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Overview
• Rich deep generative models (DGMs): GANs, VAEs, auto-regessive nets
• Difficult to exploit problem structures and domain knowledge (e.g., hu-

man body structure in image generation, Fig.1) in these DGMs.
Existing approaches:
• A popular way of adding structured knowledge with deep neural networks

is to design specialized neural architectures
– E.g., Conv-pooling architecture of ConvNet to hard-code translation-

invariance of image classification
– Usually only applicable to specific knowledge, models, or tasks
• Posterior Regularization (PR) is a principled framework to impose knowl-

edge constraints on posterior distributions of probabilistic models [1] or
neural networks [2]. But with difficulties:
– Many of the DGMs are not formulated with the probabilistic Bayesian

framework and do not possess a posterior distribution or even mean-
ingful latent variables

– Require a priori fixed constraints. Users have to fully specify the
constraints beforehand — impractical due to heavy engineering; sub-
optimal without adaptivity to the data and models.

This paper:
– A general means of incorporating arbitrary structured knowledge

with any types of deep (generative) models in a principled way.
– Formal connections between PR and reinforcement learning (RL)
– Extends PR to learn constraints as the extrinsic reward in RL
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Figure 1: Two examples of imposing learnable knowledge constraints on DGMs.
(a) Given a person image and a target pose (defined by key points), the goal is
to generate an image of the person under the new pose. The constraint is to
force the human parts (e.g., head) of the generated image to match those of the
true target image. (b) Given a text template, the goal is to generate a complete
sentence following the template. The constraint is to force the match between
the infilling content of the generated sentence with the true content.

Connecting Posterior Regularization (PR) to RL
1) (Adapted) PR for Deep Generative Models (DGMs)
• Consider a generative model x ∼ pθ(x) with parameters θ
• Consider constraint function f(x) ∈ R. A higher f(x) value indicates a

better x in terms of the particular knowledge.
• PR assumes a variational distribution q, and the objective:

minθ,q L(θ, q) = KL(q(x)‖pθ(x))− αEq [f(x)] , (1)

which is solved with an EM-style procedure

E-step: q∗(x) = pθ(x) exp {αf(x)} /Z,
M-step: minθ KL(q(x)‖pθ(x)) = minθ −Eq [log pθ(x)] + const.

(2)

• In PR, constraint f is fixed. It’s sometimes desirable or necessary to
enable learnable constraints so that practitioners are allowed to specify
only the known components of f while leaving any unknown or uncertain
components automatically learned (e.g., the human part parser in Fig.1).
• Denote the constraint function with learnable components as fφ(x)
2) Entropy-Regularized Policy Optimization (ERPO)
• ERPO augments policy gradient with information theoretic regularizers

e.g., KL divergence between new and old policies for stabilized learning.
• Assume state s, action a, policy pπ(a|s), reward R(s, a) ∈ R
• Let x = (s, a) denote the state-action pair, and pπ(x) = µπ(s)pπ(a|s)

where µπ(s) is the stationary state distribution.
• Let qπ(x) be the new policy; pπ(x) the old. In some ERPO such as

relative entropy policy search, qπ is non-parametric. Objective:

minqπ L(qπ) = KL(qπ(x)‖pπ(x))− αEqπ [R(x)] , (3)

Close resemblance between Eq.(1) and Eq.(3):
• Generative model pθ(x) in PR ⇔ reference (old) policy pπ(x)
• Constraint f in PR ⇔ reward R
• Solution for qπ is in the same form of Eq.(2)
3) Maximum-Entropy Inverse Reinforcement Learning (MaxEnt IRL)
• Learns reward Rφ(x) with unknown parameters φ.
• Assumes pπ a uniform → qφ(x) := exp{αRφ(x)}/Zφ. Learns φ with:

φ∗ = argmaxφ Ex∼pdata [log qφ(x)] . (4)

Components PR Entropy-Reg RL MaxEnt IRL

x data/generations action-state samples demonstrations

p(x) generative model pθ (old) policy pπ —

f(x)/R(x) constraint fφ reward R reward Rφ
q(x) variational distr. Eq.2 (new) policy qπ policy qφ

Table 1: Mathematical correspondence of PR with the entropy-regularized RL
and maximum entropy IRL.

Algorithm
With the connection between PR and RL, we can transfer the MaxEnt
IRL technique of reward learning for constraint learning. The resulting
algorithm alternates the optimization of constraint fφ and model pθ.
Learning the Constraint fφ
Use the same objective of MaxEnt IRL (Eq.1), replacing qφ with q(x) from
Eq.2:

∇φEx∼pdata [log q(x)] = ∇φ
[
Ex∼pdata [αfφ(x)]− logZφ

]
= Ex∼pdata [α∇φfφ(x)]− Eq(x) [α∇φfφ(x)] .

(5)

Learning the Generative Model pθ
Given the current parameter state (θ = θt,φ = φt), and q(x) evaluated
at the parameters, we continue to update the generative model.
• For explicit model, we use the M-step as in Eq.(2):

minθ KL(q(x)‖pθ(x)) = minθ −Eq(x) [log pθ(x)] + const. (6)

• For implicit model that permits only simulating samples but not evalu-
ating density, we propose to minimize the reverse KL divergence:

minθ KL (pθ(x)‖q(x)) = minθ −Epθ
[
αfφt(x)

]
+ KL(pθ‖pθt) + const. (7)

See paper for efficient approximations and connections to GANs.

Experiments

Method SSIM Human

Energy-based GAN 0.716 –

Base model 0.676 0.03
W/ fixed constraint 0.679 0.12

W/ learned constraint 0.727 0.77

Model PPL Human

Base model 30.30 0.19
W/ binary D 30.01 0.20

W/ learned constraint 28.69 0.24

Table 2: Results of Human Pose Image Generation (Left, Fig.2(a)) and Template
Guided Sentence Generation (Right, Fig.2(b)). Pls see the paper for more details.
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Figure 2: Generation samples.
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