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Human learning vs machine learning
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The zoo of ML/AIl models

e Neural networks e Kernel machines

o Convolutional networks o Radial Basis Function Networks
o AlexNet, GoogleNet, ResNet o (Gaussian processes
o Recurrent networks, LSTM o Deep kernel learning
o Transformers o Maximum margin
o BERT, GPTs o SVMs
e Graphical models e Decision trees
o Bayesian networks e PCA, Probabilistic PCA, Kernel
o Markov Random fields PCA. ICA
o Topic models, LDA o Boosting
o HMM, CRF



The zoo of ML/AI algorithms
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The zoo of ML/AI algorithms

maximum likelihood estimation reinforcement learning as inference

data re-weighting inverse RL  policy optimization active learning

data augmentation actor-critic reward-augmented maximum likelihood

label smoothing imitation learning softmax policy gradient

adversarial domain adaptation posterior regularization
GANs

knowledge distillation intrinsic reward

constraint-driven learning

prediction minimization generalized expectation

regularized Bayes |
learning from measurements

energy-based GANs
weak/distant supervision



Physics in the 1800's

e Electricity & magnetism:
o Coulomb's law, Ampere, Faraday, ...

e Theory of light beams:

o Particle theory: Isaac Newton, Laplace, Plank OO
o Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell 9
e Law of gravity %

o Aristotle, Galileo, Newton, ... VVVVW




Standard Model in Physics
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Maximum likelihood estimation (MLE) at a close look:

e The most classical learning algorithm

e Supervised:

o Observe data D = {(x*, y")}

o Solve with SGD mén B [E(x*’y*)ND [log Po (Y| )]

e Unsupervised:

o QObserve D = {(x*)}, y is latent variable
o Posterior pg(y|x) mgn —Ex~p [ logj Pe(x*»Y)]
o Solve with EM: y

= E-step imputes latent variable y through expectation on complete likelihood
= M-step: supervised MLE

12



MLE as Entropy Maximization

e Duality between supervised MLE and maximum entropy, when p is
exponential family

Shannon entropy H

A
min H(p) -

p(x,y) features T (x,y)

A

s.t. Ep[T(x, )] = Exr yy~olT (x,y)] —
data as constraints

Solve w/ Lagrangian method \J,

_= Lagrangian multiplier 6
p(x,y) =exp{0-T(x)} / Z(0)"

min —E - y)-pl0 - T(x, )] +10g Z(8) > Negative log-likelihood

How to estimate 8 — Close form? SGD? 3



MLE as Entropy Maximization

e Unsupervised MLE can be achieved by maximizing the negative free
energy:

o Introduce an auxiliary variational distribution g(y|x) (and then play with its entropy
and cross entropy, etc.)

log j Po (X7, y) = Eq(yx) [log —| +KL(q(y|x*) || pg(¥|x*))
y q(y|x*)

> H(q(y|x*)) + Eqeyixrllog pe(x™, y)]

14



Alternating projection

Algorithms for Unsupervised MLE

mein — Eyep llogj Pe(x*,J’)]
y

Model

Solve with EM

p;((yxl;c%) + KL(q(y]x*) || pe (¥|x*))

> H(q(y|x")) + Eqeyixlog pe(x™, y)]

logj pe(x*,y) = Eqyx [log
y

a E-step: Maximize L(q,0) w.r.t g, equivalent to minimizing KL by setting

q(y1x") = pgowa(y|x7)
o M-step: Maximize L(g, 6) w.rt 8: max Eq(yixy[log pg (x*, y)]
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The general expression as a constrained optimization:

: auxiliary) distributionq . -7 l0ss
MaxEnt perspective ( V) < min £(q, 6)
-  constrained set
e Supervised MLE and maximum entropy s.t. q € o)

e Unsupervised MLE and maximum entropy

e Bayesian inference and maximum entropy

o Bayesian inference as optimization

16



The general expression as a constrained optimization:

: auxiliary) distribution -7 loss
MaxEnt perspective ( V) < min £(q, 6)
- _, constrained set
e Supervised MLE and maximum entropy s.t. q € o)

e Unsupervised MLE and maximum entropy

e Bayesian inference and maximum entropy

II(liI)l —H(q(2)) +logp(D) — Eqy(2) [logw + Z logp x ]z)}
q(z

s.t. q(z) e P

17



A “Standard Model” of Machine Learning
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The Standard Equation (SE)

e Lett be the variable of interest

o E.g., the input-output pair t = (x,y) in a prediction task
o ort = x in generative modeling

e py(t): the target model to be learned
e q(t): auxiliary distribution

e The SE: min — aH(qg) + D (q(t), Do (t)) + U(¢)
q,0,$

s.t.—Eq | i@ | <& k=1,..K

o Experience function f represents external experiences of different kinds for
training the model
= fr(t) € R: measures the goodness of a configuration t in light of any given experiences
= Data, constraints, reward, adversarial discriminators, etc., can all be formulated as an
experience function (later)

= Maximizing E, g [fx(t)] -> q is encouraged to produce samples receiving high scores
[Hu & Xing, 2021]
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The Standard Equation (SE)

o Lett be the variable of interest
o E.g., the input-output pair t = (x,y) in a prediction task
o ort = x in generative modeling

e py(t): the target model to be learned
e q(t): auxiliary distribution

e The SE: min — aH(qg) + D (q(t), Do (t)) + U(¢)
q,0,$

s.t.—Eq | i@ | <& k=1,..K

o Divergence ID: measures the distance between the target model pg to be trained
and the auxiliary model g

= E.g., cross entropy

[Hu & Xing, 2021]
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The Standard Equation (SE)

e Lett be the variable of interest

o E.g., the input-output pair t = (x,y) in a prediction task
o ort = x in generative modeling

e py(t): the target model to be learned
e q(t): auxiliary distribution

e The SE: min — aH(qg) + D (q(t), Do (t)) + U(¢)
q,0,$

s.t.—Eq | i@ | <& k=1,..K

o Uncertainty H: controls the compactness of the model
= E.g., Shannon entropy

[Hu & Xing, 2021]
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The Standard Equation (SE)

mg,r% — aH(q) + D (Q(t) Po (t)) + U(¢)

s.t.—Eq | i@ | <& k=1,..K

Assuming penalty U = )., &, and f = Y. f -

rg)ign — aH(q) + D (Q(t)» Po (t)) — Eqp) [f(t)]

3 terms:
Uncertainty Divergence Experiences
(self-regularization) (fitness) (exogenous regularizations)
e.g., Shannon entropy e.g., Cross Entropy e.g., data examples, rules

| Teacher l Student Textbook
Uncertainty q(t) “ sﬁ po (1) (0

23



The Standard Equation (SE)

min — aH(q) + D
q,0
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The Standard Equation (SE)
rcr11’i51 — aH(q) + DD (Q(t)» Po (t)) — Eq) [f(t)]

e The introduction of the auxiliary distribution q relaxes the learning problem of
pg, originally only over 8, to be now alternating between q and 6

o Recall in EM, we introduced g to deal with the intractable marginal log-likelihood

e g acts as a conduit between the exogenous experience and the target model
o subsumes the experience, by maximizing the expected f value
o passes it incrementally to the target model, by minimizing the divergence D

e E.g., assume D is cross entropy, and H is Shannon entropy
o The above optimization, at each iteration n:

q(n+1)<t> — exp { 510gp0(n) (t) T f(t) } / 7

04

g(n+1l) — arggnax Eqm+n (2 [log Pe (t)} ’ 25



The Standard Equation (SE)
rcr11’i51 — aH(q) + DD (Q(t)» Po (t)) — Eq) [f(t)]

e The introduction of the auxiliary distribution q relaxes the learning problem of
pg, originally only over 8, to be now alternating between q and 6

o Recall in EM, we introduced g to deal with the intractable marginal log-likelihood

e g acts as a conduit between the exogenous experience and the target model
o subsumes the experience, by maximizing the expected f value
o passes it incrementally to the target model, by minimizing the divergence D

e E.g., assume D is cross entropy, and H is Shannon entropy
o The above optimization, at each iteration n:

Teacher: ¢\""!)(¢) = exp { Blogp(;(n;ft) LA } / Z

Student: @"t1) = argmax £, (n+1)(¢) [logpg(t)},
0 26



The Standard Equation (SE)
rg)ign — aH(q) + DD (Q(t)» Po (t)) — Eq) [f(t)]

e Formulates a large space of learning algorithms, which encompasses many well-
known algorithms

27



SE encompasses many well-known algorithms (more later)

Experience type Experience function f Divergence D « B Algorithm
faata(x; D) CE 1 1 Unsupervised MLE
faata(, y; D) CE 1 € Supervised MLE

) faataseit(x, y; D) CE 1 € Self-supervised MLE

Data instances
faata-w (t; D) CE 1 € Data Re-weighting
fdata-aug(t; D) CE 1 € Data Augmentation
factive(x, y; D) CE 1 € Active Learning (Ertekin et al., 2007)
frute(,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)

Knowledge
frute(T,y) CE R 1 Unified EM (Samdani et al., 2012)
log Q% (x,y) CE 1 1 Policy Gradient

Reward log Q% (x,y) + Q™ (x,y) CE 1 1 + Intrinsic Reward
Q% (x,y) CE p>0 p>0 RL as Inference

Model frimicking (. o). D) CE 1 € Knowledge Distillation (G. Hinton et al., 2015)
binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)

o discriminator f-divergence 0 1 f-GAN (Nowozin et al., 2016)

Variational
1-Lipschitz discriminator ~ Wj distance 0 1 WGAN (Arjovsky et al., 2017)
1-Lipschitz discriminator KL 0 1 PPO-GAN (Y. Wu et al., 2020)

Online fr(t) CE p>0 p>0 Multiplicative Weights (Freund & Schapire, 1997) 28




SE Component: Experience Function f

Different choices of experience function f lead to different algorithms:

min — Eq(xy) [ f (x,y)] + pD (q(x, ), po (X, y)) — ali(q)

q, .
. v ™
Experience larizati Set Divergence to Cross Entropy Set Uncertainty to
(exogenous regularizations) D(q, pe) = —Eq|[ log pg | Shannon Entropy

e.g., data examples, rules H(q) = H(q): = —E,[logq ]



SE with supervised data experience

rcrll’ien — aH(qg) + /DD (Cl(t); Po (t)) — Eqp [f(t)]

e Input-output variables t = (x,y)

e Experience: dataset D = {(x*,y")} of size N
o defines the empirical distribution

m(x,y)
N

p(x,y) = — [E(x*,y*)~2) [ﬂ(x*,y*) (x,¥)]

-

o

The expected similarity between (x,y) and observed data

(x*,¥%), with similarity measure 1,(b), i.e., an indicator function

(1 if a=b, O otherwise)

~

/

30



SE with supervised data experience
rcr11,19n — aH(q) + D (Cl(t); Po (t)) — Eqp ’f(t)]

e Input-output variables t = (x,y)
e Experience: dataset D = {(x*,y")} of size N
o defines the empirical distribution

_ m(x,y)
p(x,y) = N — [E(x*,y*)~2) [ﬂ(x*,y*) (x,¥)]

e Define the experience function
fi= fdata(x ,¥;D) = log E (x*,y*)~2)[ ﬂ(x*,y*) (x, y) ]
e Let D cross entropy, H Shannon entropy, « = 1,8 = € (a very small value)

min — H (@) — € Eq llog po(x,y) ] — E, [ faata(%,y; D) ]

31



SE with supervised data experience

f; — fdata(x 'Y, D) = log E (x*, y*)~D ﬂ(x*,y*) (x; Y) ]

min — H(q) — € E, llog pe(x,y) | — Eq [ faata(x, y; D) ]

e At each iteration n:

Blog pgn) (t) + f(t)
(@

Teacher: ¢V (¢) = exp{ } /Z =p(x,y)

o empirical distribution

{ Maximizes data log-likelihood

e Recovers supervised MLE!

Student: 0"tV = argmax B+ (1) log po(t)], {q reduces to the

32



SE with unsupervised data experience
rcr11,19n — aH(q) + D (Cl(t); Po (t)) — Eqp) [f(t)]

e Input-output variables t = (x,y)

e Experience: dataset D = {(x*)} of size N, |,e., we only observe the x part
o defines the empirical distribution

pix) = 2 = B (1G]

: : : 4 )
e Define the experience function .
Recovers unsupervised
fi= faata(x;D) =log Ey-_p[ly-(x)] MLE (EM)!
e Let D cross entropy, H Shannon entropy, « =1, =1 \V y
min — H(q) — Eq | logpe(x,y) | - Eq[ faata(x;D) ]

o Assume q(x,y) = p(x)q(y|x) 33



SE with manipulated data experience

e Input-output variables t = (x,y)
e Experience: dataset D = {(x*,y")} of size N
o defines the empirical distribution

m(x,y)
v = Eay~olley) ()]

p(x,y) =

e Define the experience function
f:= faata(x,y ;D) =logE (x*,y*)~2)[ ﬂ(x*,y*) (x,y) ]
e The similarity measure 1,(b) is too restrictive. Let's enrich it:
o Don't have to be 0/1, we can scale it
f: — fdata—w (x Y D) — lOg E (x*, y")~D [W(x*» y*) ) ]l(x*,y*) (x: y) ]

o Plug faata—w into SE, keep all other configurations the same as supervised MLE,
we recover data re-weighting in the “student” step

mgmx E¢«wp [w(t™) - log pe(t™)]
34



SE with manipulated data experience

e Input-output variables t = (x,y)
e Experience: dataset D = {(x*,y")} of size N
o defines the empirical distribution

. m(x,y)
p(x,y) = N = [E(x*,y*)~1) [ﬂ(x*,y*) (x,y)]

e Define the experience function
f:= faata(x,y;D) =1ogE (x*,y*)~2)[ ﬂ(x*,y*) (x, y) ]

e The similarity measure 1,(b) is too restrictive. Let's enrich it:
o Don’t have to match exactly, we can relax it
fi= fdata—aug (x,y;D) =logE (x*,y*)~2)[ A(x*y*) (x,y) ]

acx (X, y): assigns non-zero probability to not only the exact (x*, y*) but also other
(x,y) configurations

o Plug faata—aug into SE, keep all other configurations the same as supervised MLE,
we recover data augmentation in the “student” step mgxxEt*ND, trage () L0g Do (E)] .



SE with actively supervised experience

e Have access to a vast pool of unlabeled data instances
e Can select instances (queries) to be labeled by an oracle (e.g., human)

e Experiences:

o u(x) measures informativeness of an instance x
= e.g., Uncertainty on x, measured by predictive entropy

o Instances + oracle labels:

f(x,y; Oracle) =logE x*~D, y*~0racle(x*) [ ]l(x*,y*) (x,y) ]

36



SE with actively supervised experience

rg)ig — aH(q) — PE, [ log po (x, y)] — Eq(xy) [ f(x,y) ]

f = f(x,y; Oracle) + u(x) a=1[0=¢€

|

Blog pe(x,¥y) + f(x,y; Oracle) + u(x) } /7

o Teacher q(x,y) = exp{
a

Equivalent to active learning [e.g., Ertekin et al., 07]:
o Student Min _[Eq [ log pg (x, y) ] « Randomly draw a subset D, = {x"}
g « Draw a query x* from Dg,,;, according to exp{u(x)}
« Get label y* for x* from the oracle
« Maximize log likelihood on (x*, y*)







