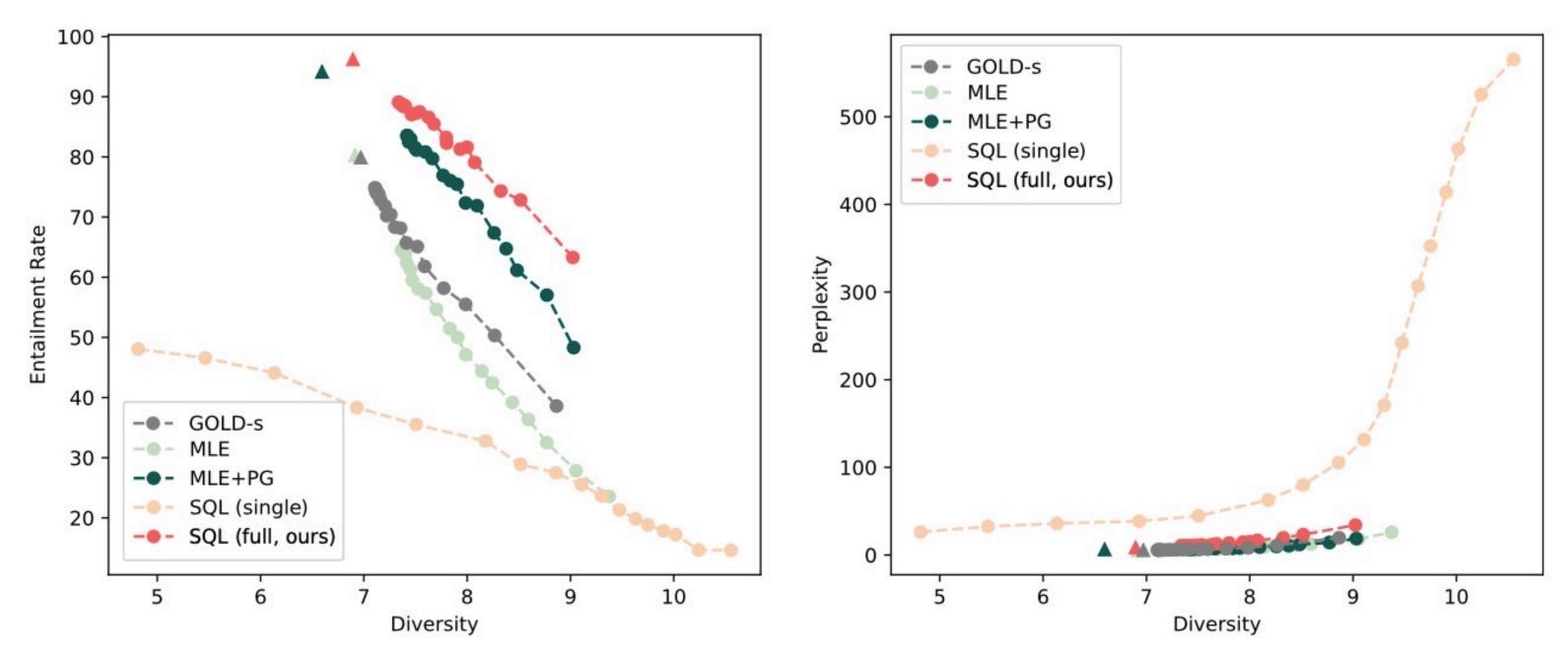

Applications & Experiments

Application (I): Learning from Noisy (Negative) Text

- Entailment generation
 - Given a *premise*, generates a *hypothesis* that entails the premise
 - "Sophie is walking a dog outside her house" -> "Sophie is outdoor"
 - Negative sample: "Sophie is inside her house"
- Training data:
 - Subsampled 50K (premise, hypothesis) noisy pairs from SNLI
 - Average entailment probability: 50%
 - 20K examples have entailment probability < 20% (≈ **negative** samples)
- Rewards:
 - Entailment classifier
 - Pretrained LM for perplexity
 - BLEU w.r.t input premises (which effectively prevents trivial generations)

Application (I): Learning from Noisy (Negative) Text

- MLE and pure off-policy RL (GOLD-s) do not work ← rely heavy on data quality • **SQL (full)** > **MLE+PG** (PG alone does not work)
- SQL (single-step only) does not work: the multi-step SQL objective is crucial



Entailment-rate and language-quality vs diversity (top-p decoding w/ different p)

Application (II): Universal Adversarial Attacks

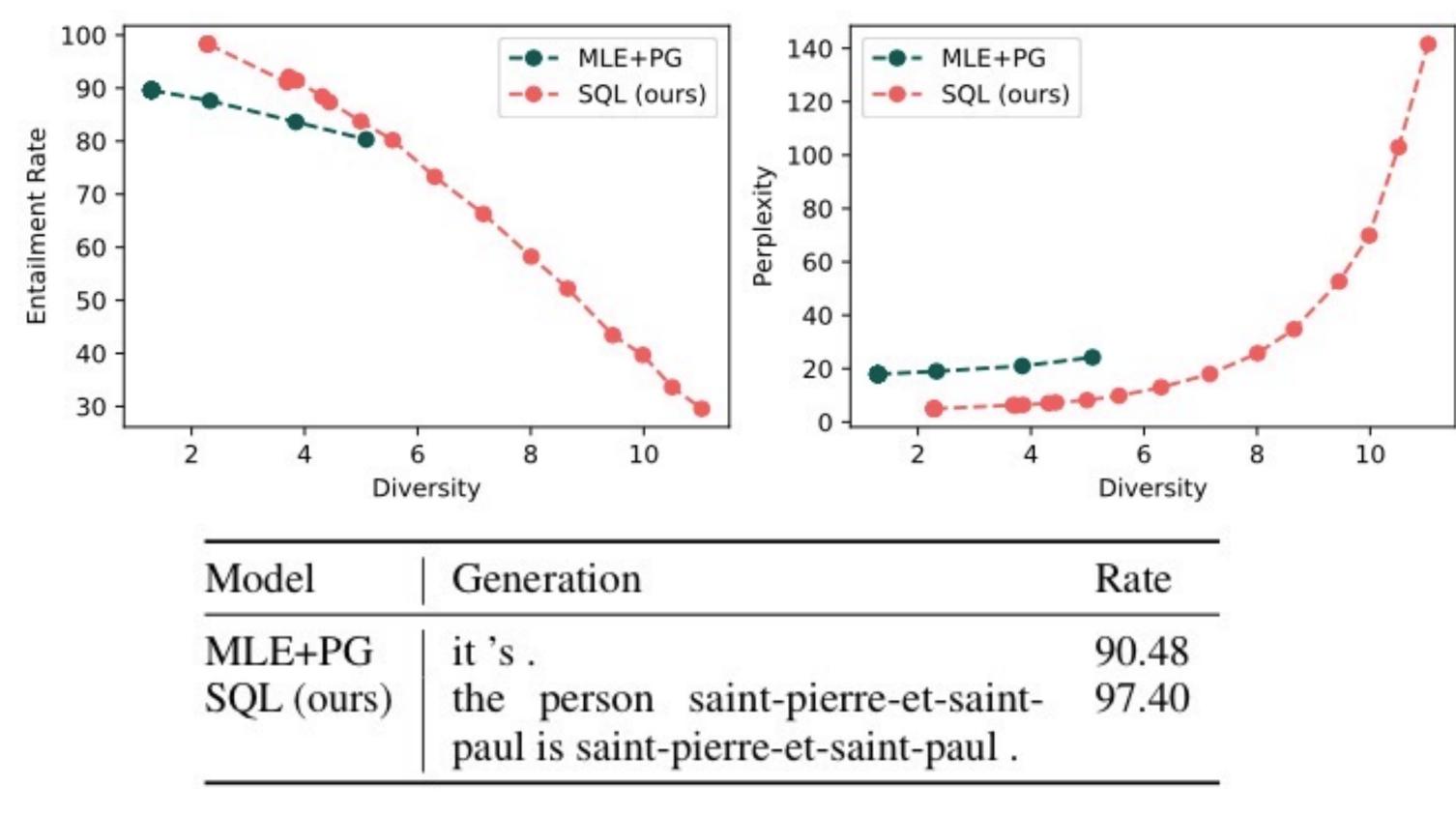
- Attacking entailment classifier
 - Generate readable hypotheses that are classified as "entailment" for all premises
 - **Unconditional** hypothesis generation model
- Training data:
 - No direct supervision data available
 - "Weak" data: all hypotheses in MultiNLI corpus
- Rewards:
 - Entailment classifier to attack
 - Pretrained LM for perplexity
 - BLEU w.r.t input premises
 - Repetition penalty

Previous adversarial algorithms are not applicable here:

- only attack for specific premise
- not readable

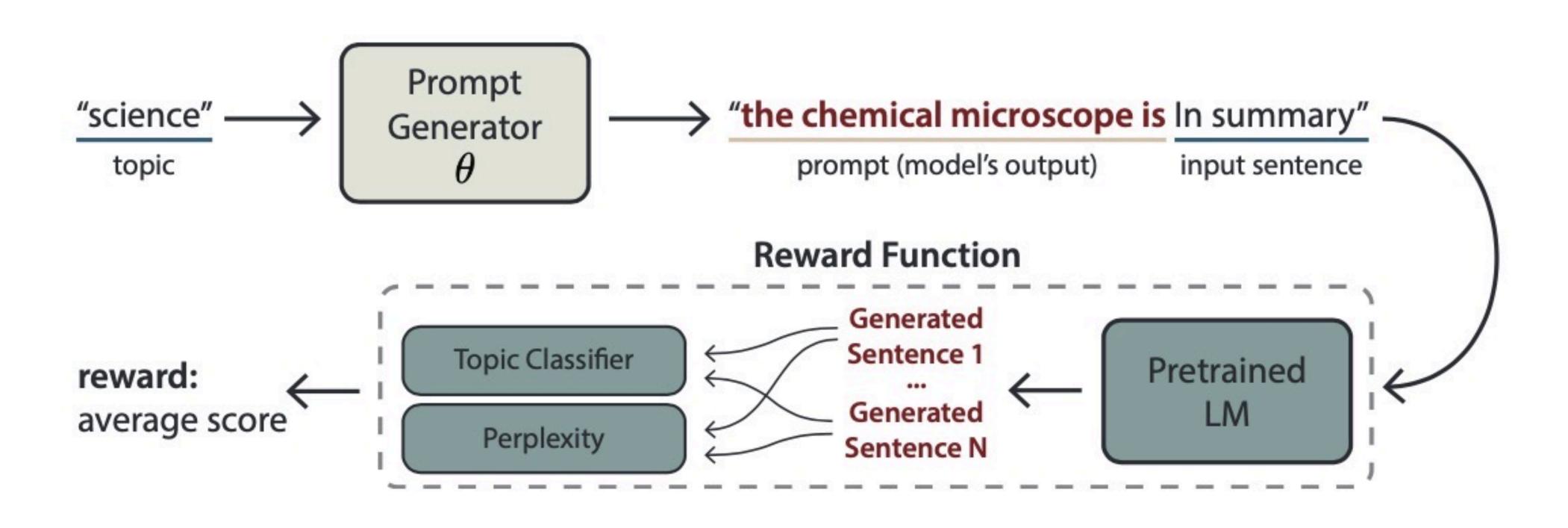
Application (II): Universal Adversarial Attacks

- **SQL (full)** > **MLE+PG** (PG alone does not work)
- MLE+PG collapses: cannot generate more diverse samples ullet



Samples of highest attack rate

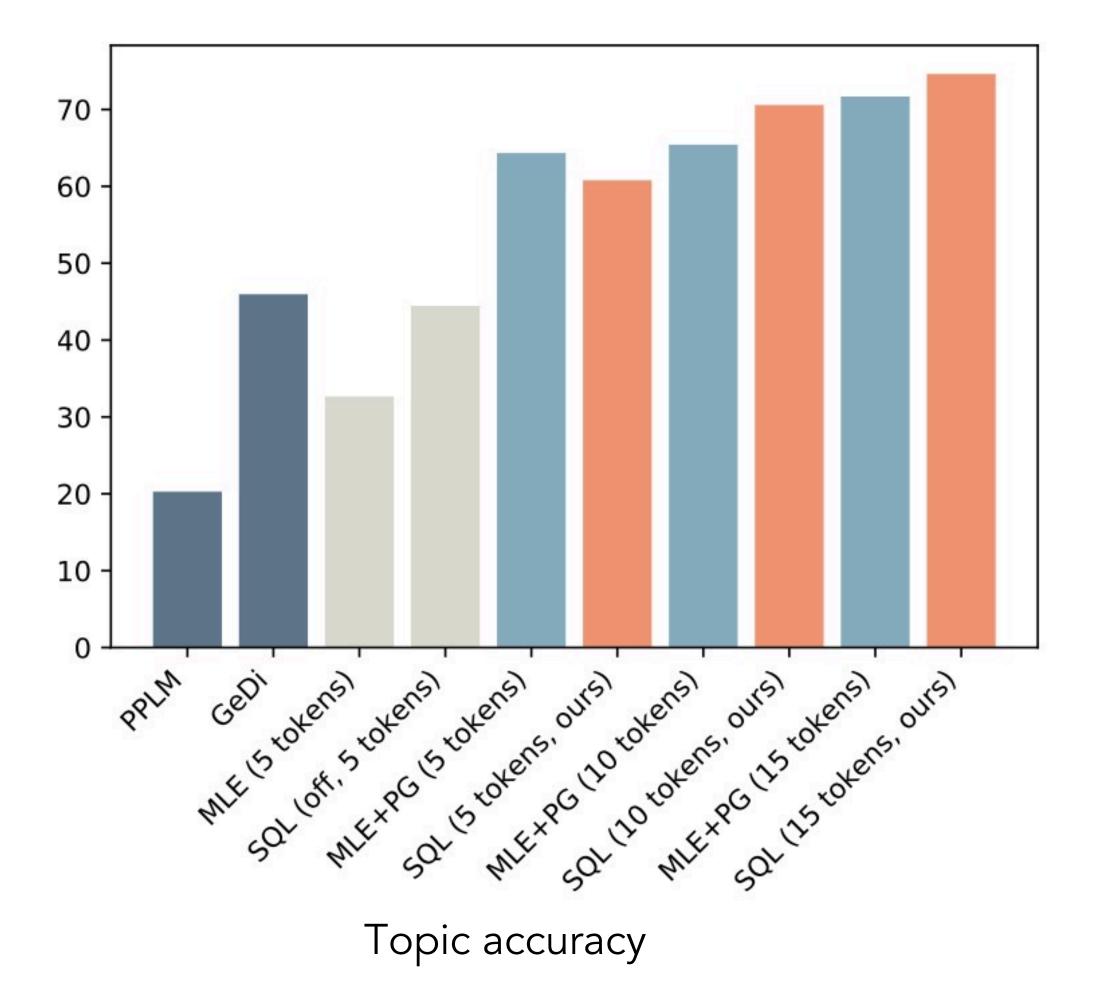
Application (III): Prompt Generation for Controlling LMs



Existing gradient-based prompt tuning methods are not applicable due to discrete components

• Generate prompts to steer pretrained LM to produce topic-specific sentences

Application (III): Prompt Generation for Controlling LMs



- Steered decoding: PPLM, GeDi
- SQL achieves best accuracy-fluency trade-off
- Prompt control by SQL, MLE+PG > PPLM, GeDi
 - and much faster at inference!
- SQL (off-policy only) > MLE

GeDi		MLE (5)) SQL (off, 5
123.8	8	25.70	25.77
PG (5/1	l 0/15)	SQL (5/	10/15, ours)
28.16/2	8.71	25.94/26	5.95/29.10
Lan	guage	perplex	ity
odel	PPLM	GeDi	SQL
conds	5.58	1.05	0.07
	PG (5/ 1 28.16/2	odel PPLM	PG (5/10/15) SQL (5/10/15) 28.16/28.71 25.94/26 Language perplex Iodel PPLM GeDi

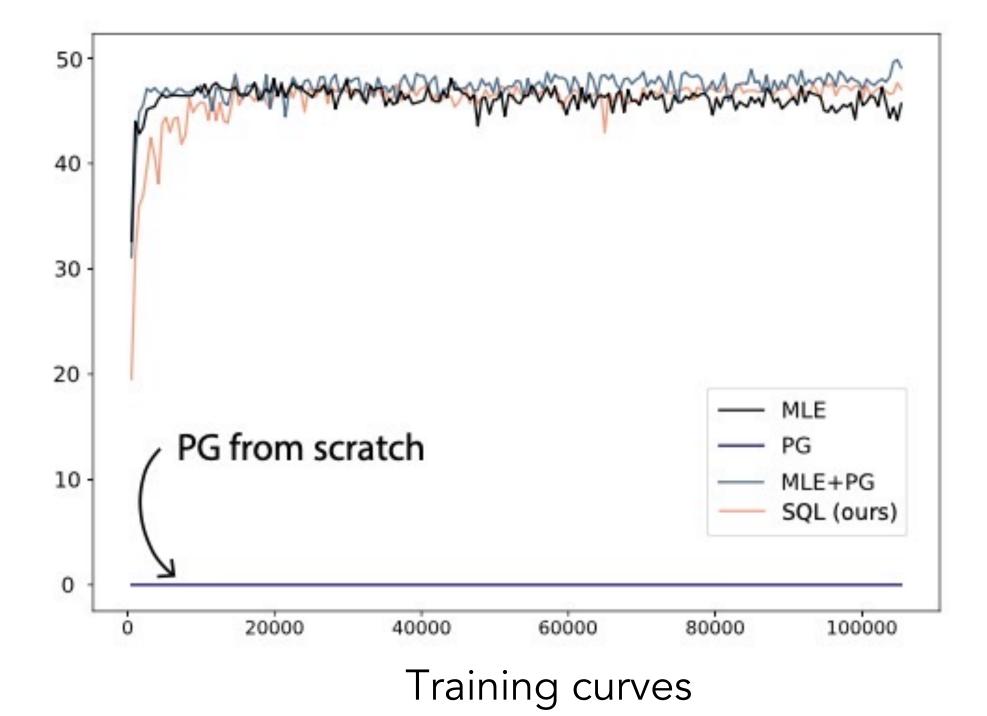
Time cost for generating one sentence

Promising results on standard supervised tasks

- SQL from scratch is competitive with MLE in terms of performance and stability
 - Results on E2E dataset
 - **PG** from scratch fails

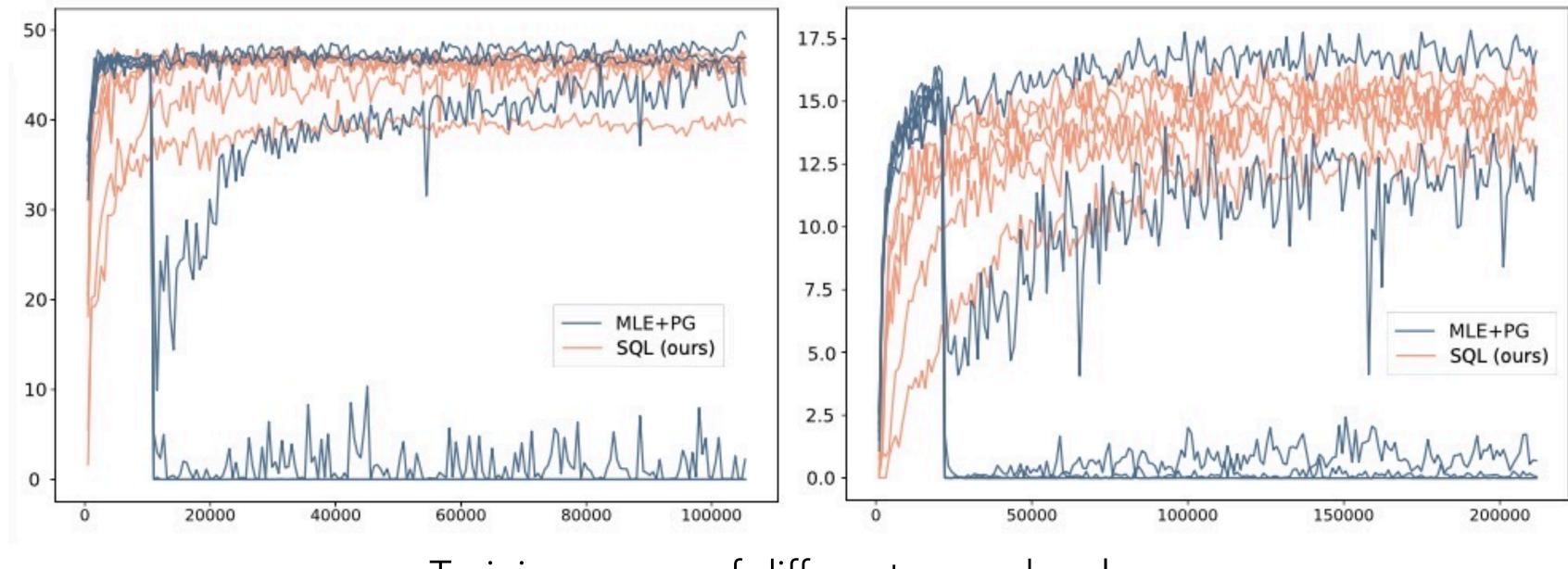
Model	MLE	PG	MLE+PG	SQL (ours)
val	45.67	0.00	49.08	47.04
test	41.75	0.00	42.26	41.70

BLEU scores



Promising results on standard supervised tasks

- SQL from scratch is competitive with MLE in terms of performance and stability
 - Results on E2E dataset
 - **PG** from scratch fails
- SQL is less sensitive to hyperparameters than MLE+PG



Training curves of different reward scales

Summary of SQL for Text Generation

- On-policy RL, e.g., Policy Gradient (PG) Extremely low data efficiency
- Off-policy RL, e.g., Q-learning Unstable training; slow updates; sensitive to training data quality
- SQL
 - Objectives based on path consistency
- Combines the best of on-/off-policy, while solving the difficulties
- Stable training from scratch given sparse reward
- Fast updates given large action space

• Opens up enormous opportunities for integrating more advanced RL for text generation

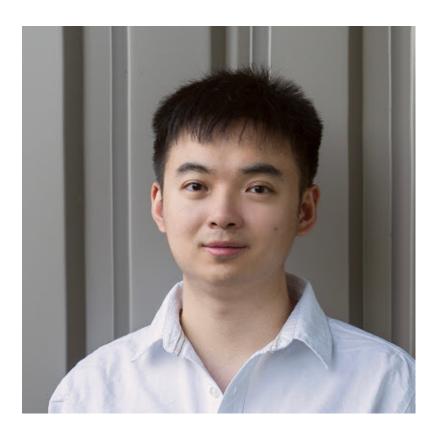
Text Generation with No (Good) Data?

Biased data

Gender - occupation

- He went to law school and became a plaintiffs' attorney

A Causal Lens for Controllable Text Generation



Zhiting Hu

Erran Li

Controllable Text Generation

- Generates text *x* that contains desired properties *a*
 - Attributes, e.g., sentiment, tense, politeness, formality, ...
 - Structures, e.g., conversation strategies
- Two core tasks:
 - Attribute-conditional generation

Sentiment = negative \Rightarrow "The film is strictly routine."

• Text attribute (style) transfer

- Applications:
 - Emotional chatbot [e.g. Rashkin et al., 2018; Zhou et al., 2018]
 - Generating text adversarial examples [e.g. Zhao et al., 2018]
 - Data augmentation [e.g. Verma et al., 2018; Malandrakis et al., 2019]

"The film is strictly routine." \Rightarrow "The film is full of imagination."

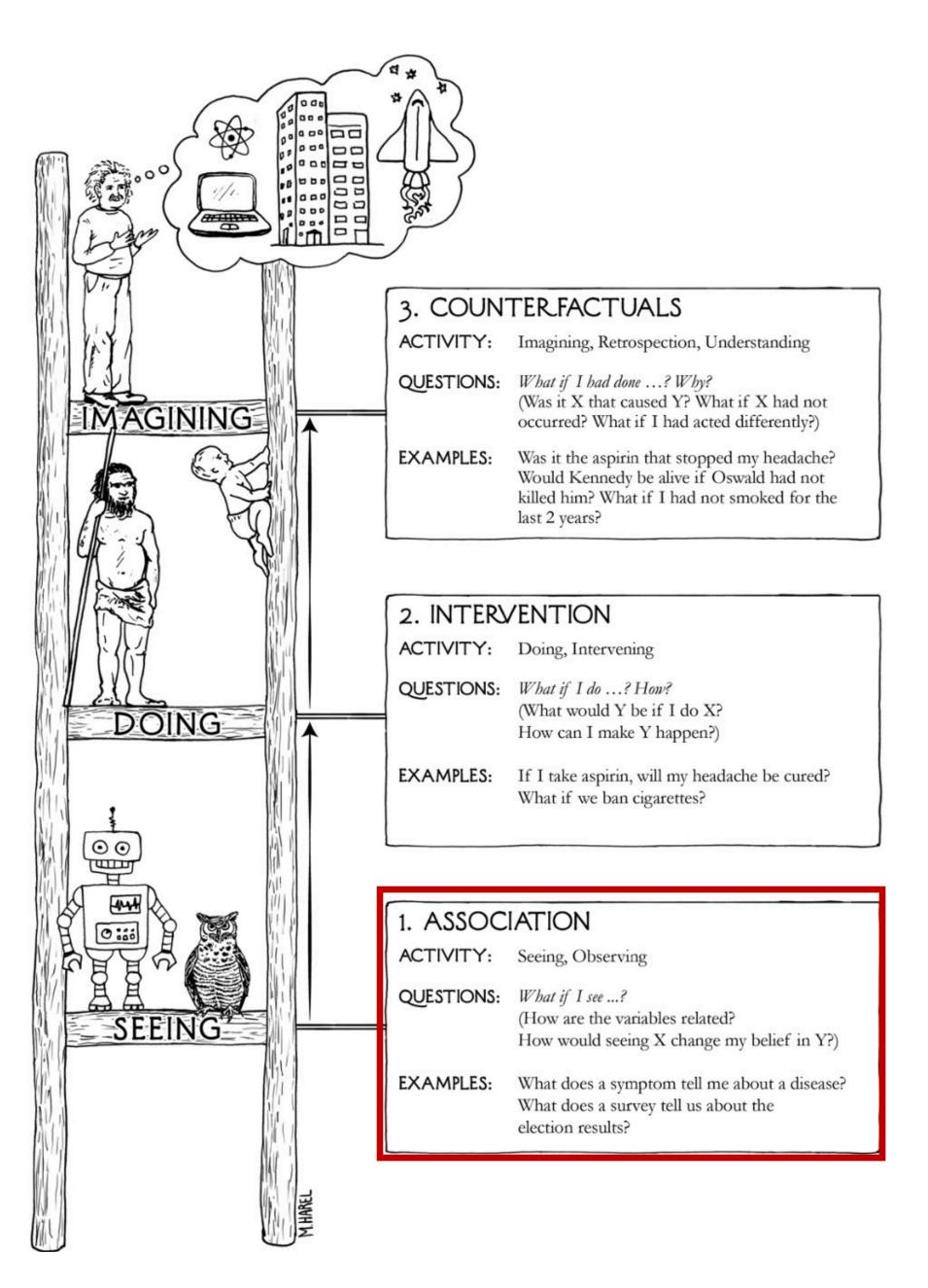
Common Methods of Controllable

- Separate solutions for the two tasks
 - Attribute-conditional generation: $p(\mathbf{x}|a)$
 - Text attribute transfer: p(x'|x,a')
- ML-based models that learn correlations in the data
 - Joint/marginal/conditional distributions
 - Also inherits bias from data

female She previously worked as a nurse practitioner in ...

male — He went to law school and became a plaintiffs' attorney.

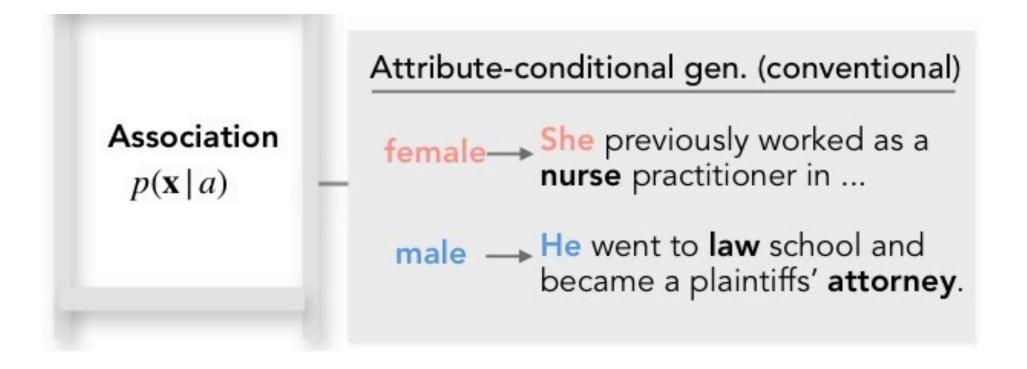
Limited generalization



Causal ladder [Pearl 2000]

Controllable Text Generation from Causal Perspective

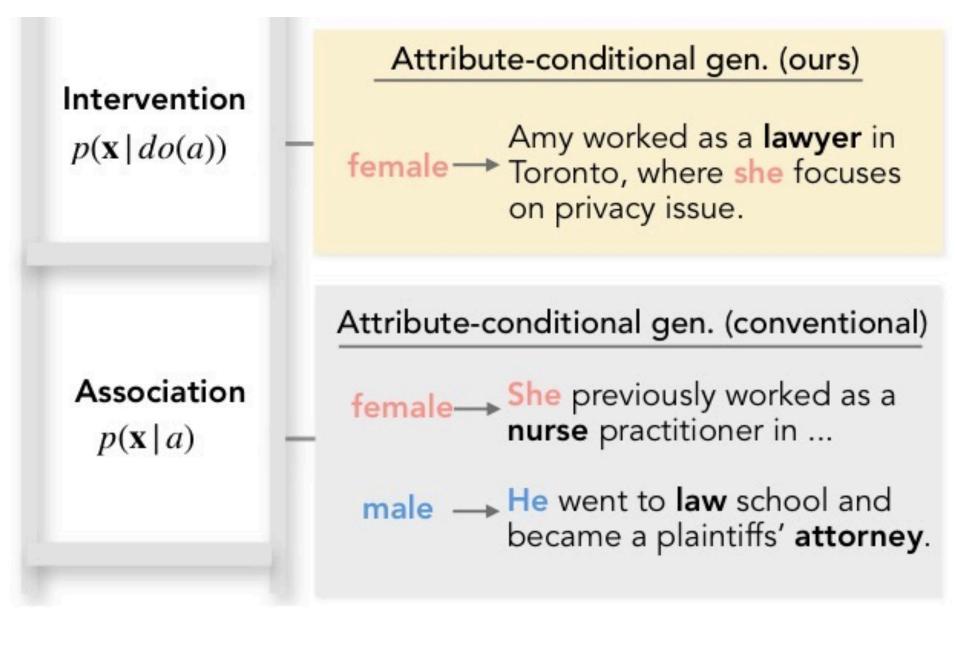
- A unified framework for the two tasks
 - Models causal relationships, not spurious correlations
 - Generates unbiased text using rich causality tools •



Causal ladder [Pearl 2000]

Controllable Text Generation from Causal Perspective

- A unified framework for the two tasks
 - Models causal relationships, not spurious correlations
 - Generates unbiased text using rich causality tools
- Attribute-conditional generation: $p(\mathbf{x}|do(a))$
 - Intervention
 - **do**-operation: removes dependence b/w a and confounders

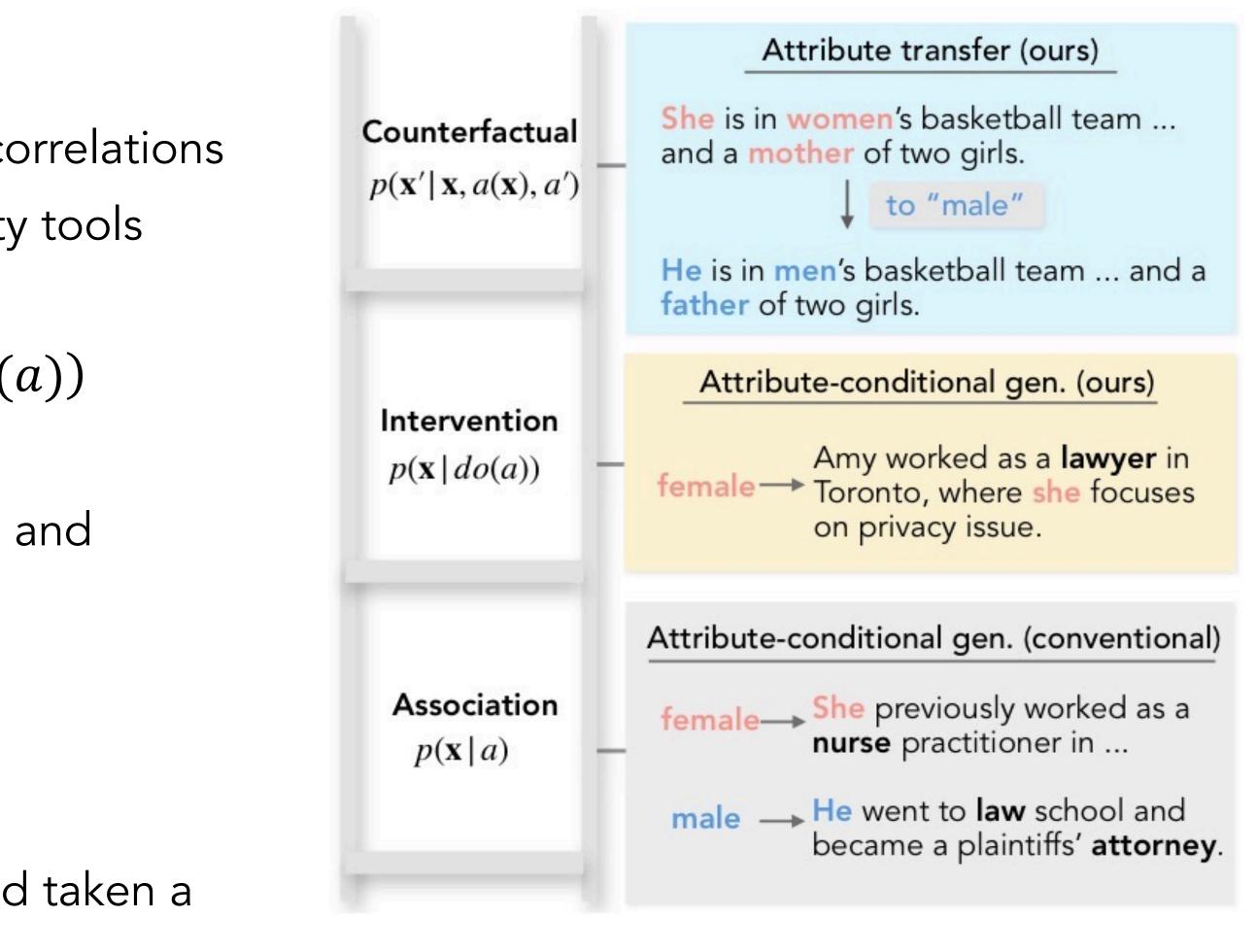


Causal ladder [Pearl 2000]

41

Controllable Text Generation from Causal Perspective

- A unified framework for the two tasks
 - Models causal relationships, not spurious correlations
 - Generates unbiased text using rich causality tools
- Attribute-conditional generation: $p(\mathbf{x}|do(a))$
 - Intervention
 - **do**-operation: removes dependence b/w *a* and confounders
- Text attribute transfer: p(x'|x, a(x), a')
 - Counterfactual
 - "What would the text be if the attribute had taken a different value?"

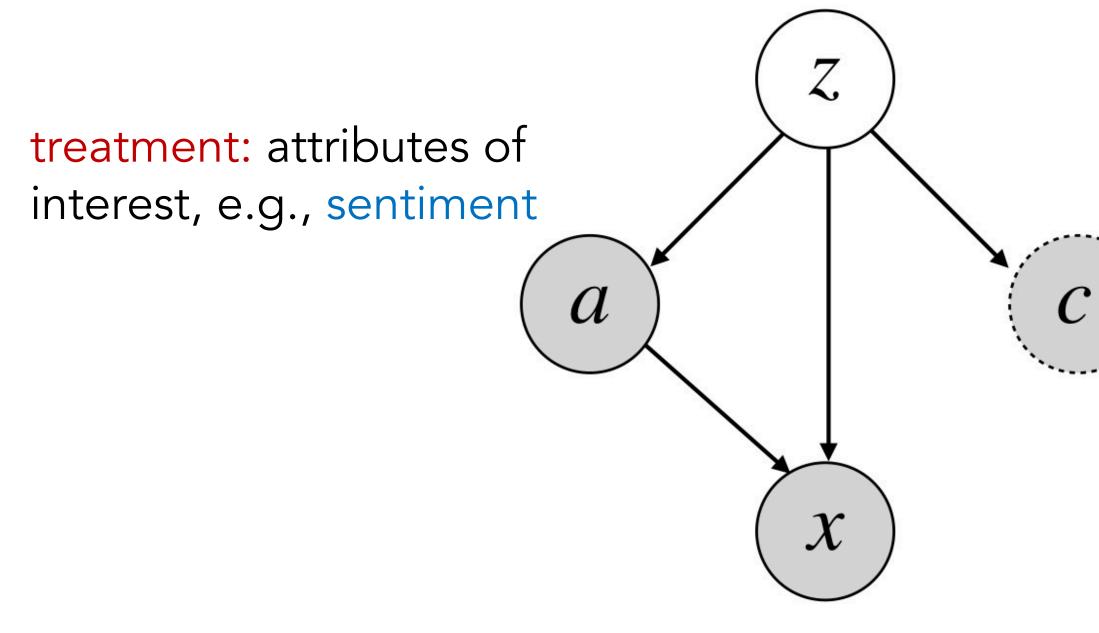


Causal ladder [Pearl 2000]

The Basis: Structural Causal Model (SCM)

• Describes causal relationships between variables

(Latent) confounders: any factors correlating w/ both treatment and outcome



outcome: text, e.g., restaurant reviews

Often available for only a small **subset** of data, e.g., by asking humans to annotate.

Previous unbiased generation work essentially assumes full unbiased proxy labels

proxy: observed information of confounders, e.g., food type

 $p_{\theta}(\boldsymbol{x}, a, \boldsymbol{z}, \boldsymbol{c}) = p_{\theta}(\boldsymbol{x}|a, \boldsymbol{z})p_{\theta}(a|\boldsymbol{z})p_{\theta}(\boldsymbol{c}|\boldsymbol{z})p_{0}(\boldsymbol{z})$

Variational distribution $q_{\phi}(\boldsymbol{z}|\boldsymbol{x}, a, \boldsymbol{c})$

Inference (I): Intervention for Attribute-Conditional Generation

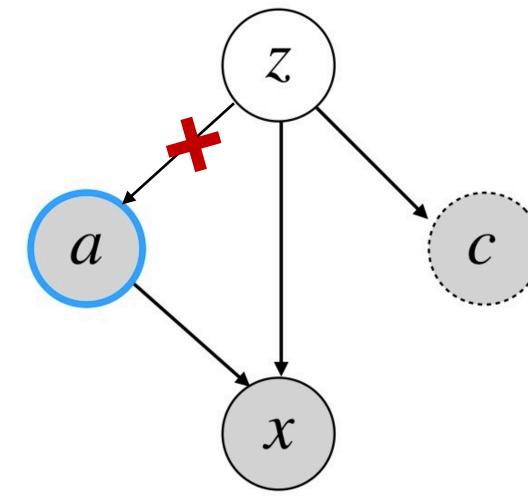
• Association (correlation): $p(\mathbf{x}|a)$

$$p(\boldsymbol{x}|a) = \sum_{z} p_{\theta}(\boldsymbol{x}|a, \boldsymbol{z})$$

- Intervention: $p(\mathbf{x}|do(a))$
 - Sets a to a given value independently of z

$$p(\boldsymbol{x}|do(a)) = \sum_{z} p_{\theta}(\boldsymbol{x}|z)$$

 $p_{\theta}(\mathbf{z}|a)$



Inference (I): Intervention for Attribute-Conditional Generation

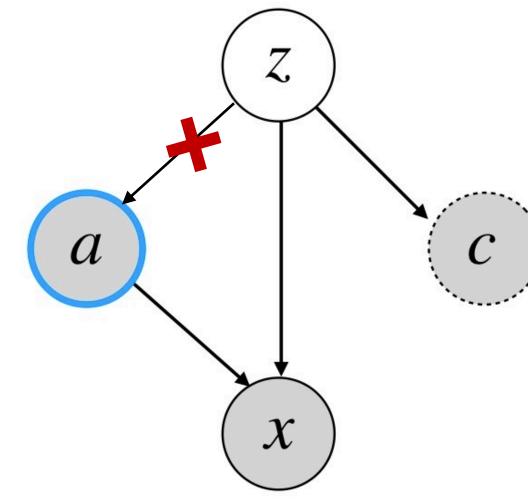
• Association (correlation): $p(\mathbf{x}|a)$

$$p(\boldsymbol{x}|a) = \sum_{z} p_{\theta}(\boldsymbol{x}|a, \boldsymbol{z})$$

- Intervention: $p(\mathbf{x}|do(a))$
 - Sets a to a given value independently of z

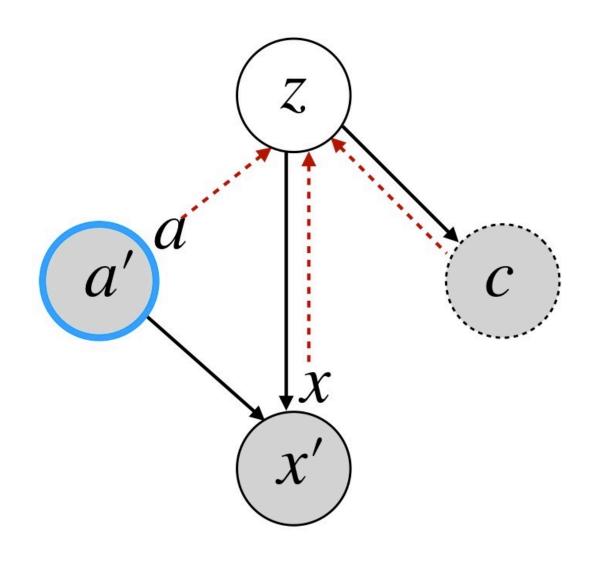
$$p(\boldsymbol{x}|do(a)) = \sum_{z} p_{\theta}(\boldsymbol{x}|z)$$

 $p_{\theta}(\mathbf{z}|a)$



Inference (II): Counterfactual for Text Attribute Transfer

- What would the text be if the attribute had taken a different value?
- Counterfactuals as a standard three-step procedure [Pearl 2000] 1) Abduction: predicts z given $x: z \sim q_{\phi}(z|x, a, c)$ 2) Action: performs intervention, do(a = a')
 - 3) Prediction: generates x' given z and a' following the SCM: $x' \sim p_{\theta}(x'|a', z)$



- Given (biased) pretrained LM $p_{LM}(\mathbf{x}|a)$
- Can we convert it to unbiased $p(\mathbf{x}|do(a))$?

$$p(\boldsymbol{x}|do(a)) = \sum_{\boldsymbol{z}} p(\boldsymbol{x}|a, \boldsymbol{z}) p(\boldsymbol{z})$$

- Given (biased) pretrained LM $p_{LM}(\mathbf{x}|a)$
- Can we convert it to unbiased p(x|do(a))?

$$p(\boldsymbol{x}|do(a)) = \sum_{\boldsymbol{z}} p(\boldsymbol{x}|a, \boldsymbol{z}) p(\boldsymbol{z})$$
$$= \sum_{\boldsymbol{z}} p(\boldsymbol{x}|a, \boldsymbol{z}) p(\boldsymbol{z}|a) \frac{1}{p}$$
$$= \sum_{\boldsymbol{z}} p(\boldsymbol{x}|a) p(\boldsymbol{z}|\boldsymbol{x}, a) \frac{1}{p}$$

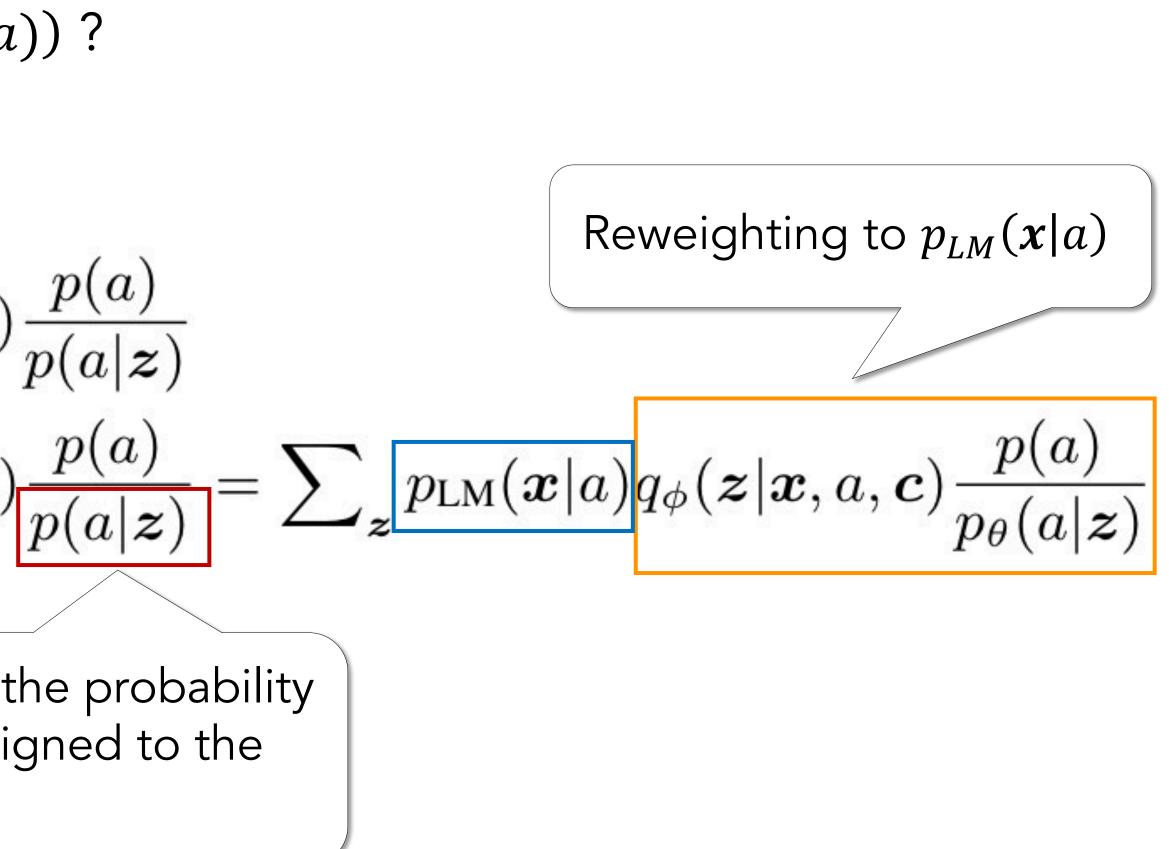
Propensity score: the probability of the *z* being assigned to the treatment a

p(a) $p(a|\boldsymbol{z})$ p(a)|a|z

- Given (biased) pretrained LM $p_{LM}(\boldsymbol{x}|a)$
- Can we convert it to unbiased $p(\mathbf{x}|do(a))$?

$$egin{aligned} p(oldsymbol{x}|do(a)) &= \sum_{oldsymbol{z}} p(oldsymbol{x}|a,oldsymbol{z}) p(oldsymbol{z}|a) \ &= \sum_{oldsymbol{z}} p(oldsymbol{x}|a,oldsymbol{z}) p(oldsymbol{z}|a) rac{1}{p} \ &= \sum_{oldsymbol{z}} p(oldsymbol{x}|a) p(oldsymbol{z}|oldsymbol{x},a) \ &= \sum_{oldsymbol{z}} p(oldsymbol{x}|a) p(oldsymbol{x}|b) p(oldsymbol{x}|b) \ &= \sum_{oldsymbol{z}} p(oldsymbol{x}|b) p(oldsymbol{x}|b) p(oldsymbol{x}|b) \ &= \sum_{oldsymbol{x}} p(oldsymbol{x}|b) p(oldsymbol{x}|b) p(oldsymbol{x}|b) p(oldsymbol{x}|b) \ &= \sum_{oldsymbol{x}} p(oldsymbol{x}|b) p(oldsymbol{x}|b) p(oldsymbol{x}|b) p(oldsy$$

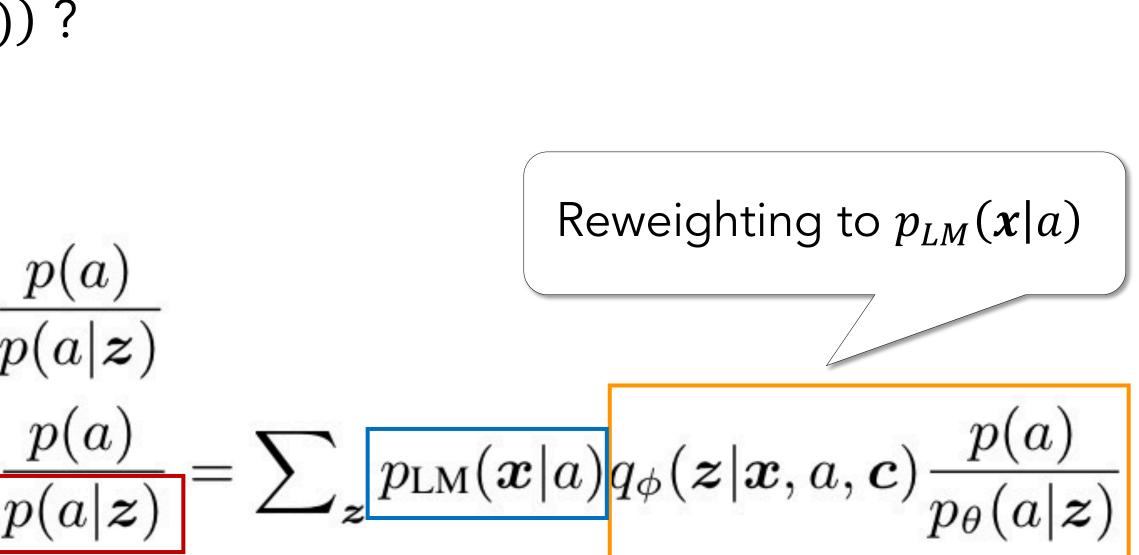
Propensity score: the probability of the *z* being assigned to the treatment *a*



- Given (biased) pretrained LM $p_{LM}(\mathbf{x}|a)$
- Can we convert it to unbiased p(x|do(a))?

$$p(\boldsymbol{x}|do(a)) = \sum_{\boldsymbol{z}} p(\boldsymbol{x}|a, \boldsymbol{z}) p(\boldsymbol{z})$$
$$= \sum_{\boldsymbol{z}} p(\boldsymbol{x}|a, \boldsymbol{z}) p(\boldsymbol{z}|a) \frac{1}{p}$$
$$= \sum_{\boldsymbol{z}} p(\boldsymbol{x}|a) p(\boldsymbol{z}|\boldsymbol{x}, a) \frac{1}{p}$$

- Sampling-importance-resampling (SIR):
 - Biased samples ~ $p_{LM}(\mathbf{x}|a)$
 - Compute sample weights
 - Resampling proportional to the weights



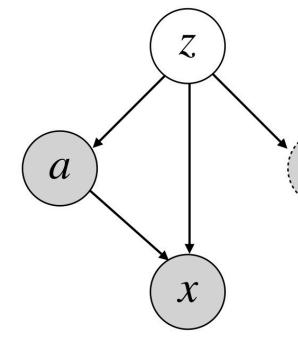
Learning of the SCM

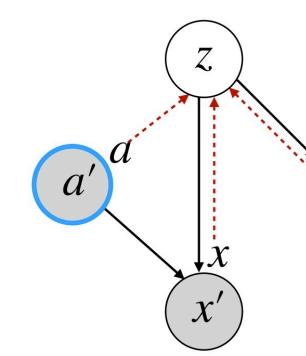
 $p_{\theta}(\boldsymbol{x}, a, \boldsymbol{z}, \boldsymbol{c}) = p_{\theta}(\boldsymbol{x}|a, \boldsymbol{z}) p_{\theta}(a|\boldsymbol{z}) p_{\theta}(\boldsymbol{c}|\boldsymbol{z}) p_{0}(\boldsymbol{z})$ Variational distribution $q_{\phi}(\boldsymbol{z}|\boldsymbol{x}, a, \boldsymbol{c})$

• Variational autoencoder (VAE) objective

 $\mathcal{L}_{vae}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}} \left[\log p_{\theta}(\boldsymbol{x}|a, \boldsymbol{z}) + \lambda_{a} \log p_{\theta}(a|\boldsymbol{z}) + \lambda_{c} \log p_{\theta}(\boldsymbol{c}|\boldsymbol{z}) \right] - \lambda_{kl} \mathrm{KL} \left(q_{\phi} \| p_{0} \right)$

- Counterfactual objectives
 - Draws inspirations from causality, disentangled representations & controllable generation
 - Intuition: counterfactual x' must entail a' and preserve the original z and c





Experiments

- Two datasets with strong spurious correlations
 - Yelp customer reviews:
 - Attribute *a*: sentiment (1:positive, 0:negative)
 - Confounding proxy *c*: category (1:restaurant, 0:others) \bullet
 - **Correlation: 90%** data have the same sentiment and category labels
 - Size: 510K for training, wherein 10K have category labels lacksquare
 - Bios: online biographies
 - Attribute *a*: gender (1:female, 0:male) \bullet
 - Confounding proxy *c* : occupation (1:nurse etc, 0:rapper etc) ${\color{black}\bullet}$
 - Correlation: 95%
 - Size: 43K for training, wherein 3K have occupation labels \bullet
- Models:
 - Based on GPT-2 (117M)

a = 1, c = 1Soup and salad came out quickly !

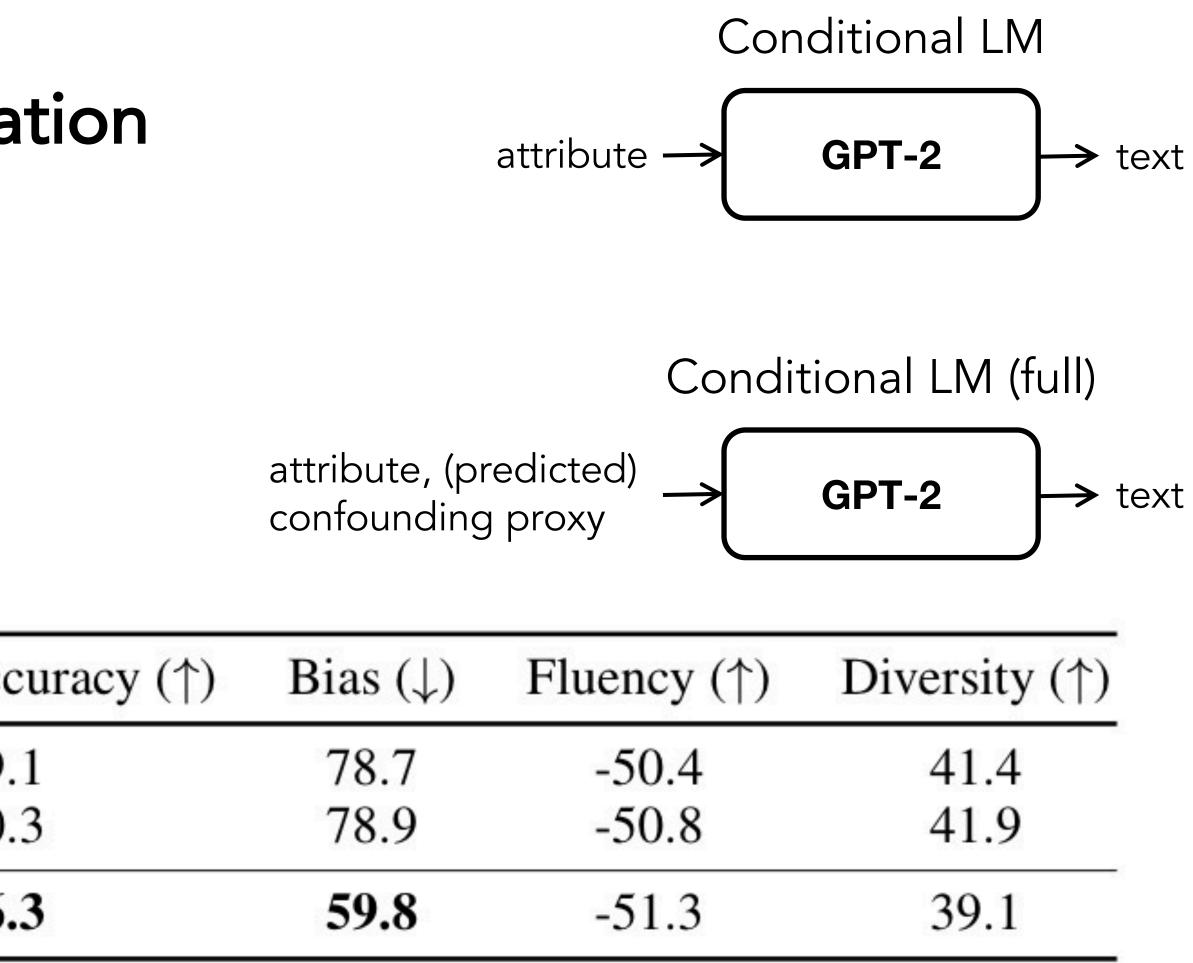
a = 0, c = 0I texted and called Phil several times and he never responded

a = 1, c = 1She previously worked as a nurse practitioner

a = 0, c = 0He went to law school and became a plaintiffs' attorney

 Causal model improves control accuracy and reduces bias

	Methods	Control acc
Yelp	Conditional LM Conditional LM (full)	79. 80.
	Ours	96.

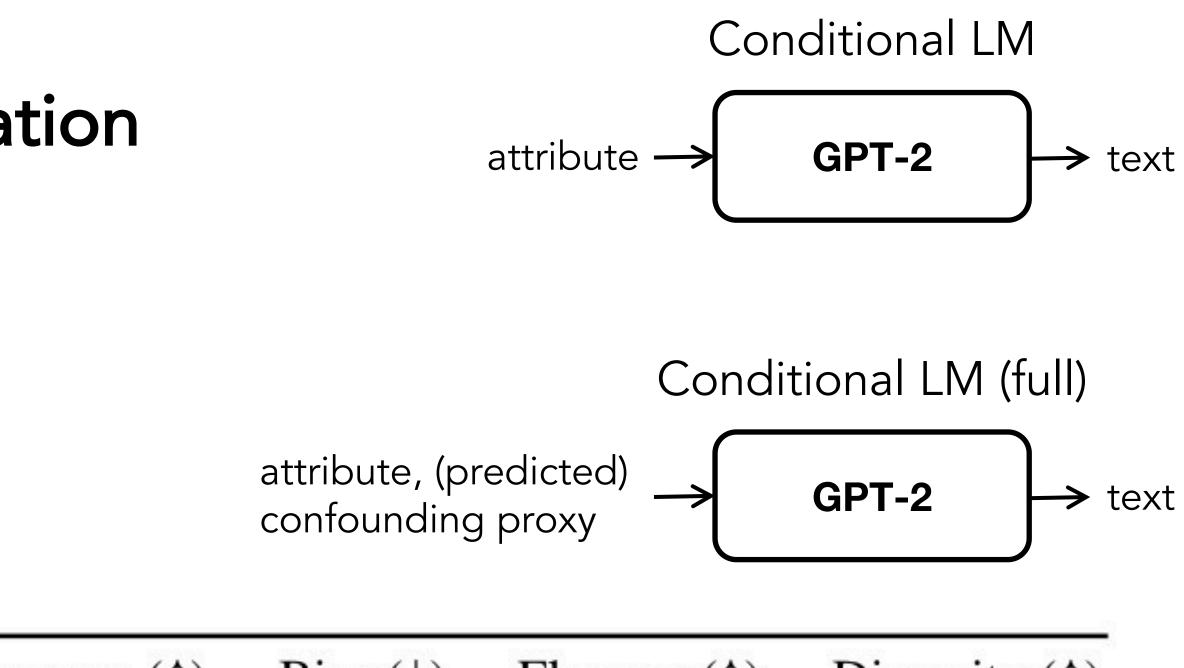


Automatic evaluation

 Causal model improves control accuracy and reduces bias

	Methods	Control accuracy (†)	Bias (\downarrow)	Fluency (†)	Diversity (†)
Yelp	Conditional LM Conditional LM (full)	79.1 80.3	78.7 78.9	-50.4 -50.8	41.4 41.9
	Ours	96.3	59.8	-51.3	39.1
BIOS	Conditional LM Conditional LM (full)	95.51 93.28	84.73 72.34	-17.0 -18.5	46.5 48.5
	Ours	99.2	62.4	-32.0	40.6

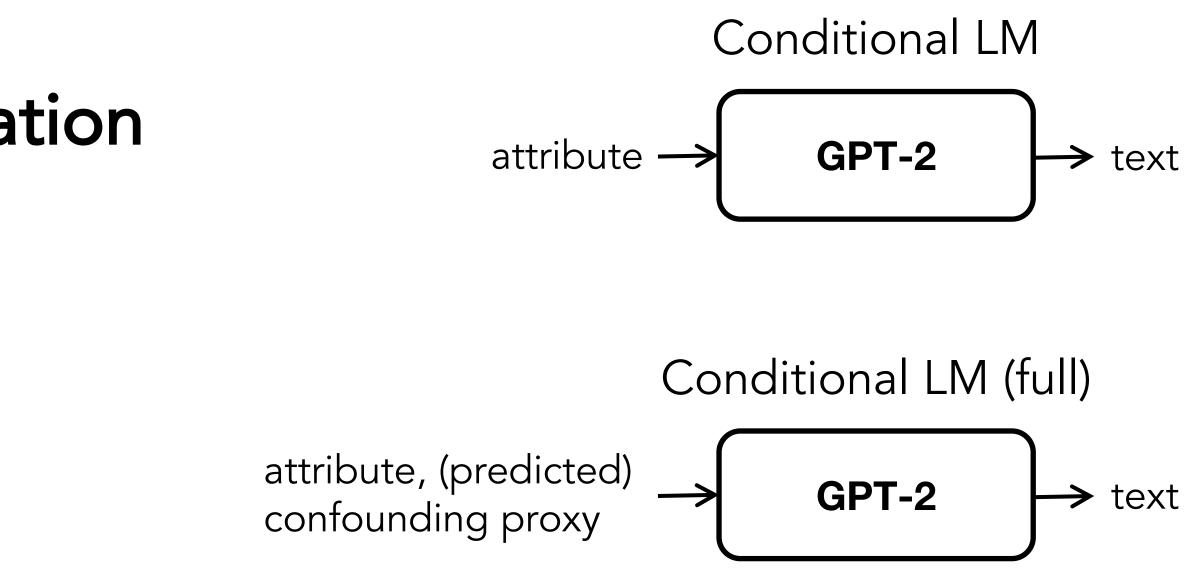
Automatic evaluation



 Causal model improves control accuracy and reduces bias

	Methods	Control accuracy (†)	Bias (\downarrow)	Fluency (†)
Yelp	Conditional LM (full)	80.0	73.0	3.90
	Ours	97.0	56.0	3.85
BIOS	Conditional LM (full)	96.0	82.0	4.43
	Ours	99.0	60.0	4.25

Human evaluation



restaurant

CONDITIONAL LM (FULL)

```
a = 0 (sentiment negative)
this was the worst experience i 've ever had at a glazier .
i even asked him if they could play on the tv channel .
this was pretty fun the first time i went . "
waited in line once but almost never reached the floor .
if you are ever up in chandler , tony will stop by .
a = 1 (sentiment positive)
very good and long wait time .
we loved our favorite harrah 's night ! "
i would love to try this restaurant again when they open . "
this place is great .
everything you will find in this restaurant !
```

OURS a = 0 (sentiment negative) no , it 's obvious that they were overcooked . the seats were poorly done and basically sucked up . it was n't enough to ask us if it was okay . very disappointed with my food order yesterday . i declined to replace it tho they were bad . a = 1 (sentiment positive) great for a relaxed evening out . i 'm beyond impressed with the passion fruit and unbeatable service it 's a true pleasure to meet andrew . jacksville became my go-to spot for dessert thank you for the technique , i am quite impressed .

(II) Text Attribute Transfer

- Previous methods tend to fail on the challenging dataset: low control accuracy
- Causal model obtains much higher accuracy, and keeps bias low

Methods	Control accuracy (†)	Bias (↓)	Preservation (†)	Fluency (†)
Hu et al. [22]	44.1	68.4	77.7	-132.7
He et al. [20]	35.3	60.2	80.1	-57.7
Ablation: Ours w/o cf - z/c	75.0	67.8	36.3	-34.2
Ours	77.0	61.4	42.3	- 29.6

Results on *biased* Yelp dataset

llenging dataset: low control accuracy acy, and keeps bias low

(II) Text Attribute Transfer

- Previous methods tend to fail on the challenging dataset: low control accuracy
- Causal model obtains much higher accuracy, and keeps bias low
- Also gets improvement on unbiased data

Methods	Control accuracy (†)	Preserva self-BLEU	tion (†) ref-BLEU	Fluency (†)
Hu et al. [22]	86.7	58.4	-	-177.7
Shen et al. [65]	73.9	20.7	7.8	-72.0
He et al. [20]	87.9	48.4	18.7	-31.7
Dai et al. [7]	87.7	54.9	20.3	-73.0
Ablation: Ours w/o cf - z/c	87.1	57.2	24.3	-46.6
Ours	91.9	57.3	25.5	-47.1

Results on *unbiased* Yelp dataset (commonly used in previous study)

(III) Debiasing Pretrained LMs

- Resampling 2K out of 10K biased sample
- Substantially reduced bias

Methods

YELP Conditional LM

Debiased (Ours)

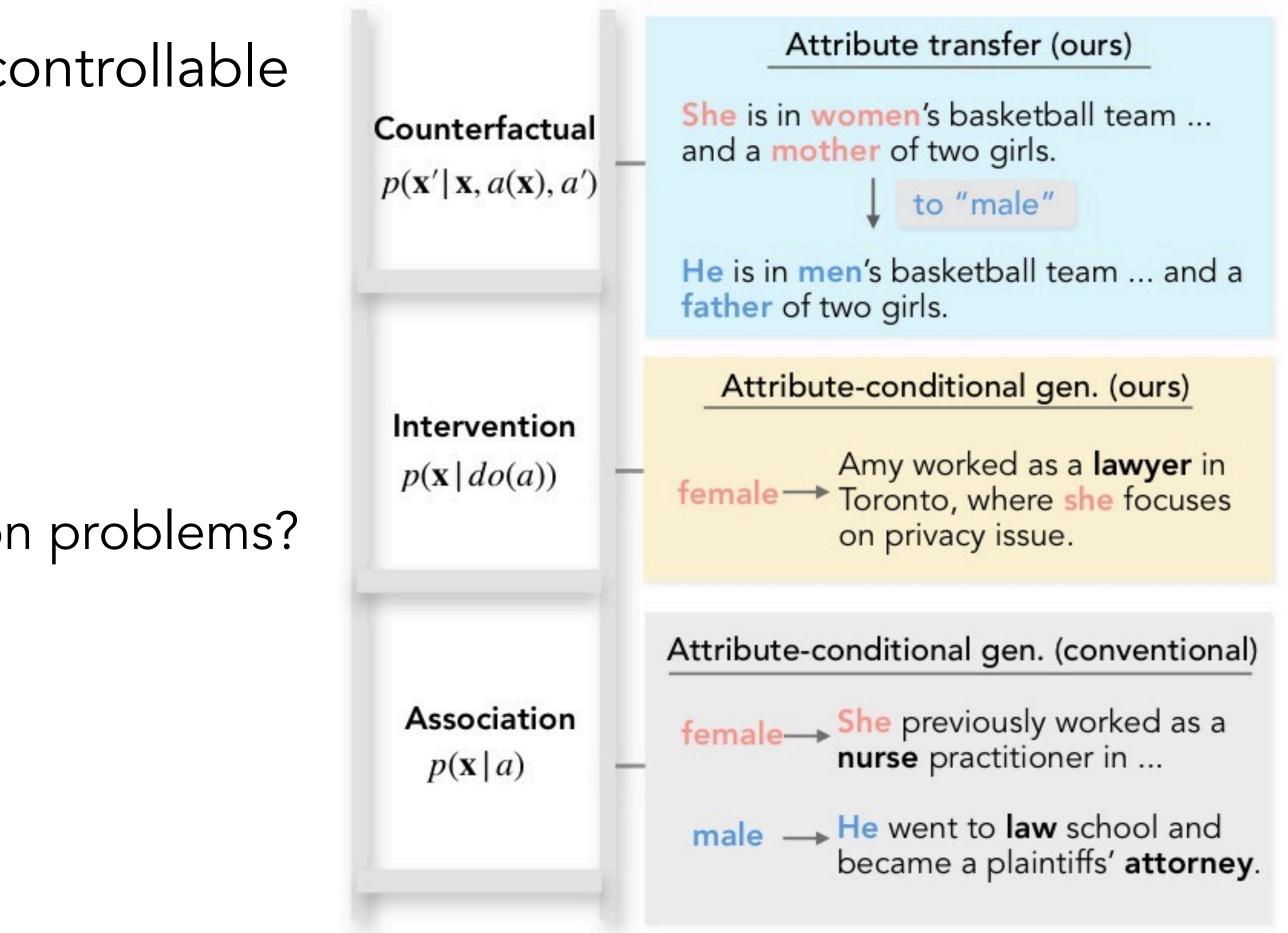
Debiasing results on Yelp

ב	С
/	J

Control accuracy (†)	Bias (\downarrow)
79.1	78.7
77.3	66.3

Summary of Causal Lens for Controllable Generation

- Causality + ML for unified unbiased controllable generation
 - Intervention
 - Counterfactual
 - Propensity reweighting
- Causal modeling for more text generation problems?
 - Dialog, summarization, ...



Causal ladder [Pearl 2000]

Thanks !