DSC291: Machine Learning with Few Labels

Machine Learning Basics
Supervised Learning / Unsupervised Learning

Zhiting Hu
Lecture 3, January 13, 2023
UCSanDiego
HALICIOĞLU DATA SCIENCE INSTITUTE

Logistics

- Join Piazza https://piazza.com/class/lcliazd0pcx2n5/

Recap: ML Basics

- Bayes' rule - prior, posterior

$$
p(\boldsymbol{y} \mid \boldsymbol{x})=\frac{p(\boldsymbol{x} \mid \boldsymbol{y}) p(\boldsymbol{y})}{p(\boldsymbol{x})}
$$

- KL Divergence
- relation to cross-entropy

$$
\operatorname{KL}(q(\boldsymbol{x}) \| p(\boldsymbol{x}))=\sum_{\boldsymbol{x}} q(\boldsymbol{x}) \log \frac{q(\boldsymbol{x})}{p(\boldsymbol{x})}
$$

- Functional derivatives
- functional $F(y), y=y(x)$

$$
F[y(x)+\epsilon \eta(x)]=F[y(x)]+\epsilon \int \frac{\delta F}{\delta y(x)} \eta(x) \mathrm{d} x+O\left(\epsilon^{2}\right)
$$

- Consider a functional that is defined by an integral over a function $G(y, x)$

$$
F[y+\epsilon \eta(x)]=F[y(x)]+\epsilon \int \frac{\partial G}{\partial y} \eta(x) d x+O\left(\epsilon^{2}\right)
$$

Supervised Learning:
Maximum likelihood vs Maximum Entropy

Supervised Maximum Likelihood

- Model to be learned $p_{\theta}(\boldsymbol{x})$
- Observe full data $\mathcal{D}=\left\{\boldsymbol{x}^{*}\right\}$
- i.i.d: independent, identically distributed
- Maximum Likelihood Estimation (MLE)
- The most classical learning algorithm

$$
\min _{\theta}-\mathbb{E}_{x^{*} \sim \mathcal{D}}\left[\log p_{\theta}\left(x^{*}\right)\right]
$$

- MLE is closely connected to the Maximum Entropy (MaxEnt) principle

Recap: Exponential Family

- A distribution

$$
p_{\theta}(\boldsymbol{x})=h(\boldsymbol{x}) \exp \{\boldsymbol{\theta} \cdot T(\boldsymbol{x})\} / Z(\boldsymbol{\theta})
$$

is an exponential family distribution

- $\boldsymbol{\theta} \in R^{d}$: natural (canonical) parameter
- $T(\boldsymbol{x}) \in R^{d}$: sufficient statistics, features of data \boldsymbol{x}
- $Z(\boldsymbol{\theta})=\sum_{x, y} h(\boldsymbol{x}) \exp \{\boldsymbol{\theta} \cdot T(\boldsymbol{x})\}$: normalization factor
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

Maximum Likelihood for Exponential Family

$m(x)$: the number of times x is observed in D

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\theta} ; \mathcal{D}) & =\sum_{\boldsymbol{x}} m(\boldsymbol{x}) \log p(\boldsymbol{x} \mid \boldsymbol{\theta}) \\
& =\sum_{\boldsymbol{x}} m(\boldsymbol{x})\left(\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})-\log Z(\boldsymbol{\theta})\right) \\
& =\sum_{\boldsymbol{x}} m(\boldsymbol{x}) \sum_{i} \theta_{i} T_{i}(\boldsymbol{x})-N \log Z(\boldsymbol{\theta})
\end{aligned}
$$

- Take gradient and set to 0

$$
\begin{aligned}
& \frac{\partial}{\partial \theta_{i}} \mathcal{L}(\boldsymbol{\theta} ; \mathcal{D})=\sum_{\boldsymbol{x}} m(\boldsymbol{x}) T_{i}(\boldsymbol{x})-N \frac{\partial}{\partial \theta_{i}} \log Z(\boldsymbol{\theta}) \\
&=\sum_{\boldsymbol{x}} m(\boldsymbol{x}) T_{i}(\boldsymbol{x})-N \sum_{\boldsymbol{x}} p(\boldsymbol{x} \mid \boldsymbol{\theta}) T_{i}(\boldsymbol{x}) \\
& \Rightarrow \mathbb{I} \sum_{\boldsymbol{x}} p(\boldsymbol{x} \mid \boldsymbol{\theta}) T_{i}(\boldsymbol{x})_{\mathbf{I}}=\sum_{\boldsymbol{x}} \frac{m(\boldsymbol{x})}{N} T_{i}(\boldsymbol{x})=\sum_{\boldsymbol{x}} \tilde{p}(\boldsymbol{x} \mid \boldsymbol{\theta}) T_{i}(\boldsymbol{x})
\end{aligned}
$$

At MLE, the expectations of the sufficient statistics under the model must match empirical feature average

Maximum Entropy (MaxEnt)

- Given \mathcal{D}, to estimate $p(\boldsymbol{x})$
- We can approach the problem from an entirely different point of view. Begin with some fixed feature expectations:

$$
\sum_{x} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})=\sum_{x} \frac{m(\boldsymbol{x})}{N} T_{i}(\boldsymbol{x}):=\alpha_{i}
$$

- There may exist many distributions which satisfy them. Which one should we select?
- MaxEnt principle: the most uncertain or flexible one, i.e., the one with maximum entropy
- This yields a new optimization problem: - This is a variational definition of a distribution!

$$
\begin{array}{ll}
\max _{p} & \mathrm{H}(p(\boldsymbol{x}))=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x}) \\
\text { s.t. } & \sum_{\boldsymbol{x}} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})=\alpha_{i} \\
& \sum_{\boldsymbol{x}} p(\boldsymbol{x})=1
\end{array}
$$

Solution to the MaxEnt Problem

- To solve the MaxEnt problem, we use Lagrange multipliers:
$\max _{\theta, \mu} \min _{p(x)} L=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x})-\sum_{i} \theta_{i}\left(\sum_{x} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})-\alpha_{i}\right)-\mu\left(\sum_{\boldsymbol{x}} p(\boldsymbol{x})-1\right)$

Solution to the MaxEnt Problem

- To solve the MaxEnt problem, we use Lagrange multipliers:
$\max _{\theta, \mu} \min _{p(x)} L=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x})-\sum_{i} \theta_{i}\left(\sum_{x} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})-\alpha_{i}\right)-\mu\left(\sum_{\boldsymbol{x}} p(\boldsymbol{x})-1\right)$
$\frac{\partial L}{\partial p(\boldsymbol{x})}=1+\log p(\boldsymbol{x})-\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})-\mu$
$p^{*}(\boldsymbol{x})=e^{\mu-1} \exp \left\{\sum_{i} \theta_{i} f_{i}(\boldsymbol{x})\right\}$
$Z(\boldsymbol{\theta})=e^{\mu-1}=\sum_{\boldsymbol{x}} \exp \left\{\sum_{i} \theta_{i} f_{i}(\boldsymbol{x})\right\} \quad\left(\right.$ since $\left.\sum_{\boldsymbol{x}} p^{*}(\boldsymbol{x})=1\right)$
$p(\boldsymbol{x} \mid \boldsymbol{\theta})=\frac{1}{Z(\boldsymbol{\theta})} \exp \left\{\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})\right\}$

Solution to the MaxEnt Problem

- To solve the MaxEnt problem, we use Lagrange multipliers:
$\max _{\theta, \mu} \min _{p(x)} L=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x})-\sum_{i} \theta_{i}\left(\sum_{x} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})-\alpha_{i}\right)-\mu\left(\sum_{\boldsymbol{x}} p(\boldsymbol{x})-1\right)$
$\frac{\partial L}{\partial p(\boldsymbol{x})}=1+\log p(\boldsymbol{x})-\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})-\mu$
$p^{*}(\boldsymbol{x})=e^{\mu-1} \exp \left\{\sum_{i} \theta_{i} f_{i}(\boldsymbol{x})\right\}$
$Z(\boldsymbol{\theta})=e^{\mu-1}=\sum_{\boldsymbol{x}} \exp \left\{\sum_{i} \theta_{i} f_{i}(\boldsymbol{x})\right\} \quad\left(\right.$ since $\left.\sum_{\boldsymbol{x}} p^{*}(\boldsymbol{x})=1\right) \quad \begin{aligned} & \text { Problem is strictly } \\ & \text { convex w.r.t. } p(\boldsymbol{x}) \text {, so }\end{aligned}$
$p(\boldsymbol{x} \mid \boldsymbol{\theta})=\frac{1}{Z(\boldsymbol{\theta})} \exp \left\{\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})\right\}$
- So feature constraints + MaxEnt \Rightarrow exponential family. solution is unique.

Solution to the MaxEnt Problem

- To solve the MaxEnt problem, we use Lagrange multipliers:
$\max _{\theta, \mu} \min _{p(x)} L=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x})-\sum_{i} \theta_{i}\left(\sum_{x} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})-\alpha_{i}\right)-\mu\left(\sum_{\boldsymbol{x}} p(\boldsymbol{x})-1\right)$

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=\frac{1}{Z(\boldsymbol{\theta})} \exp \left\{\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})\right\}
$$

- So feature constraints + MaxEnt \Rightarrow
plug $p(x \mid \boldsymbol{\theta})$ back into L, and since $\sum_{x} \frac{m(\boldsymbol{x})}{N} T_{i}(\boldsymbol{x}):=\alpha_{i}$:

$$
\max _{\theta} L(\boldsymbol{\theta})=\sum_{\boldsymbol{x}} m(\boldsymbol{x}) \sum_{i} \theta_{i} T_{i}(\boldsymbol{x})-N \log Z(\boldsymbol{\theta})
$$ exponential family.

- Problem is strictly convex w.r.t. $p(\boldsymbol{x})$, so solution is unique.
- Recovers precisely the MLE problem of exponential family

Constraints from Data

- We have seen a case of convex duality:
- In one case, we assume exponential family and show that Maximum Likelihood implies model expectations must match empirical expectations.
- In the other case, we assume model expectations must match empirical feature counts and show that MaxEnt implies exponential family distribution.

A more general MaxEnt problem

$$
\begin{array}{rl}
\underset{p}{\min _{n}} & \mathrm{KL}(p(\boldsymbol{x}) \| h(\boldsymbol{x})) \\
& \stackrel{\text { def }}{=} \sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log \frac{p(\boldsymbol{x})}{h(\boldsymbol{x})}=-\mathrm{H}(p)-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log h(\boldsymbol{x}) \\
\text { s.t. } & \sum_{\boldsymbol{x}} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})=\alpha_{i} \\
& \sum_{\boldsymbol{x}} p(\boldsymbol{x})=1 \\
\Rightarrow \quad & p(\boldsymbol{x} \mid \boldsymbol{\theta})=\frac{1}{Z(\boldsymbol{\theta})} h(\boldsymbol{x}) \exp \left\{\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})\right\}
\end{array}
$$

Summary

- Maximum entropy is dual to maximum likelihood of exponential family distributions
- This provides an alternative view of the problem of fitting a model into data:
- The data instances in the training set are treated as constraints, and the learning problem is treated as a constrained optimization problem.
- We'll revisit this optimization-theoretic view of learning repeatedly in the future!

$$
\begin{array}{ll}
\max _{p} & \mathrm{H}(p(\boldsymbol{x}))=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x}) \\
\text { s.t. } & \sum_{\boldsymbol{x}} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})=\alpha_{i} \\
& \sum_{\boldsymbol{x}} p(\boldsymbol{x})=1
\end{array}
$$

Unsupervised Learning

Unsupervised Learning

- Each data instance is partitioned into two parts:
- observed variables \boldsymbol{x}
- latent (unobserved) variables z
- Want to learn a model $p_{\theta}(\boldsymbol{x}, \mathbf{z})$

Latent (unobserved) variables

- A variable can be unobserved (latent) because:
- imaginary quantity: meant to provide some simplified and abstractive view of the data generation process
- e.g., speech recognition models, mixture models, ...

Fig. 1.2 Isolated Word Problem

Latent (unobserved) variables

- A variable can be unobserved (latent) because:
- imaginary quantity: meant to provide some simplified and abstractive view of the data generation process
- e.g., speech recognition models, mixture models, ...

Latent (unobserved) variables

- A variable can be unobserved (latent) because:
- imaginary quantity: meant to provide some simplified and abstractive view of the data generation process
- e.g., speech recognition models, mixture models, ...
- a real-world object (and/or phenomena), but difficult or impossible to measure
- e.g., the temperature of a star, causes of a disease, evolutionary ancestors ..
- a real-world object (and/or phenomena), but sometimes wasn't measured, because of faulty sensors, etc.
- Discrete latent variables can be used to partition/cluster data into subgroups
- Continuous latent variables (factors) can be used for dimensionality reduction (e.g., factor analysis, etc.)

Example: Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components:

$$
p\left(x_{n} \mid \mu, \Sigma\right)=\sum_{k} \overbrace{\text { mixture proportion }}^{\pi_{k} N\left(x, \mid \mu_{k}, \Sigma_{k}\right)}
$$

- This model can be used for unsupervised clustering.
- This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

Example: Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components:
- Z is a latent class indicator vector:

$$
p\left(z_{n}\right)=\operatorname{multi}\left(z_{n}: \pi\right)=\prod_{k}\left(\pi_{k}\right)^{z_{n}^{k}}
$$

- \boldsymbol{X} is a conditional Gaussian variable with a class-specific mean/covariance

$$
p\left(x_{n} \mid z_{n}^{k}=1, \mu, \Sigma\right)=\frac{1}{(2 \pi)^{m / 2}\left|\Sigma_{k}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(x_{n}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{n}-\mu_{k}\right)\right\}
$$

- The likelihood of a sample:

Parameters to be learned:

$$
\begin{aligned}
p\left(x_{n} \mid \mu, \Sigma\right) & =\sum_{k} p\left(z^{k}=1 \mid \pi\right) p\left(x, \mid z^{k}=1, \mu, \Sigma\right) \text { mixture proportion } \\
& =\sum_{z_{n}} \prod_{k}\left(\left(\pi_{k}\right)^{z^{k}} N\left(x_{n}: \mu_{k}, \Sigma_{k}\right)^{z_{n}^{k}}\right)=\sum_{k} \pi_{k} N\left(x, \mid \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Example: Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components: $p\left(x_{n} \mid \mu, \Sigma\right)=\sum_{k} \pi_{k} N\left(x, \mid \mu_{k}, \Sigma_{k}\right)$
- Recall MLE for completely observed data
- Data log-likelihood:

$$
\begin{aligned}
\ell(\boldsymbol{\theta} ; D) & =\log \prod_{n} p\left(z_{n}, x_{n}\right)=\log \prod_{n} p\left(z_{n} \mid \pi\right) p\left(x_{n} \mid z_{n}, \mu, \sigma\right) \\
& =\sum_{n} \log \prod_{k} \pi_{k}^{z_{n}^{k}}+\sum_{n} \log \prod_{k} N\left(x_{n} ; \mu_{k}, \sigma\right)^{z_{n}^{k}} \\
& =\sum_{n} \sum_{k} z_{n}^{k} \log \pi_{k}-\sum_{n} \sum_{k} z_{n}^{k} \frac{1}{2 \sigma^{2}}\left(x_{n}-\mu_{k}\right)^{2}+C
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\pi}_{k, M L E}=\arg \max _{\pi} \ell(\boldsymbol{\theta} ; D), \\
& \hat{\mu}_{k, M L E}=\arg \max _{\mu} \ell(\boldsymbol{\theta} ; D) \\
& \hat{\sigma}_{k, M L E}=\arg \max _{\sigma} \ell(\boldsymbol{\theta} ; D)
\end{aligned}
$$

$$
\Rightarrow \hat{\mu}_{k, M L E}=\frac{\sum_{n} z_{n}^{k} x_{n}}{\sum_{n} z_{n}^{k}}
$$

- What if we do not know z_{n} ?

Why is Learning Harder?

- Complete log likelihood: if both \boldsymbol{x} and \mathbf{z} can be observed, then

$$
\ell_{c}(\theta ; \boldsymbol{x}, \mathbf{z})=\log p(\boldsymbol{x}, \mathbf{z} \mid \theta)=\log p\left(\mathbf{z} \mid \theta_{z}\right)+\log p\left(\boldsymbol{x} \mid \mathbf{z}, \theta_{x}\right)
$$

- Decomposes into a sum of factors, the parameter for each factor can be estimated separately
- But given that \mathbf{z} is not observed, $\ell_{c}(\theta ; \boldsymbol{x}, \mathbf{z})$ is a random quantity, cannot be maximized directly
- Incomplete (or marginal) log likelihood: with z unobserved, our objective becomes the log of a marginal probability:

$$
\ell(\theta ; \boldsymbol{x})=\log p(\boldsymbol{x} \mid \theta)=\log \sum_{z} p(\boldsymbol{x}, \mathbf{z} \mid \theta)
$$

- All parameters become coupled together
- In other models when \mathbf{z} is complex (continuous) variables (as we'll see later), marginalization over z is intractable.

Expectation Maximization (EM)

- For any distribution $q(z \mid x)$, define expected complete log likelihood:

$$
\mathbb{E}_{q}\left[\ell_{c}(\theta ; \boldsymbol{x}, \mathbf{z})\right]=\sum_{z} q(z \mid x) \log p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)
$$

- A deterministic function of θ
- Inherit the factorizability of $\ell_{c}(\theta ; \boldsymbol{x}, \mathbf{z})$
- Use this as the surrogate objective
- Does maximizing this surrogate yield a maximizer of the likelihood?

Expectation Maximization (EM)

- For any distribution $q(\boldsymbol{z} \mid \boldsymbol{x})$, define expected complete log likelihood:

$$
\mathbb{E}_{q}\left[\ell_{c}(\theta ; \boldsymbol{x}, \boldsymbol{z})\right]=\sum_{z} q(\boldsymbol{z} \mid \boldsymbol{x}) \log p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)
$$

- Jensen's inequality

$$
\begin{aligned}
\ell(\theta ; x) & =\log p(x \mid \theta) \\
& =\log \sum_{z} p(x, z \mid \theta) \\
& =\log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)} \\
& \geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} \quad \text { Evidence Lower Bound (ELBO) } \\
& =\sum_{z} q(z \mid x) \log p(x, z \mid \theta)-\sum_{z} q(z \mid x) \log q(z \mid x) \\
& =\mathbb{E}_{q}\left[\ell_{c}(\theta ; x, z)\right]+H(q)
\end{aligned}
$$

Expectation Maximization (EM)

- For any distribution $q(\boldsymbol{z} \mid \boldsymbol{x})$, define expected complete log likelihood:

$$
\underset{q}{\left.\mathbb{E}_{q}\left[\ell_{c}(\theta ; \boldsymbol{x}, \mathbf{z})\right]=\sum_{z} q(\mathbf{z} \mid \boldsymbol{x}) \log p(\boldsymbol{x}, \mathbf{z} \mid \theta) . \theta\right) .}
$$

- Jensen's inequality

$$
\begin{aligned}
\ell(\theta ; x) & =\log p(x \mid \theta) \\
& =\log \sum_{z} p(x, z \mid \theta) \\
& =\log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)} \\
& \geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)}
\end{aligned}
$$

- Indeed we have

$$
\ell(\theta ; \boldsymbol{x})=\mathbb{E}_{q(\mathbf{z} \mid \boldsymbol{x})}\left[\log \frac{p(\boldsymbol{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \boldsymbol{x})}\right]+\operatorname{KL}(q(\mathbf{z} \mid \boldsymbol{x}) \| p(\mathbf{z} \mid \boldsymbol{x}, \theta))
$$

Lower Bound and Free Energy

- For fixed data \boldsymbol{x}, define a functional called the (variational) free energy:

$$
F(q, \theta)=-\mathbb{E}_{q}\left[\ell_{c}(\theta ; \boldsymbol{x}, \boldsymbol{z})\right]-H(q) \geq \ell(\theta ; \boldsymbol{x})
$$

- The EM algorithm is coordinate-decent on F
- At each step t :
- E-step: $q^{t+1}=\arg \min _{q} F\left(q, \theta^{t}\right)$
- M-step: $\quad \theta^{t+1}=\arg \min _{\theta} F\left(q^{t+1}, \theta^{t}\right)$

E-step: minimization of $F(q, \theta)$ w.r.t q

- Claim:

$$
q^{t+1}=\operatorname{argmin}_{q} F\left(q, \theta^{t}\right)=p\left(z \mid x, \theta^{t}\right)
$$

- This is the posterior distribution over the latent variables given the data and the current parameters.
- Proof (easy): recall

$$
\begin{array}{cc}
\ell\left(\theta^{t} ; \boldsymbol{x}\right)=\mathbb{E}_{q(\boldsymbol{z} \mid \boldsymbol{x})}\left[\log \frac{p\left(\boldsymbol{x}, \boldsymbol{z} \mid \theta^{t}\right)}{q(\boldsymbol{z} \mid \boldsymbol{x})}\right]+\operatorname{KL}\left(q(\boldsymbol{z} \mid \boldsymbol{x}) \| p\left(\mathbf{z} \mid \boldsymbol{x}, \theta^{t}\right)\right) \\
\downarrow & \downarrow \\
\text { dent of } q & -F\left(q, \theta^{t}\right)
\end{array}
$$

Independent of q

- $F\left(q, \theta^{t}\right)$ is minimized when $\operatorname{KL}\left(q(\mathbf{z} \mid \boldsymbol{x}) \| p\left(\mathbf{z} \mid \boldsymbol{x}, \theta^{t}\right)\right)=0$, which is achieved only when $q(\boldsymbol{z} \mid \boldsymbol{x})=p\left(\boldsymbol{z} \mid \boldsymbol{x}, \theta^{t}\right)$

M-step: minimization of $F(q, \theta)$ w.r.t $\boldsymbol{\theta}$

- Note that the free energy breaks into two terms:

$$
F(q, \theta)=-\mathbb{E}_{q}\left[\ell_{c}(\theta ; \boldsymbol{x}, \mathbf{z})\right]-H(q) \geq \ell(\theta ; \boldsymbol{x})
$$

- The first term is the expected complete log likelihood and the second term, which does not depend on q, is the entropy.
- Thus, in the M -step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$
\theta^{t+1}=\operatorname{argmax}_{\theta} \mathbb{E}_{q}\left[\ell_{c}(\theta ; \boldsymbol{x}, \mathbf{z})\right]=\operatorname{argmax}_{\theta} \sum_{z} q^{t+1}(\mathbf{z} \mid \boldsymbol{x}) \log p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)
$$

- Under optimal q^{t+1}, this is equivalent to solving a standard MLE of fully observed model $p(x, z \mid \theta)$, with \mathbf{z} replaced by its expectation w.r.t $p\left(\mathbf{z} \mid \boldsymbol{x}, \theta^{t}\right)$

Example: Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components:
- Z is a latent class indicator vector:

$$
p\left(z_{n}\right)=\operatorname{multi}\left(z_{n}: \pi\right)=\prod_{k}\left(\pi_{k}\right)^{z^{k}}
$$

- \boldsymbol{X} is a conditional Gaussian variable with a class-specific mean/covariance

$$
p\left(x_{n} \mid z_{n}^{k}=1, \mu, \Sigma\right)=\frac{1}{(2 \pi)^{m / 2}\left|\Sigma_{k}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(x_{n}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{n}-\mu_{k}\right)\right\}
$$

- The likelihood of a sample:
mixture component

$$
\begin{aligned}
p\left(x_{n} \mid \mu, \Sigma\right) & =\sum_{k} p\left(z^{k}=1 \mid \pi\right) p\left(x, \mid z^{k}=1, \mu, \Sigma\right) \quad \text { mixture proportion } \\
& =\sum_{z_{n}} \prod_{k}\left(\left(\pi_{k}\right)^{z^{k}} N\left(x_{n}: \mu_{k}, \Sigma_{k}\right)^{z_{n}^{k}}\right)=\sum_{k} \pi_{k} N\left(x, \mid \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Example: Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components
- The expected complete log likelihood

$$
\begin{aligned}
\mathbb{E}_{q}\left[\ell_{c}(\boldsymbol{\theta} ; x, z)\right] & =\sum_{n} \mathbb{E}_{q}\left[\log p\left(z_{n} \mid \pi\right)\right]+\sum_{n} \mathbb{E}_{q}\left[\log p\left(x_{n} \mid z_{n}, \mu, \Sigma\right)\right] \\
& =\sum_{n} \sum_{k} \mathbb{E}_{q}\left[z_{n}^{k}\right] \log \pi_{k}-\frac{1}{2} \sum_{n} \sum_{k} \mathbb{E}_{q}\left[z_{n}^{k}\right]\left(\left(x_{n}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{n}-\mu_{k}\right)+\log \left|\Sigma_{k}\right|+C\right)
\end{aligned}
$$

- E-step: computing the posterior of z_{n} given the current estimate of the parameters (i.e., π, μ, Σ)

$$
p\left(z_{n}^{k}=1 \mid x, \mu^{(t)}, \Sigma^{(t)}\right)=\frac{\pi_{k}^{(t)} N\left(x_{n}, \mid \mu_{k}^{(t)}, \Sigma_{k}^{(t)}\right)}{\sum_{i} \pi_{i}^{(t)} N\left(x_{n}, \mid \mu_{i}^{(t)}, \Sigma_{i}^{(t)}\right)} \unlhd_{p\left(x, \mu_{n}^{k}=1, x, \mu^{(t)}, \Sigma^{(t)}\right)}
$$

Example: Gaussian Mixture Models (GMMs)

- M-step: computing the parameters given the current estimate of z_{n}

$$
\begin{aligned}
\pi_{k}^{*}=\arg \max \left\langle l_{c}(\boldsymbol{\theta})\right\rangle, & \Rightarrow \frac{\partial}{\partial \pi_{k}}\left\langle l_{c}(\boldsymbol{\theta})\right\rangle=0, \forall k, \quad \text { s.t. } \sum_{\mathrm{k}} \pi_{k}=1 \\
& \Rightarrow \pi_{k}^{*}=\sum_{n}\left\langle z_{n}^{k}\right\rangle_{q^{(t)}} / N=\sum_{n} \tau_{n}^{k(t)} / N=\left\langle n_{k}\right\rangle / N \\
\mu_{k}^{*}=\arg \max \langle l(\boldsymbol{\theta})\rangle, & \Rightarrow \mu_{k}^{(t+1)}=\frac{\sum_{n} \tau_{n}^{k(t)} x_{n}}{\sum_{n} \tau_{n}^{k(t)}} \\
\Sigma_{k}^{*}=\arg \max \langle l(\boldsymbol{\theta})\rangle, & \Rightarrow \Sigma_{k}^{(t+1)}=\frac{\sum_{n} \tau_{n}^{k(t)}\left(x_{n}-\mu_{k}^{(t+1)}\right)\left(x_{n}-\mu_{k}^{(t+1)}\right)^{T}}{\sum_{n} \tau_{n}^{k(t)}}
\end{aligned} \quad \begin{aligned}
& \text { Fact : } \\
& \frac{\partial \log \left|\mathrm{A}^{-1}\right|}{\partial \mathrm{A}^{-1}}=\mathrm{A}^{T} \\
& \frac{\partial \mathbf{x}^{T} \mathrm{~A} \mathbf{x}}{\partial \mathrm{~A}}=\mathbf{x x}^{T}
\end{aligned}
$$

Example: Gaussian Mixture Models (GMMs)

- Start: "guess" the centroid μ_{k} and covariance Σ_{k} of each of the K clusters
- Loop:

(a)

(f)

(c)

(g)

(d)

(h)

(e)

(i)

Summary: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces
- Estimate some "missing" or "unobserved" data from observed data and current parameters.
- Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
- E-step: $q^{t+1}=\arg \min _{q} F\left(q, \theta^{t}\right)$
- M-step: $\theta^{t+1}=\arg \min _{\theta} F\left(q^{t+1}, \theta^{t}\right)$

Each EM iteration guarantees to improve the likelihood

$$
\ell(\theta ; \boldsymbol{x})=\mathbb{E}_{q(\mathbf{z} \mid \boldsymbol{x})}\left[\log \frac{p(\boldsymbol{x}, \mathbf{z} \mid \theta)}{q(\boldsymbol{z} \mid \boldsymbol{x})}\right]+\operatorname{KL}(q(\mathbf{z} \mid \boldsymbol{x}) \| p(\mathbf{z} \mid \boldsymbol{x}, \theta))
$$

EM Variants

- Sparse EM
- Do not re-compute exactly the posterior probability on each data point under all models, because it is almost zero.
- Instead keep an "active list" which you update every once in a while.
- Generalized (Incomplete) EM:
- It might be hard to find the ML parameters in the M-step, even given the completed data. We can still make progress by doing an M -step that improves the likelihood a bit (e.g. gradient step).

Summary

- Supervised Learning
- Maximum likelihood estimation (MLE)
- Duality between MLE and Maximum Entropy Principle
- Unsupervised learning
- Maximum likelihood estimation (MLE) with latent variables
- EM algorithm for MLE

Questions?

