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Recap: EM Algorithm
● Observed variables 𝒙, latent variables 𝒛
● To learn a model 𝑝 𝒙, 𝒛|𝜃 , we want to maximize the marginal log-

likelihood

! But it’s too difficult
● EM algorithm: 
! maximize a lower bound of ℓ 𝜃; 𝒙
! Or equivalently, minimize an upper bound of −ℓ 𝜃; 𝒙

● Key equation:
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ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = log4
'
𝑝(𝒙, 𝒛|𝜃)

Evidence Lower Bound (ELBO)

Variational free energy



Recap: EM Algorithm
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

§ the posterior distribution over the latent variables given the data and the 
current parameters

! M-step: 
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= 𝑝(𝒛|𝒙, 𝜃!)

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= argmax( 4
'
𝑞)*+ 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
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Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components
● The expected complete log likelihood

● E-step: computing the posterior of 𝑧, given the current estimate of the 
parameters (i.e., 𝜋 , 𝜇, Σ) 
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𝑝(𝑧!" = 1, 𝑥, 𝜇 # , Σ(#))

𝑝(𝑥, 𝜇 # , Σ(#))



Example: Gaussian Mixture Models (GMMs)
● E-step: computing the posterior of 𝑧, given the current estimate of the 

parameters (i.e., 𝜋 , 𝜇, Σ)
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Example: Gaussian Mixture Models (GMMs)
● M-step: computing the parameters given the current estimate of 𝑧,
! Once we have 𝑞#&' 𝑧" 𝑥 = 𝑝 𝑧" 𝑥, 𝜃# = 𝛾", we can compute the expected 

likelihood:

! We need to fit 𝐾 Gaussians, just need to weight examples by 𝛾"
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𝜃)*+ = argmax(4
-
𝑞)*+ 𝑧- = 1 𝑥 log 𝑝(𝑥, 𝑧- = 1|𝜃)



Example: Gaussian Mixture Models (GMMs)
● M-step: computing the parameters given the current estimate of 𝑧,
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EM Algorithm for GMM: Quick Summary
● Initialize the means 𝜇- , covariances Σ- and mixing coefficients 𝜋-
● Iterate until convergence: 
! E-step: Evaluate the posterior given current parameters

! M-step: Re-estimate the parameters given current posterior 
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Example: Gaussian Mixture Models (GMMs)
● Start: “guess” the centroid 𝜇- and covariance Σ- of each of the K clusters 
● Loop:
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Summary: EM Algorithm
● A way of maximizing likelihood function for latent variable models. Finds MLE 

of parameters when the original (hard) problem can be broken up into two 
(easy) pieces 
! Estimate some “missing” or “unobserved” data from observed data and current 

parameters. 
! Using this “complete” data, find the maximum likelihood parameter estimates. 
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Summary: EM Algorithm
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

! M-step:

● Limitation: need to be able to compute 𝑝 𝒛 𝒙, 𝜃 , not possible for more 
complicated models --- solution: Variational inference 12

= 𝑝(𝒛|𝒙, 𝜃!)

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= argmax( 4
'
𝑞)*+ 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Each EM iteration guarantees to improve the likelihood 
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ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

E-step M-step

[PRML, Chap 9.4]



EM Variants 
● Sparse EM 
! Do not re-compute exactly the posterior probability on each data point under all 

models, because it is almost zero. 
! Instead keep an “active list” which you update every once in a while. 

● Generalized (Incomplete) EM: 
! It might be hard to find the ML parameters in the M-step, even given the 

completed data. We can still make progress by doing an M-step that improves 
the likelihood a bit (e.g. gradient step). 
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Summary
● Supervised Learning
! Maximum likelihood estimation (MLE)
! Duality between MLE and Maximum Entropy Principle

● Unsupervised learning
! Maximum likelihood estimation (MLE) with latent variables
! EM algorithm for MLE
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Variational Inference

Content adapted from CMU 10-708 Spring 2017



Inference
● Given a model, the goals of inference can include:

! Computing the likelihood of observed data 𝑝(𝒙∗)

! Computing the marginal distribution over a given subset of variables in the 
model 𝑝(𝒙))

! Computing the conditional distribution over a subsets of nodes given a 
disjoint subset of nodes 𝑝(𝒙)|𝒙*)

! Computing a mode of the density (for the above distributions) argmax𝒙 𝑝 𝒙

! ….
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Variational Inference
● Observed variables 𝒙, latent variables 𝒛
● Variational (Bayesian) inference, a.k.a. variational Bayes, is most often 

used to approximately infer the conditional distribution over the latent 
variables given the observations (and parameters)
! i.e., the posterior distribution over the latent variables 
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𝑝 𝒛 𝒙, 𝜃 =
𝑝(𝒛, 𝒙|𝜃)

∑! 𝑝(𝒛, 𝒙|𝜃)



Motivating Example 
● Why do we often need to use an approximate inference methods (such 

as variational Bayes) to compute the posterior distribution? 

● It’s because we cannot directly compute the posterior distribution for 
many interesting models 
! I.e. the posterior density is in an intractable form (often involving integrals) 

which cannot be easily analytically solved. 

● As a motivating example, we will try to compute the posterior for a 
(Bayesian) mixture of Gaussians. 
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Bayesian mixture of Gaussians
● The mean 𝜇- is treated as a (latent) random variable

● For each data 𝑖 = 1,… , 𝑛

● We have 
! observed variables 𝑥':!
! latent variables 𝜇':" and 𝑧':!
! parameters {𝜏-, 𝜋, 𝜎-}

● 𝑝 𝑥":$ , 𝑧":$ , 𝜇":% 𝜏&, 𝜋, 𝜎& =
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Bayesian mixture of Gaussians
● We can write the posterior distribution as 

● The numerator can be computed for any choice of the latent variables
● The problem is the denominator (the marginal probability of the 

observations)
! This integral cannot easily be computed analytically

● We need some approximation..
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Variational Inference
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The main idea behind variational inference:



Variational Inference
● We want to minimize the KL divergence between our approximation 
𝑞(𝒛|𝒙) and our posterior 𝑝(𝒛|𝒙)

! But we can’t actually minimize this quantity w.r.t 𝑞 because 𝑝(𝒛|𝒙) is unknown

● The ELBO is equal to the negative KL divergence up to a constant ℓ 𝜃; 𝒙
● We maximize the ELBO over 𝑞 to find an “optimal approximation” to 
𝑝(𝒛|𝒙)
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KL 𝑞 𝒛|𝒙 || 𝑝(𝒛|𝒙)

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

Evidence Lower Bound (ELBO)



Variational Inference
● Choose a family of distributions over the latent variables 𝒛 with its own set of 

variational parameters 𝜈 , i.e. 
● We maximize the ELBO over 𝑞 to find an “optimal approximation” to 𝑝 𝒛 𝒙
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argmax' 𝔼((𝒛|𝒙,𝝂) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙, 𝝂

= argmax' 𝔼((𝒛|𝒙,𝝂) log 𝑝 𝒙, 𝒛|𝜃 − 𝔼((𝒛|𝒙,𝝂) log 𝑞 𝒛 𝒙, 𝝂

𝑞(𝒛|𝒙, 𝒗)

● How do we choose the variational family 𝑞(𝒛|𝒙, 𝒗)?



Mean Field Variational Inference 
● A popular family of variational approximations 

● In this type of variational inference, we assume the variational distribution 
over the latent variables factorizes as 

! (where we omit variational parameters for ease of notation)
! We refer to 𝑞(𝑧.), the variational approximation for a single latent variable, as 

a “local variational approximation” 

● In the above expression, the variational approximation 𝑞(𝑧.) over each 
latent variable 𝑧. is independent 
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𝑞 𝒛 =



Mean Field Variational Inference 

26
given data.



Mean Field Variational Inference 

27
given data.



Optimizing the ELBO in Mean Field Variational Inference 
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Optimizing the ELBO in Mean Field Variational Inference 
● Recall that the ELBO is defined as:

● Note that we can decompose the entropy term of the ELBO (using the 
mean field variational approximation) as:

● Therefore, under the mean field approximation, the ELBO can be written:

29

ℒ = 𝔼( log 𝑝 𝒙, 𝒛 − 𝔼( log 𝑞(𝒛)

ℒ = 𝔼(!𝔼("! log 𝑝 𝒙, 𝒛 −=
01"

2

𝔼(! log 𝑞(𝑧0)



Optimizing the ELBO in Mean Field Variational Inference 
● Therefore, under the mean field approximation, the ELBO can be written:

● Next, we want to derive the coordinate ascent update for a latent 
variable 𝑧. , keeping all other latent variables fixed.
! i.e. we want the argmax/!ℒ. 

● Removing the parts that do not depend on 𝑞(𝑧.), we can write: 
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ℒ = 𝔼(!𝔼("! log 𝑝 𝒙, 𝒛 −=
01"

2

𝔼(! log 𝑞(𝑧0)

ℒ = 𝔼(!𝔼("! log 𝑝 𝒙, 𝒛 − 𝔼(! log 𝑞 𝑧0 + const.



Optimizing the ELBO in Mean Field Variational Inference 
● To find this argmax, we take the derivative of ℒ w.r.t 𝑞(𝑧.) and and set the 

derivative to zero :

● From this, we arrive at the coordinate ascent update: 
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𝑑ℒ
𝑑𝑞(𝑧0)

= 𝔼(!𝔼("! log 𝑝 𝒙, 𝒛 − log 𝑞 𝑧0 − 1 = 0

𝑞∗ 𝑧0 ∝ exp 𝔼("! log 𝑝 𝒙, 𝒛



𝑞 𝒛 =

● The coordinate ascent update: 

! The optimal solution for factor 𝑞(𝑧.) is obtained simply by considering the log 
of the joint distribution over all observed and latent variables and then taking 
the expectation with respect to all of the other factors 𝑞(𝑧"), 𝑘 ≠ 𝑗 , then 
taking exponential and normalizing

● Note that the only assumption we made so far is the mean-field 
factorization: 

! We haven’t yet made any assumptions on the form of 𝑞(𝑧.)

Optimizing the ELBO in Mean Field Variational Inference 
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𝑞∗ 𝑧0 ∝ exp 𝔼("! log 𝑝 𝒙, 𝒛



Simple example: 
● Consider a univariate Gaussian distribution 𝑝 𝑥 = 𝒩(𝑥|𝜇, 𝜏/0), given a 

dataset 𝒟 = 𝑥+, … , 𝑥1 :

! Gam(𝜏 𝑎0, 𝑏0 = '
1 2

𝑏3𝜆34'exp(−𝑏𝜆) : gamma distribution 

● For this simple problem the posterior distribution can be found exactly. 
But we use it as an example for tutorial anyway
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● Introduce the factorized variational approximation:
● Solution to 𝑞2: 

! We can see 𝑞5∗ is a Gaussian 𝒩 𝑥 𝜇6, 𝜆64' :

Simple example: 
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𝑞 𝜇, 𝜏 = 𝑞2 𝜇 𝑞3(𝜏)

𝑞∗ 𝑧0 ∝ exp 𝔼("! log 𝑝 𝒙, 𝒛



● Introduce the factorized variational approximation:
● Solution to 𝑞3: 

! We can see 𝑞7∗ is a gamma distribution Gam 𝜏 𝑎6, 𝑏6 :

Simple example: 
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𝑞 𝜇, 𝜏 = 𝑞2 𝜇 𝑞3(𝜏)

𝑞∗ 𝑧0 ∝ exp 𝔼("! log 𝑝 𝒙, 𝒛



Quick Recap
● We often cannot compute posteriors, and so we need to approximate 

them, using variational methods. 
● In variational Bayes, we’d like to find an approximation within some 

family that minimizes the KL divergence to the posterior, but we can’t 
directly minimize this

● Therefore, we defined the ELBO, which we can maximize, and this is 
equivalent to minimizing the KL divergence. 
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ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

Evidence Lower Bound (ELBO)



Quick Recap
● We defined a family of approximations called “mean field” 

approximations, in which there are no dependencies between latent 
variables

● We optimize the ELBO with coordinate ascent updates to iteratively 
optimize each local variational approximation under mean field 
assumptions 
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𝑞∗ 𝑧0 ∝ exp 𝔼("! log 𝑝 𝒙, 𝒛

𝑞 𝒛 =



Key Takeaways
● KL Divergence

● The key equation of EM and VI

! Free energy 𝐹 𝑞, 𝜃

● EM: E-step and M-step optimizing ELBO w.r.t 𝑞 and 𝜃
● Mean-field VI: optimizing ELBO w.r.t factorized 𝑞 components
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KL 𝑞 𝒙 || 𝑝(𝒙) =4
𝒙

𝑞 𝒙 log
𝑞(𝒙)
𝑝(𝒙)

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

Evidence Lower Bound (ELBO)



Questions?



Questions?


