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Recap: EM Algorithm

e The EM algorithm is coordinate-decent on F(q, 6)

o E-step: th :argmqinF(q, Qt) = p(z|x,6°)

o M-step: gt = arg meinF (¢"*t1,0") = argmaxg 2 q**1(z|x) log p(x, 2|0)
VA

p(x,z|0)
q(z|x)

£(0;x) = Eq(zx) [log + KL(q(z|x) || p(zlx, 6))

= —F(q,0) + KL(q(z|x) || p(z]x,6))

e Limitation: need to be able to compute p(z|x, 8), not possible for more

complicated models --- solution: Variational inference ,



Recap: Variational Inference

e We often cannot compute posteriors p(z|x, 8), and so we need to
approximate them, using variational methods.

e In variational Bayes, we'd like to find an approximation within some
family that minimizes the KL divergence to the posterior, but we can't
directly minimize this

e Therefore, we defined the ELBO, which we can maximize, and this is
equivalent to minimizing the KL divergence.

p|x) Evidence Lower Bound (ELBO)

7 KL(g(z:v*) || pz| %))
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I z|0 :
£63.%) =\ Eq(ape Llogp(x 4 )J -+ KL(q(z12) || p(zlx, )

e How do we choose the variational family q(z|x, v)?



Mean Field Variational Inference

e A popular family of variational approximations

e In this type of variational inference, we assume the variational distribution
over the latent variables factorizes as

q(z) = q(21,- -y 2m) = 1—116_Z(Zj)
i

o (where we omit variational parameters for ease of notation)

o We refer to q(z;), the variational approximation for a single latent variable, as
a "local variational approximation”

e In the above expression, the variational approximation q(z;) over each
latent variable z; is independent



Mean Field Variational Inference

I
e Note that this is a fairly general setup; we can also partition
the latent variables z1,...,2mn Into R groups 2G,,.---,%Gx,
and use the approximation:

R
q(215-- -, 2m) = q(2a,,- -+, 2ax) = [ a(2a,)
r=1

e Often called “generalized mean field” versus (the above) “naive mean field”.



Mean Field Variational Inference

I
e Note that this is a fairly general setup; we can also partition
the latent variables z1,...,2m» Into R groups 2G,,---,2GRr,
and use the approximation:

R
q(215-- -, 2m) = q(2a,,- -+, 2ax) = [ a(2a,)
r=1

e Often called “generalized mean field” versus (the above) “naive mean field”.

e Typically, this approximation does not contain the true
posterior (because the latent variables are dependent).

e E.g.:in the (Bayesian) mixture of Gaussians model, all of the cluster assignments <;
for ¢ =1,...,n aredependenton each other and on the cluster locations #1:K

given data.



Optimizing the ELBO in Mean Field Variational Inference

I
How do we optimize the ELBO in mean field variational

inference?
e Typically, we use coordinate ascent optimization.

e |.e. we optimize each latent variable’s variational
approximation ¢(z;) in turn while holding the others fixed.

e At each iteration we get an updated “local” variational approximation.
e And we iterate through each latent variable until convergence.



Optimizing the ELBO in Mean Field Variational Inference
e Recall that the ELBO is defined as:

L =E,[logp(x,z)] — E,[logq(z)]

e Note that we can decompose the entropy term of the ELBO (using the
mean field variational approximation) as:

K, [log g(z1:m)] = ZE logq(zj ]

e Therefore, under the mean field approximation, the ELBO can be written:

L =EqEq_[logp(x,2)] - Z Eq;| log a(z))]

J=1



Optimizing the ELBO in Mean Field Variational Inference

e Therefore, under the mean field approximation, the ELBO can be written:

L=E4E,_, llogp(x,2z)] — Z Iqu[ log q(zj)]
j=1
e Next, we want to derive the coordinate ascent update for a latent
variable z; , keeping all other latent variables fixed.

o i.e. we want the argmax, L.

e Removing the parts that do not depend on q(z;), we can write:
L= Iqu]E [logp(x,z)] — q [log q(z )] + const.
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Optimizing the ELBO in Mean Field Variational Inference

e To find this argmax, we take the derivative of L w.r.t q(z;) and and set the
derivative to zero :

dL
dq(z;)

e From this, we arrive at the coordinate ascent update:

= IquIEq_j llog p(x,2z)] — log q(zj) —1=0

q*(zj) o< exp { IEq_j llogp(x, 2z)] }

11



Optimizing the ELBO in Mean Field Variational Inference

e The coordinate ascent update:

q*(zj) o< exp { [Eq_j llog p(x,z)] }

o The optimal solution for factor q(z;) is obtained simply by considering the log
of the joint distribution over all observed and latent variables and then taking
the expectation with respect to all of the other factors q(zx), k # j, then
taking exponential and normalizing

e Note that the only assumption we made so far is the mean-field

factorization: m
q(2) = q(z1,-.-,2m) = [ [ a(z;)
j=1

o We haven't yet made any assumptions on the form of q(z;) 1



Simple example:

o Consider a univariate Gaussian distribution p(x) = N (x|u, t72), given a
dataset D = {xq, ..., Xy }:

7\ V/2 o
p(Dlu, 7) = (%) exp 4 5 Z(xn —p)?p

p(u|7) N (o, (A7) ™)
p(t) = Gam(7|ag,bo)

o Gaml(t|ay, by) = ﬁb“/la_lexp(—b/l) : gamma distribution

e For this simple problem the posterior distribution can be found exactly.
But we use it as an example for tutorial anyway
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q*(zj) < exp { IEq_j llogp(x,2)] }
Simple example:

p(D|u, 7) = (%)N/2 exD {_Z i(x" _ M)2} p(plr) = N (ulpo, (Mom) ™)

2 p(r) = Gam(7l|ag,bo)

n=1

e Introduce the factorized variational approximation: q(u, 7) = q, (1) q-(7)
e Solution to qy:

Ing, (1) = E:[Inp(Dly, )Jrlrlp(ulf)]Jrconst

[]{)\O,u Lo) —I—Z }-I—const.

o We can see q,, is a Gaussian ]\f(x|,uN,/1,(,1):
Aopo + NT
Ao + N
AN = (Ao + N)E[7] 14

pUN =



q*(zj) < exp { IEq_j llogp(x,2)] }
Simple example:

p(D|u, 7) = (%)N/2 exD {_Z i(x" _ M)2} p(plr) = N (ulpo, (Mom) ™)

2 p(r) = Gam(7l|ag,bo)

n=1

e Introduce the factorized variational approximation: q(u, 7) = q, (1) q-(7)

o Solutionto q;: Ingi(r) = E,[np(D|u,7)+Inp(ulr)] + Inp(r) + const
N
= (CLO — 1)1117' — b07'+ EIII’T
_ N
BERG Y (@n —1)” + Xo(p — po)* | + const
n=1

o We can see q; is a gamma distribution Gam(t|ay, by):

N
aN = a0+?

N
by = bo+ E [Z )2+ Xo(k — Mo)]

n=1

15



Quick Recap

e We often cannot compute posteriors, and so we need to approximate
them, using variational methods.

e In variational Bayes, we'd like to find an approximation within some
family that minimizes the KL divergence to the posterior, but we can't
directly minimize this

e Therefore, we defined the ELBO, which we can maximize, and this is
equivalent to minimizing the KL divergence.

p|x) Evidence Lower Bound (ELBO)

7 KL(g(z:v*) || pz| %))
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Quick Recap

e We defined a family of approximations called “mean field”
approximations, in which there are no dependencies between latent

variables m
CI(Z) — Q(Zla c ey Zm) - H Q(ZJ)
j=1

e We optimize the ELBO with coordinate ascent updates to iteratively

optimize each local variational approximation under mean field
assumptions

q*(zj) o< exp { IEq_j llog p(x, z)] }

17



Key Takeaways

e KL Divergence KL(g(x) || p(x)) = 2 q(x) log Ex;
e The key equation of EM and VI Evidence Lower Bound (ELBO)

I . z|0 :
£0%) =\ Eqgepy {logp(x 4 )J -+ KL(q(21) || p(zlx, 0))

o Free energy F(q,0)

e EM: E-step and M-step optimizing ELBO w.r.t g and 6
e Mean-tield VI: optimizing ELBO w.r.t factorized g components

18



Stochastic VI: Black-box VI



VI with coordinate ascent

Example: Bayesian mixture of Gaussians

e Treat the mean yu; and cluster proportion m as latent variables
pe ~N(,7%) for k=1,...,K
m ~ Dirichlet(a)

e Foreachdatai=1,..,n
™ Cat(w).

Ly NN(:UZNOQ)'

e We have
o observed variables x;.,
o latent variables uy.,, mand z;.,
o Hyper-parameters {t%, 0}

20



VI with coordinate ascent

Example: Bayesian mixture of Gaussians
Assume mean-field q(u1.x, 70, 1) = [T 9 () q () I1; 9 (2

e Initialize the global variational distributions q(u) and q ()
e Repeat:
o For each data example i € {1,2, ..., D}

o Update the local variational distribution gq(z;)
o End for

o Update the global variational distributions q(ug) and q(m)
e Until ELBO converges

e What if we have millions of data examples? This could be very slow.

21



Stochastic VI

Example: Bayesian mixture of Gaussians
Assume mean-field q(u1.x, 70, 1) = [T 9 () q () I1; 9 (2

e Initialize the global variational distributions q(u) and q ()
e Repeat:
o Sample a data example i € {1,2, ..., D}
o Update the local variational distribution q(z;)
o Update the global variational distributions q(u) and q(rr) with natural gradient ascent

e Until ELBO converges

e (Setting natural gradient = 0 gives the traditional mean-field update)

[Hoffman et al., Stochastic Variational Inference, 2013] 22



Black-box Variational Inference (BBVI)

e We have derived variational inference specific for Bayesian Gaussian
(mixture) models

e There are innumerable models

e Can we have a solution that does not entail model-specitfic work?



Black-box Variational Inference (BBVI)

I |
REUSABLE MASSIVE
VARIATIONAL DATA

FAMILIES
variational posterior

ANY MODEL ( )
VAP
BLACK BOX q |
VARIATIONAL

e Easily use variational inference with any model

\

e Perform inference with massive data

e No mathematical work beyond specifying the model

(Courtesy: Blei et al., 2018)



Black-box Variational Inference (BBVI)

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES
variational posterior
ANY MODEL
\ BLACK BOX q(z|x)

\

VARIATIONAL

e Sample from q(.)

e Form noisy gradients (without model-specitic computation)

e Use stochastic optimization

(Courtesy: Blei et al., 2018)



Black-box Variational Inference (BBVI)

e Probabilistic model: x -- observed variables, z -- latent variables

e Variational distribution g;(z|x) with parameters 4, e.g.,

o @Gaussian mixture distribution:

= “A Gaussian mixture model is a universal approximator of densities, in the sense
that any smooth density can be approximated with any specific nonzero amount of
error by a Gaussian mixture model with enough components.” (Deep Learning book,

pp.65)
o Deep neural networks

e ELBO:
L) = Egzallogp(x, 2)] — Egz 1)l log q(z]4) ]

e Want to compute the gradient w.r.t variational parameters 1

[Ranganath et al.,14]



The General Problem: Computing Gradients of Expectations

e When the objective function L is defined as an expectation of a
(differentiable) test function f;(z) w.r.t. a probability distribution g,(z)

L=Eg @ [f2(2)]

e Computing exact gradients w.r.t. the parameters 4 is often unfeasible

e Need stochastic gradient estimates
o The score function estimator (a.k.a log-derivative trick, REINFORCE)
o The reparameterization trick (a.k.a the pathwise gradient estimator)

27



Computing Gradients of Expectations w/ score function

o Loss: L =Eg,lfa(2)]

e Log-derivative trick: Vg, = g5 V,log g,
e Gradient w.r.t. A:

Vil = Eg,»f2(2)V,log qa(2) + V3 /31(2)]

o score function: the gradient of the log of a probability distribution

e Compute noisy unbiased gradients with Monte Carlo samples from g,

1S
VL ~ §2 1f)t(zs)v/110g q1(zs) + Vyfa(zs) where z; ~ q3(2)
s=

e Pros: generally applicable to any distribution g(z|1)

e Cons: empirically has high variance — slow convergence

o To reduce variance: Rao-Blackwellization, control variates, importance

sampling, ... .



Computing Gradients of Expectations w/ reparametrization trick

o Loss: L=Eglfa(2)]

e Assume that we can express the distribution q;(z) with a transformation

© SO 2 ~ q(zI2)

z=t(e A)

E.qg.,
> =8 e ~ Normal(0,1)

_ 2
A z ~ Normal(u,o*)

e Reparameterization gradient

L= IEENS(E) [f/’l (Z(E, /1))]

ViL = Eeose)[V2f2(2) Vit(e, D))
e Pros: empirically, lower variance of the gradient estimate
e Cons: Not all distributions can be reparameterized -



Reparameterization trick

e Reparametrizing Gaussian distribution

e ~ Normal(0,1)
Z=€0+Uu

|

Deterministic node

z ~ Normal(u, o)

~q(z|x) z=p+0Qs
‘ Random node

oo

[Courtesy: Tansey, 2016]

SN
0 0 ‘~N(0,1)
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Reparameterization trick

e Reparametrizing Gaussian distribution

e ~ Normal(0,1)

_ 2
S z ~ Normal(u,o*)

o Other reparameterizable distributions: € ~ Uniform(e) 7 ~ q(2)

o Tractable inverse CDF F~1: Z = F_l(f)

= Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Reciprocal, Gompertz,
Gumbel, Erlang

o Location-scale:
= Laplace, Elliptical, Student’s t, Logistic, Uniform, Triangular, Gaussian
o Composition:

= Log-Normal (exponentiated normal) Gamma (sum of exponentials) Dirichlet (sum of
Gammas) Beta, Chi-Squared, F

[Courtesy: Tansey, 2016] 31



Computing Gradients of Expectations: Summary

o Loss: L = Eqlfi(@)]
e Score gradient
ViL = By, »f2(2)V,log g (2) + V,f31(2)]

o Pros: generally applicable to any distribution q(z|1)
o Cons: empirically has high variance — slow convergence

e Reparameterization gradient
VoL = Ee g [V.f2(2) V;t(e, A)]

o Pros: empirically, lower variance of the gradient estimate
o Cons: Not all distributions can be reparameterized

32



Recall: Black-box Variational Inference (BBVI)

e Probabilistic model: x -- observed variables, z -- latent variables

e Variational distribution g;(z|x) with parameters 4, e.g.,

o @Gaussian mixture distribution:

= “A Gaussian mixture model is a universal approximator of densities, in the sense
that any smooth density can be approximated with any specific nonzero amount of
error by a Gaussian mixture model with enough components.” (Deep Learning book,

pp.65)
o Deep neural networks

L(A) = Eg, (»llog p(x. z) —log q(z)]
e ELBO:

L) = Egzallogp(x, 2)] — Egz 1)l log q(z]4) ]
e Want to compute the gradient w.r.t variational parameters 1

[Ranganath et al.,14]



BBVI with the score gradient

e ELBO:
L) = Egzpllogp(x, 2)] — Egz 1) log q(2]4) ]

e Gradient w.r.t. A (using the log-derivative trick)

Vil = Eq4[Valogq(z|A)(log p(x, z) —logq(z]A))]

e Compute noisy unbiased gradients of the ELBO with Monte Carlo samples
from the variational distribution

S
1
Vil ~ < ) Valogq(zs|h)og plx, z5) — log g (25| ).

s=1

where z; ~ g(z|A).

[Ranganath et al.,14]



BBVI with the reparameterization gradient

e ELBO:
L) = Egzpllogp(x, 2)] — Egz 1) log q(2]4) ]

e QGradientw.rt. A

e ~ s(e)

s=ter - 274

VL :EE~S(6)[ V,[logp(x,2) —log q(2)] V,t(e, )]









