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Logistics
● Join Piazza https://piazza.com/class/lcliazd0pcx2n5/
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Recap: ML Basics
● Bayes’ rule
! prior, posterior

● KL Divergence
! relation to cross-entropy

● Functional derivatives
! functional 𝐹 𝑦 , 𝑦 = 𝑦 𝑥

! Consider a functional that is defined by an integral over a function 𝐺 𝑦, 𝑥
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Supervised Learning:
Maximum likelihood vs Maximum Entropy



Supervised Maximum Likelihood 
● Model to be learned 𝑝# 𝒙
● Observe full data 𝒟 = 𝒙∗
! i.i.d: independent, identically distributed 

● Maximum Likelihood Estimation (MLE)
! The most classical learning algorithm 

● MLE is closely connected to the Maximum Entropy (MaxEnt) principle
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min
#
− 𝔼%∗∼𝒟

1
log 𝑝#(𝒙∗)



Recap: Exponential Family
● A distribution

is an exponential family distribution

! 𝜽 ∈ 𝑅!: natural (canonical) parameter 

! 𝑇 𝒙 ∈ 𝑅!: sufficient statistics, features of data 𝒙

! 𝑍 𝜽 = ∑",$ ℎ 𝒙 exp 𝜽 ⋅ 𝑇 𝒙 : normalization factor

● Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,... 

6

𝑝# 𝒙 = ℎ 𝒙 exp 𝜽 ⋅ 𝑇 𝒙 /𝑍(𝜽)



Maximum Likelihood for Exponential Family
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● Take gradient and set to 0 

𝑚 𝒙 : the number of times 𝒙 is observed in D

At MLE, the expectations of 
the sufficient statistics under 
the model must match 
empirical feature average



Maximum Entropy (MaxEnt)
● Given 𝒟, to estimate 𝑝 𝒙
● We can approach the problem from an entirely different point of view. 

Begin with some fixed feature expectations:

● There may exist many distributions which satisfy them. Which one should 
we select?
! MaxEnt principle: the most uncertain or flexible one, i.e., the one with 

maximum entropy
● This yields a new optimization problem:
! This is a variational definition of a distribution!
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Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:
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Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:
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● So feature constraints 
+ MaxEnt Þ
exponential family.

● Problem is strictly 
convex w.r.t. 𝑝(𝒙), so 
solution is unique.
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Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:

plug 𝑝(𝑥|𝜽) back into 𝐿, and since ∑𝒙
)(𝒙)
*
𝑇+ 𝒙 ≔ 𝛼+:

● Recovers precisely the MLE problem of exponential family
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● So feature constraints 
+ MaxEnt Þ
exponential family.

● Problem is strictly 
convex w.r.t. 𝑝(𝒙), so 
solution is unique.
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!,#

min
$(&)

max
#

𝐿 𝜽



Constraints from Data
● We have seen a case of convex duality:

! In one case, we assume exponential family and show that Maximum 
Likelihood implies model expectations must match empirical expectations.

! In the other case, we assume model expectations must match empirical 
feature counts and show that MaxEnt implies exponential family distribution.
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A more general MaxEnt problem
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Summary
● Maximum entropy is dual to maximum likelihood of exponential family 

distributions
● This provides an alternative view of the problem of fitting a model into 

data:
! The data instances in the training set are treated as constraints, and the 

learning problem is treated as a constrained optimization problem.
! We’ll revisit this optimization-theoretic view of learning repeatedly in the 

future!
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Unsupervised Learning



Unsupervised Learning
● Each data instance is partitioned into two parts:
! observed variables 𝒙
! latent (unobserved) variables 𝒛

● Want to learn a model 𝑝# 𝒙, 𝒛
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Latent (unobserved) variables
● A variable can be unobserved (latent) because: 
! imaginary quantity: meant to provide some simplified and abstractive view of 

the data generation process 
§ e.g., speech recognition models, mixture models, ...
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Latent (unobserved) variables
● A variable can be unobserved (latent) because: 
! imaginary quantity: meant to provide some simplified and abstractive view of 

the data generation process 
§ e.g., speech recognition models, mixture models, ...

! a real-world object (and/or phenomena), but difficult or impossible to measure 
§ e.g., the temperature of a star, causes of a disease, evolutionary ancestors ... 

! a real-world object (and/or phenomena), but sometimes wasn’t measured, 
because of faulty sensors, etc.

● Discrete latent variables can be used to partition/cluster data into sub-
groups 

● Continuous latent variables (factors) can be used for dimensionality 
reduction (e.g., factor analysis, etc.) 
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Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:

● This model can be used for unsupervised clustering. 
! This model (fit by AutoClass) has been used to discover new kinds of stars in 

astronomical data, etc.  
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Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
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Parameters to be learned:



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
● Recall MLE for completely observed data
! Data log-likelihood:

! MLE:

● What if we do not know 𝑧)? 23



Why is Learning Harder? 
● Complete log likelihood: if both 𝒙 and 𝒛 can be observed, then

! Decomposes into a sum of factors, the parameter for each factor can be 
estimated separately

● But given that 𝒛 is not observed, ℓ* 𝜃; 𝒙, 𝒛 is a random quantity, cannot 
be maximized directly

● Incomplete (or marginal) log likelihood: with 𝒛 unobserved, our objective 
becomes the log of a marginal probability: 

! All parameters become coupled together
! In other models when 𝒛 is complex (continuous) variables (as we’ll see later), 

marginalization over z is intractable.
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ℓ* 𝜃; 𝒙, 𝒛 = log 𝑝 𝒙, 𝒛 𝜃 = log 𝑝 𝒛 𝜃+ + log 𝑝(𝒙|𝒛, 𝜃%)

ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = log0
+
𝑝(𝒙, 𝒛|𝜃)



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

! A deterministic function of 𝜃
! Inherit the factorizability of ℓ% 𝜃; 𝒙, 𝒛

● Use this as the surrogate objective
● Does maximizing this surrogate yield a maximizer of the likelihood? 
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𝔼, ℓ* 𝜃; 𝒙, 𝒛 =0
+
𝑞 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

● Jensen’s inequality

26

𝔼, ℓ* 𝜃; 𝒙, 𝒛 =0
+
𝑞 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)

≥

= 𝔼, ℓ* 𝜃; 𝒙, 𝒛 + 𝐻 𝑞

Evidence Lower Bound (ELBO)



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

● Jensen’s inequality

● Indeed we have
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≥

ℓ 𝜃; 𝒙 = 𝔼,(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

𝔼, ℓ* 𝜃; 𝒙, 𝒛 =0
+
𝑞 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Lower Bound and Free Energy

● For fixed data 𝒙, define a functional called the (variational) free energy: 

● The EM algorithm is coordinate-decent on 𝐹
! At each step 𝑡:

§ E-step:

§ M-step: 
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𝐹 𝑞, 𝜃 = −𝔼5 ℓ6 𝜃; 𝒙, 𝒛 − 𝐻 𝑞 ≥ ℓ(𝜃; 𝒙)



E-step: minimization of 𝐹 𝑞, 𝜃 w.r.t 𝑞
● Claim:

! This is the posterior distribution over the latent variables given the data and 
the current parameters. 

● Proof (easy): recall

! 𝐹 𝑞, 𝜃& is minimized when KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃& = 0, which is achieved only 
when 𝑞 𝒛 𝒙 = 𝑝 𝒛 𝒙, 𝜃1
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𝑞>?@ = argmin5 𝐹 𝑞, 𝜃> = 𝑝(𝒛|𝒙, 𝜃>)

ℓ 𝜃1; 𝒙 = 𝔼,(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃1

𝑞 𝒛 𝒙
+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃1

Independent of 𝑞 −𝐹 𝑞, 𝜃1 ≥ 0



M-step: minimization of 𝐹 𝑞, 𝜃 w.r.t 𝜽
● Note that the free energy breaks into two terms:

! The first term is the expected complete log likelihood and the second term, 
which does not depend on q, is the entropy.

● Thus, in the M-step, maximizing with respect to 𝜃 for fixed 𝑞 we only 
need to consider the first term: 

! Under optimal 𝑞&'(, this is equivalent to solving a standard MLE of fully 
observed model 𝑝 𝒙, 𝒛 𝜃 , with z replaced by its expectation w.r.t 𝑝(𝒛|𝒙, 𝜃,)
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𝐹 𝑞, 𝜃 = −𝔼5 ℓ6 𝜃; 𝒙, 𝒛 − 𝐻 𝑞 ≥ ℓ(𝜃; 𝒙)

𝜃123 = argmax# 𝔼, ℓ* 𝜃; 𝒙, 𝒛 = argmax#0
+
𝑞123 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
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Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components
● The expected complete log likelihood

● E-step: computing the posterior of 𝑧) given the current estimate of the 
parameters (i.e., 𝜋 , 𝜇, Σ) 
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𝑝(𝑧-. = 1, 𝑥, 𝜇 , , Σ(,))

𝑝(𝑥, 𝜇 , , Σ(,))



Example: Gaussian Mixture Models (GMMs)
● M-step: computing the parameters given the current estimate of 𝑧)
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Example: Gaussian Mixture Models (GMMs)
● Start: “guess” the centroid 𝜇4 and covariance Σ4 of each of the K clusters 
● Loop:
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Summary: EM Algorithm
● A way of maximizing likelihood function for latent variable models. Finds MLE 

of parameters when the original (hard) problem can be broken up into two 
(easy) pieces 
! Estimate some “missing” or “unobserved” data from observed data and current 

parameters. 
! Using this “complete” data, find the maximum likelihood parameter estimates. 

● Alternate between filling in the latent variables using the best guess (posterior) 
and updating the parameters based on this guess: 

! E-step:

! M-step: 
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Each EM iteration guarantees to improve the likelihood 
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ℓ 𝜃; 𝒙 = 𝔼,(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

E-step M-step

[PRML, Chap 9.4]



EM Variants 
● Sparse EM 
! Do not re-compute exactly the posterior probability on each data point under all 

models, because it is almost zero. 
! Instead keep an “active list” which you update every once in a while. 

● Generalized (Incomplete) EM: 
! It might be hard to find the ML parameters in the M-step, even given the 

completed data. We can still make progress by doing an M-step that improves 
the likelihood a bit (e.g. gradient step). 
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Summary
● Supervised Learning
! Maximum likelihood estimation (MLE)
! Duality between MLE and Maximum Entropy Principle

● Unsupervised learning
! Maximum likelihood estimation (MLE) with latent variables
! EM algorithm for MLE
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Questions?


