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Recap: EM Algorithm

e Observed variables x, latent variables z
e To learn a model p(x, z|8), we want to maximize the marginal log-

likelihood
£(0; x) =logp(x|0) = logz: p(x,z|0)

o But it's too difficult
e EM algorithm:

o maximize a lower bound of £(0; x)
o Or equivalently, minimize an upper bound of —£(6; x)

e Keyequationr--------------- *  Evidence Lower Bound (ELBO)
| p(x,z[0)],
£(0; x) =:IEq(Z|x) log i+ KL(q(z|x) || p(z|x,6))




Recap: EM Algorithm

e The EM algorithm is coordinate-decent on F(q, 6)

o E-step: th :argmqinF(q, Qt) = p(z|x,6°)

= the posterior distribution over the latent variables given the data and the
current parameters

o M-step: g+l = arg m@inF (th,Ht) = argmaxy z gttt (z|x) log p(x,z|0)
Z

p(x,z|0)
q(z|x)

£(0;x) = Eq(zx) [log + KL(q(z|x) || p(z|x,0))

= —F(q,0) + KL(q(z|x) || p(z|x, 6)) ;




Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1
(Zﬂ)m/lek’

p(x, |25 =1, u,%) = expli(x, - 1) S (x, - 1)}

o The likelihood of a sample: .
mixture component

mixture proportion

1,2 =Y p(z* =1|7)p(x,| " =1, 41,%) —
= Zzn Hk ((”k)zg N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,



Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components
e The expected complete log likelihood

E, [£c(0;7, 2)] —ZE logp (2, | )] +ZE logp (wy | 2n, 1, 2)]
—ZZE IOgﬂk——ZZE ( —Mk)Tzﬁl(xn—uk)+10g|2k|+0>

e E-step: computing the posterior of z,, given the current estimate of the

parameters (i.e., T, u, X)

AON G, 050 7
Zﬂ(t)N(xn9|/’l(t) Zl(t))\ p(x,,u(t),Z(t))

p(z, =1]x,u",2) =



Example: Gaussian Mixture Models (GMMs)

e E-step: computing the posterior of z,, given the current estimate of the
parameters (i.e., T, u, X)

p(z" = Dp(z | 2* = 1)
p(x)
__ p(EF=1Dp(z | " =1)
S p(z =1)p(x | 27 =1)
_ mN (x| prs B
> o TN (x|, %)
= Tk

p(z" =1]z)=




Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

o Once we have ¢'*1(z¥|x) = p(z*|x, 8%) = y*, we can compute the expected
likelihood:

6t*1 = argmaxg 2 q**1(z* = 1|x) log p(x, z* = 1|0)
k

eq+1 [log (p (3372 ‘ 9))]
=Y " (logp (+F = 1]0) +log P (z | 2" = 1,0))
k

=) wlogme + ) yklog N (a; uk, i)
L k

o We need to fit K Gaussians, just need to weight examples by y;,



Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

7, =argmax(l (0)), = 52-(1.(0))=0,Vk, st an =1

o = 2Bl B )

OF
i —argmax(®)), = ) = 2en”

Z Z'k(t) Fact:
non dlogA™|
k(t) t+1) (t+1)\T oA"Y
* Tn (xn o ‘U )('xn o lu )
z“k = arg max<l(9)>’ = Zg‘m) - Zn Zkrk(t) : Ox’ Ax =xx"

O0A



EM Algorithm for GMM: Quick Summary

e Initialize the means u;, , covariances X, and mixing coefficients

e lterate until convergence:
o E-step: Evaluate the posterior given current parameters
WkN (CE ‘ :ukazk)

k
p(z" =1]z) = =% =k
23:1 miN (x| pg, 25)

o M-step: Re-estimate the parameters given current posterior

]eq+1 [log (p (3372 ‘ 9))]
:nyk (logp (2* =1|0) +log P (z | 2" =1,0))
k

— Z% log 71 + ka log N (x; pig, )
k k



Example: Gaussian Mixture Models (GMMs)

e Start: “guess” the centroid u; and covariance X of each of the K clusters

e Loop:
e L=1 . " L=4
2|0 R A S

!‘ :gO ° . ) [

o O # | S
» 2 ¢ &

(a) (c) (d) (e)
L=6 L=8 L=10 L=12
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Summary: EM Algorithm

e A way of maximizing likelihood function for latent variable models. Finds MLE
of parameters when the original (hard) problem can be broken up into two
(easy) pieces

o Estimate some “missing” or “unobserved” data from observed data and current
parameters.

o Using this “complete” data, find the maximum likelihood parameter estimates.
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Summary: EM Algorithm

e The EM algorithm is coordinate-decent on F(q, 6)

o E-step: th :argmqinF(q, Qt) = p(z|x,6°)

o M-step: gt = arg meinF (¢"*t1,0") = argmaxg 2 q**1(z|x) log p(x, 2|0)
VA

p(x,z|0)
q(z|x)

£(0;x) = Eq(zx) [log + KL(q(z|x) || p(zlx, 6))

= —F(q,0) + KL(q(z|x) || p(z]x,6))

e Limitation: need to be able to compute p(z|x, 8), not possible for more

complicated models --- solution: Variational inference -’



Each EM iteration guarantees to improve the likelihood

+ KL(q(z|x) || p(z|x, 6))

KL(gip)—I— T _l_ _[ - -

E(q’ aneW) lnp(x|0neW)

p(x,z|0)
£(0:x) = E lo
( ) q(z|x) [ 8 q(zlx)
¥ ¥ KL(q|lp) =0 ¥ = ¥
KL(q||p)
y - R
L(q,0) Inp(X|6) £(q,0°%) In p(X[6°'9)
E-step

[PRML, Chap 9.4]

M-step
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EM Variants
e Sparse EM

o Do not re-compute exactly the posterior probability on each data point under all
models, because it is almost zero.

o Instead keep an "active list” which you update every once in a while.

e Generalized (Incomplete) EM:

o It might be hard to find the ML parameters in the M-step, even given the
completed data. We can still make progress by doing an M-step that improves
the likelihood a bit (e.g. gradient step).
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Summary

e Supervised Learning
o Maximum likelihood estimation (MLE)
o Duality between MLE and Maximum Entropy Principle

e Unsupervised learning

o Maximum likelihood estimation (MLE) with latent variables
o EM algorithm for MLE
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Variational Inference

Content adapted from CMU 10-708 Spring 2017



Inference
e Given a model, the goals of inference can include:
o Computing the likelihood of observed data p(x*)

o Computing the marginal distribution over a given subset of variables in the
model p(x,)

o Computing the conditional distribution over a subsets of nodes given a
disjoint subset of nodes p(x,|x5)

o Computing a mode of the density (for the above distributions) argmax, p(x)

17



Variational Inference

e Observed variables x, latent variables z

e Variational (Bayesian) inference, a.k.a. variational Bayes, is most often
used to approximately infer the conditional distribution over the latent
variables given the observations (and parameters)

o i.e., the posterior distribution over the latent variables

p(z,x|0)
Y.z p(z,x|0)

p(z|x,0) =

18



Motivating Example

e Why do we often need to use an approximate inference methods (such
as variational Bayes) to compute the posterior distribution?

e It's because we cannot directly compute the posterior distribution for
many interesting models

o l.e. the posterior density is in an intractable form (often involving integrals)
which cannot be easily analytically solved.

e As a motivating example, we will try to compute the posterior for a
(Bayesian) mixture of Gaussians.

19



Bayesian mixture of Gaussians

e The mean uy is treated as a (latent) random variable
pe ~N(0,7%) for k=1,..., K

e Foreachdatai=1,..,n
z; ~ Cat(m).
z; ~ N(ts,,07).

e We have

o observed variables x;.,
o latent variables uy., and z;.,
o parameters {t%, 7, 0%}

K n
¢ p(xl:nrzl:nl :ul:lez;T[:O-z) — Hk=1 p(:u‘k) Hizl p(zz)p(x?/|zzaﬂ’lf()



Bayesian mixture of Gaussians

e We can write the posterior distribution as

[T p(x) Ty p(2:)p(24] 23, pr:xc)

p(/l'lzKa zl:n|$1:n) = -
f“fl:K Zzlzn I—[le p(“k) [1;-1 P(Zi)p($i|2z', Nl:K)

e The numerator can be computed for any choice of the latent variables

.
e The problem is the denominator (the marginal probability of the
observations)

o This integral cannot easily be computed analytically
e We need some approximation..

21



Variational Inference

The main idea behind variational inference:

e Choose a family of distributions over the latent variables zi..,,
with its own set of variational parameters v, i.e.

q(21:m|V)

e Then, we find the setting of the parameters that makes our
approximation ¢ closest to the posterior distribution.
e This is where optimization algorithms come in.

e Then we can use ¢ with the fitted parameters in place of the
posterior.

e E.g.to form predictions about future data, or to investigate the posterior

distribution over the hidden variables, find modes, etc. -



Variational Inference

e We want to minimize the KL divergence between our approximation
q(z|x) and our posterior p(z|x)

KL(q(z|x) || p(z]x))

o But we can’t actually minimize this quantity w.r.t g because p(z|x) is unknown

Evidence Lower Bound (ELBO)

I . z|0 :
20 %) ={Eqgapy [logp(x 4 )J -+ KL(q(z1x) || p(zlx, 0))

e The ELBO is equal to the negative KL divergence up to a constant £(6; x)
e We maximize the ELBO over q to find an “optimal approximation” to
p(z|x)
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Variational Inference

e Choose a family of distributions over the latent variables z with its own set of
variational parameters v , i.e. q(z|x,v)

e We maximize the ELBO over q to find an “optimal approximation” to p(z|x)

p(x,z|6)
q(z|x,v)
— dI'gimax,, II3q(z|x,v) [log p(x: Z|6’)] o II3q(z|x,v)[ log CI(le» V) ]

argmax,, Egzjxv) [log

pa|x)

"KL v*) || p(z| %))

e How do we choose the variational family q(z|x, v)?

24



Mean Field Variational Inference

e A popular family of variational approximations

e In this type of variational inference, we assume the variational distribution
over the latent variables factorizes as

q(z) = q(21,- -y 2m) = 1—116_Z(Zj)
i

o (where we omit variational parameters for ease of notation)

o We refer to q(z;), the variational approximation for a single latent variable, as
a "local variational approximation”

e In the above expression, the variational approximation q(z;) over each
latent variable z; is independent
25



Mean Field Variational Inference

I
e Note that this is a fairly general setup; we can also partition
the latent variables z1,...,2mn Into R groups 2G,,.---,%Gx,
and use the approximation:

R
q(215-- -, 2m) = q(2a,,- -+, 2ax) = [ a(2a,)
r=1

e Often called “generalized mean field” versus (the above) “naive mean field”.



Mean Field Variational Inference

I
e Note that this is a fairly general setup; we can also partition
the latent variables z1,...,2m» Into R groups 2G,,---,2GRr,
and use the approximation:

R
q(215-- -, 2m) = q(2a,,- -+, 2ax) = [ a(2a,)
r=1

e Often called “generalized mean field” versus (the above) “naive mean field”.

e Typically, this approximation does not contain the true
posterior (because the latent variables are dependent).

e E.g.:in the (Bayesian) mixture of Gaussians model, all of the cluster assignments <;
for ¢ =1,...,n aredependenton each other and on the cluster locations #1:K

given data. ,,



Optimizing the ELBO in Mean Field Variational Inference

I
How do we optimize the ELBO in mean field variational

inference?
e Typically, we use coordinate ascent optimization.

e |.e. we optimize each latent variable’s variational
approximation ¢(z;) in turn while holding the others fixed.

e At each iteration we get an updated “local” variational approximation.
e And we iterate through each latent variable until convergence.



Optimizing the ELBO in Mean Field Variational Inference
e Recall that the ELBO is defined as:
L =E,[log p(x,2)] — E4llog q(2)]

e Note that we can decompose the entropy term of the ELBO (using the
mean field variational approximation) as:

K, [log g(z1:m)] = ZE logq(zj ]

e Therefore, under the mean field approximation, the ELBO can be written:

L =EqEq_[logp(x,2)] - Z Eq;| log a(z))]

J=1
29



Optimizing the ELBO in Mean Field Variational Inference

e Therefore, under the mean field approximation, the ELBO can be written:

L=E4E,_, llogp(x,2z)] — Z Iqu[ log q(zj)]
j=1
e Next, we want to derive the coordinate ascent update for a latent
variable z; , keeping all other latent variables fixed.

o i.e. we want the argmax, L.

e Removing the parts that do not depend on q(z;), we can write:
L= Iqu]E [logp(x,z)] — q [log q(z )] + const.

30



Optimizing the ELBO in Mean Field Variational Inference

e To find this argmax, we take the derivative of L w.r.t q(z;) and and set the
derivative to zero :

dL
dq(z;)

e From this, we arrive at the coordinate ascent update:

= IquIEq_j llog p(x,2z)] — log q(zj) —1=0

q*(zj) o< exp { IEq_j llogp(x, 2z)] }

31



Optimizing the ELBO in Mean Field Variational Inference

e The coordinate ascent update:

q*(zj) o< exp { [Eq_j llog p(x,z)] }

o The optimal solution for factor q(z;) is obtained simply by considering the log
of the joint distribution over all observed and latent variables and then taking
the expectation with respect to all of the other factors q(zx), k # j, then
taking exponential and normalizing

e Note that the only assumption we made so far is the mean-field

factorization: m
q(2) = q(z1,-.-,2m) = [ [ a(z;)
j=1

o We haven't yet made any assumptions on the form of q(z;) 32



Simple example:

o Consider a univariate Gaussian distribution p(x) = N (x|u, t72), given a
dataset D = {xq, ..., Xy }:

7\ V/2 o
p(Dlu, 7) = (%) exp 4 5 Z(xn —p)?p

p(u|7) N (o, (A7) ™)
p(t) = Gam(7|ag,bo)

o Gaml(t|ay, by) = ﬁb“/la_lexp(—b/l) : gamma distribution

e For this simple problem the posterior distribution can be found exactly.
But we use it as an example for tutorial anyway

33



q*(zj) < exp { IEq_j llogp(x,2)] }
Simple example:

p(D|u, 7) = (%)N/2 exD {_Z i(x" _ M)2} p(plr) = N (ulpo, (Mom) ™)

2 p(r) = Gam(7l|ag,bo)

n=1

e Introduce the factorized variational approximation: q(u, 7) = q, (1) q-(7)
e Solution to qy:

Ing, (1) = E:[Inp(Dly, )Jrlrlp(ulf)]Jrconst

[]{)\O,u Lo) —I—Z }-I—const.

o We can see q,, is a Gaussian ]\f(x|,uN,/1,(,1):
Aopo + NT
Ao + N
AN = (Ao + N)E[7] Sy

pUN =



q*(zj) < exp { IEq_j llogp(x,2)] }
Simple example:

p(D|u, 7) = (%)N/2 exD {_Z i(x" _ M)2} p(plr) = N (ulpo, (Mom) ™)

2 p(r) = Gam(7l|ag,bo)

n=1

e Introduce the factorized variational approximation: q(u, 7) = q, (1) q-(7)

o Solutionto q;: Ingi(r) = E,[np(D|u,7)+Inp(ulr)] + Inp(r) + const
N
= (CLO — 1)1117' — b07'+ EIII’T
_ N
BERG Y (@n —1)” + Xo(p — po)* | + const
n=1

o We can see q; is a gamma distribution Gam(t|ay, by):

N
aN = a0+?

N
by = bo+ E [Z )2+ Xo(k — Mo)]

n=1

35



Quick Recap

e We often cannot compute posteriors, and so we need to approximate
them, using variational methods.

e In variational Bayes, we'd like to find an approximation within some
family that minimizes the KL divergence to the posterior, but we can't
directly minimize this

e Therefore, we defined the ELBO, which we can maximize, and this is
equivalent to minimizing the KL divergence.

p|x) Evidence Lower Bound (ELBO)

7 KL(g(z:v*) || pz| %))
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Quick Recap

e We defined a family of approximations called “mean field”
approximations, in which there are no dependencies between latent

variables m
CI(Z) — Q(Zla c ey Zm) - H Q(ZJ)
j=1

e We optimize the ELBO with coordinate ascent updates to iteratively

optimize each local variational approximation under mean field
assumptions

q*(zj) o< exp { IEq_j llog p(x, z)] }

37



Key Takeaways

e KL Divergence KL(g(x) || p(x)) = 2 q(x) log Ex;
e The key equation of EM and VI Evidence Lower Bound (ELBO)

I . z|0 :
£0%) =\ Eqgepy {logp(x 4 )J -+ KL(q(21) || p(zlx, 0))

o Free energy F(q,0)

e EM: E-step and M-step optimizing ELBO w.r.t g and 6
e Mean-tield VI: optimizing ELBO w.r.t factorized g components
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