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Logistics

e Join Piazza https://piazza.com/class/IcliazdOpcx2n5/



Recap: ML Basics

Baves _px|y)p(y)

e Bayes' rule p(y|x) = o

o prior, posterior P
e KL Divergence _ z q(x)

o relation to cross-entropy KLGq(x) [[P(x)) = 1(x) 1ng(x)
e Functional derivatives

o functional F(y),y = y(x)

OF
Fly(a) + en(@)] = Fly(@)] + ¢ [ 5 5n(z)da +0(€)

o Consider a functional that is defined by an integral over a function G(y, x)

Fly + en(x)] = Fly(x)] + Ef n(x)dx + 0(e?)



Supervised Learning:
Maximum likelihood vs Maximum Entr



Supervised Maximum Likelihood

e Model to be learned pg(x)

e Observe full data D = { x* }
o i.i.d: independent, identically distributed

e Maximum Likelihood Estimation (MLE)
o The most classical learning algorithm

min — By _p | logpe(x") |

e MLE is closely connected to the Maximum Entropy (MaxEnt) principle



Recap: Exponential Family

e A distribution
pe(x) = h(x) exp{@ -T(x)} /Z(0)

is an exponential family distribution

o 0 € R%: natural (canonical) parameter

o T(x) € R: sufficient statistics, features of data x

o Z(0) = Yy yh(x)exp{@ - T(x)}: normalization factor

e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...



Maximum Likelihood for Exponential Family

m(x) : the number of times x is observed in D

Zm ) log p( | 6)

=) m(x) (Z 0;Ti(x) — log Z(H)>
=Y " m(x) Z 0:;T;(x) — Nlog Z(6)

e Take gradient and setto O

= 1Y p(@ | OTi(@)= m](v""):ri(m) S:

4 R

At MLE, the expectations of
the sufficient statistics under

the model must match
empirical feature average

/




Maximum Entropy (MaxEnt)

e Given D, to estimate p(x)

e We can approach the problem from an entirely different point of view.
Begin with some fixed feature expectations:

Ex p(xX)T;(x) = Ex m]E/x) T;(x) = «a;

e There may exist many distributions which satisfy them. Which one should
we select?
o MaxEnt principle: the most uncertain or flexible one, i.e., the one with

rr.waX|.mum entropy o max H(p Zp ) log p(a
e This yields a new optimization problem: | »

o This is a variational definition of a distribution!
S. L. Zp

> plw) =




Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L = — > p()logp(x) — Z 0 (Z p(x)Ti(x) — ai) — <Zp(iv) = 1)



Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L = —Y p(x) logp(w ZQ (Zp —ozz-) — (Zp(w) N

oL
8p(w)—1+logp ZHT
p () = e Lexp {Z Gifi(w)}
Z(0) =et 1t = Zexp {Z Hifi(a:)} (since Zp*(:c) = 1)

p(x|0) =
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Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L:—Zp( log p(x ZQ (Zp —Oéi) —,u(Zp(m)—l)

O.u px)

8;?([;)_1+10gp ZHT / \

e So feature constraints

() = el ox 0, f, + MaxEnt =
pw) =t p{zi: f(w)} exponential family.
Z(0) =et 1t = Zexp {Z Qifi(a:)} (since Zp*(a:) =1

e Problem is strictly
convex w.r.t. p(x), so

solution is unique.

p(x|0) =
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Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max %r)‘ L= —Zp( log p(x 29 (Zp _az’> — (Zp(fv) = 1)
eXp{ZHT } \

e So feature constraints
+ MaxEnt =

exponential family.
plug p(x|0) back into L, and since )., m}sx) T;(x) = q;: P y

p(z | 0) =

- - : e Problem is strictly
max L(0) =) m(x) > 6,T;(x) — Nlog Z(6) convex w.r.t. p(x), so
¢ z i solution is unique.

e Recovers precisely the MLE problem of exponential family K /
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Constraints from Data

e We have seen a case of convex duality:

o In one case, we assume exponential family and show that Maximum
Likelihood implies model expectations must match empirical expectations.

o In the other case, we assume model expectations must match empirical
feature counts and show that MaxEnt implies exponential family distribution.
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A more general MaxEnt problem

min KL(p(x)||h(z))

S @) log oy = ~H() — Y pl@) log (@)

S.t. Zp(a:)Tz(a:) = ;4




Summary

e Maximum entropy is dual to maximum likelihood of exponential family
distributions

e This provides an alternative view of the problem of fitting a model into
data:

o The data instances in the training set are treated as constraints, and the
learning problem is treated as a constrained optimization problem.

o We'll revisit this optimization-theoretic view of learning repeatedly in the
future!

max H(p Z p(x)logp(x
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Unsupervised Learning



Unsupervised Learning

e Each data instance is partitioned into two parts:
o observed variables x
o latent (unobserved) variables z

e Want to learn a model pg(x, 2)

[Content adapted from CMU 10-708]
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...

: ) (D), @

) Ve L e = = A A ,
et T SR R TR &) & & . &
1 =

i

Fig. 1.2 Isolated Word Problem

LCoocepr: a xiogle word
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...

3
%
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:
o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process
= e.g., speech recognition models, mixture models, ...
o a real-world object (and/or phenomena), but difficult or impossible to measure
= e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
o a real-world object (and/or phenomena), but sometimes wasn’t measured,
because of faulty sensors, etc.
e Discrete latent variables can be used to partition/cluster data into sub-
groups
e Continuous latent variables (factors) can be used for dimensionality
reduction (e.g., factor analysis, etc.)
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Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(x,|1,2) = Zk TN (x| 14, 2,)
A\

mixture proportion  mixture component

e This model can be used for unsupervised clustering.

o This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.
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Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1

1
(27[)'"/2’2,(’1/2 exp{_%('xn - 1) 2 (x, _:uk)}

p(x,|zy =1, p,%) =

Parameters to be learned:

o The likelihood of a sample: .
mixture component

mixture proportion

w2) =) p(z" =1|7)p(x,|z* =1, 1, %) —
= Zzn Hk ((”k)zs N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,
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Example: Gaussian Mixture Models (GMMs)
ﬂaz)zzk7?kN(x9!ﬂkﬂzk)

o Consider a mixture of K Gaussian components: P(X,
e Recall MLE for completely observed data

o Data log-likelihood: , (0; D) = long(Zn,x ) = long(Z |\ m)p(x, |z, 14,0)

_Zlognﬂ-k +ZlogHN(xn,,uk,o-)
o MLE: _Zzzklogﬂk Zzzn 52 L (x,-1) +C

Ty e = argmax ¢ (0; D),

My 4 e = argmax ¢ (0;D) = s = Z ;
Oy e = argmax ¢ (0;D) '

e What if we do not know z,7? -



Why is Learning Harder?

e Complete log likelihood: if both x and z can be observed, then

?.(0;x,z) =logp(x,z|0) = logp(z|6,) + log p(x|z,6,)
o Decomposes into a sum of factors, the parameter for each factor can be
estimated separately

e But given that z is not observed, £.(8; x, z) is a random quantity, cannot
be maximized directly

e Incomplete (or marginal) log likelihood: with z unobserved, our objective
becomes the log of a marginal probability:

2(0; x) = log p(x]6) = log 22 D (x, z|6)

o All parameters become coupled together

o In other models when z is complex (continuous) variables (as we'll see later),

marginalization over z is intractable.
24



Expectation Maximization (EM)
e For any distribution g(z|x), define expected complete log likelihood:

Bqlc(6i%,2)] = ) a(zlx) log p(x, 2|6)

o A deterministic function of
o Inherit the factorizability of ¢.(6; x, 2)

e Use this as the surrogate objective
e Does maximizing this surrogate yield a maximizer of the likelihood?
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Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eq[£c(63%,2)] = ) a(zlx) log p(x,216)
e Jensen’s mequallty
¢ (0;x)=log p(x|0)

=log)" p(x,2|6)

— -logY.¢(z | px.210)

/ 4(Z|X)

@ZQ(Z | X) log Z19) Evidence Lower Bound (ELBO)
f/(Z | X)

=Y g(z| x)log p(x,z|0) - g(z| X)logg(z | X)

= IEq[fc(H;x,Z)] + H(q) 26



Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eql2c(0;%,2)] = ) q(zlx) logp(x, 216)
e Jensen's inequality ‘
¢ (0;x)=1log p(x |0)

=log)" p(x,2|6)

_ px,z|0)
e -log Y (210 2T S

[
p(x,z|6)
@;q(ZIX)log P

(x,2|6)
q(z|x)

e Indeed we have
p
f(@, x) = IEq(le) llog

+KL(q(zI) || p(zlx, )



Lower Bound and Free Energy

e Forfixed data x, define a functional called the (variational) free energy:

F(q,0) = —E4[£.(0;x,2)] — H(q) = £(0; x)

e The EM algorithm is coordinate-decent on F
o At each step t:
1 — argmin F (q, Ht)

q

arg m@in F (th , Ht)

= E-step: @

= M-step: (975“‘ 1
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E-step: minimization of F(q,0) w.r.t g

e Claim: .

q**' = argmin, F(q,6%) = p(z|x,0%)

o This is the posterior distribution over the latent variables given the data and
the current parameters.

e Proof (easy): recall

,z|6°
f(et; X) = [Eq(z|x) [logpgzzzl.lx) ) + KL(CI(le) | p(z]x, et))

Independent of g —F(q,0% >0

o F(q,0% is minimized when KL(q(z|x) || p(z|x,6%)) = 0, which is achieved only
when q(z|x) = p(z|x,6")
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M-step: minimization of F(q,6) w.r.t 6
e Note that the free energy breaks into two terms:

F(q,0) = —E4[£.(0;x,2)] — H(q) = £(6; x)

o The first term is the expected complete log likelihood and the second term,
which does not depend on g, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed g we only
need to consider the first term:

6! = argmaxg E,[£.(0; x,z)] = argmaxg 2 qtt1(z|x) log p(x, z|0)
Z

o Under optimal ¢**1, this is equivalent to solving a standard MLE of fully
observed model p(x, z|9), with z replaced by its expectation w.r.t p(z|x, 6")
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Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1
(Zﬂ)m/lek’

p(x, |25 =1, u,%) = expli(x, - 1) S (x, - 1)}

o The likelihood of a sample: .
mixture component

mixture proportion

1,2 =Y p(z* =1|7)p(x,| " =1, 41,%) —
= Zzn Hk ((”k)zg N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,
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Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components
e The expected complete log likelihood

E, [£c(0;7, 2)] —ZE logp (2, | )] +ZE logp (wy | 2n, 1, 2)]
—ZZE IOgﬂk——ZZE ( —Mk)Tzﬁl(xn—uk)+10g|2k|+0>

e E-step: computing the posterior of z,, given the current estimate of the

parameters (i.e., T, u, X)

AON G, 050 7
Zﬂ(t)N(xn9|/’l(t) Zl(t))\ p(x,,u(t),Z(t))

p(z, =1]x,u",2) =
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Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

7, =argmax(l (0)), = 52-(1.(0))=0,Vk, st an =1

o = 2Bl B )

OF
i —argmax(®)), = ) = 2en”

Z Z'k(t) Fact:
non dlogA™|
k(t) t+1) (t+1)\T oA"Y
* Tn (xn o ‘U )('xn o lu )
z“k = arg max<l(9)>’ = Zg‘m) - Zn Zkrk(t) : Ox’ Ax =xx"
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Example: Gaussian Mixture Models (GMMs)

e Start: “guess” the centroid u; and covariance X of each of the K clusters

e Loop:
e L=1 . " L=4
2|0 R A S

!‘ :gO ° . ) [

o O # | S
» 2 ¢ &

(a) (c) (d) (e)
L=6 L=8 L=10 L=12
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Summary: EM Algorithm

e A way of maximizing likelihood function for latent variable models. Finds MLE
of parameters when the original (hard) problem can be broken up into two
(easy) pieces

o Estimate some “missing” or “unobserved” data from observed data and current
parameters.

o Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best guess (posterior)
and updating the parameters based on this guess:

o E-step: T arg mqinF (q,@t)

© M-step: gi+l — argm@inF (qt+1,9t)
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Each EM iteration guarantees to improve the likelihood

+ KL(q(z|x) || p(z|x, 6))

KL(gip)—I— T _l_ _[ - -

E(q’ aneW) lnp(x|0neW)

p(x,z|0)
£(0:x) = E lo
( ) q(z|x) [ 8 q(zlx)
¥ ¥ KL(q|lp) =0 ¥ = ¥
KL(q||p)
y - R
L(q,0) Inp(X|6) £(q,0°%) In p(X[6°'9)
E-step

[PRML, Chap 9.4]

M-step
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EM Variants
e Sparse EM

o Do not re-compute exactly the posterior probability on each data point under all
models, because it is almost zero.

o Instead keep an "active list” which you update every once in a while.

e Generalized (Incomplete) EM:

o It might be hard to find the ML parameters in the M-step, even given the
completed data. We can still make progress by doing an M-step that improves
the likelihood a bit (e.g. gradient step).
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Summary

e Supervised Learning
o Maximum likelihood estimation (MLE)
o Duality between MLE and Maximum Entropy Principle

e Unsupervised learning

o Maximum likelihood estimation (MLE) with latent variables
o EM algorithm for MLE
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