
DSC291: Machine Learning with Few Labels

Reinforcement learning for text generation

Zhiting Hu
Lecture 20, February 27, 2023

1

Recap: RL for Text Generation

• (Autoregressive) text generation model:

2

Sentence 𝒚 = (𝑦!, … , 𝑦")

In RL terms: state, 𝒔#action, 𝑎#trajectory, 𝜏 policy 𝜋! 𝑎" 𝒔")

𝜋$ 𝑦# 𝒚%#) = softmax(𝑓$ 𝑦# 𝒚%#) logits

Recap: RL for Text Generation

• (Autoregressive) text generation model:

3

𝜋$ 𝑦# 𝒚%#) = softmax(𝑓$ 𝑦# 𝒚%#)Sentence 𝒚 = (𝑦!, … , 𝑦")

In RL terms: state, 𝒔#action, 𝑎#trajectory, 𝜏

• Reward 𝑟! = 𝑟(𝒔!, 𝑎!)
• Often sparse: 𝑟# = 0 for 𝑡 < 𝑇

• The general RL objective: maximize cumulative reward

• 𝑄-function: expected future reward of taking action 𝑎! in state 𝒔!
𝑄# 𝒔" , 𝑎" = 𝔼# ∑"&$"

% 𝛾"& 𝑟"& | 𝒔" , 𝑎"

policy 𝜋! 𝑎" 𝒔")

logits

RL for Text Generation: Formulation

• On-policy RL
• Most popular, e.g., Policy Gradient (PG)

4

Extremely low data efficiency: most samples
from 𝜋$ are gibberish with zero reward

Generate text samples from the current policy 𝜋$ itself

• Off-policy RL
• e.g., 𝑄-learning

• Implicitly learns the policy 𝜋 by approximating the 𝑄" 𝒔! , 𝑎!
• Bellman temporal consistency:

• Learns 𝑄# with the regression objective:

• After learning, induces the policy as 𝑎! = argmax$ 𝑄#∗(𝒔! , 𝑎)

RL for Text Generation: Formulation

6

Arbitrary policy

• Off-policy RL
• e.g., 𝑄-learning

• Implicitly learns the policy 𝜋 by approximating the 𝑄" 𝒔! , 𝑎!
• Bellman temporal consistency:

• Learns 𝑄# with the regression objective:

• After learning, induces the policy as 𝑎! = argmax$ 𝑄#∗(𝒔! , 𝑎)

RL for Text Generation: Formulation

7

Regression target is unstable
• Bootstrapped 𝑄'$
• Sparse reward 𝑟# = 0 (𝑡 < 𝑇): no ”true” training signal

Arbitrary policy

RL for Text Generation: Formulation

• On-policy RL, e.g., Policy Gradient (PG)

• Exploration to maximize reward directly

• Extremely low data efficiency

• Off-policy RL, e.g., 𝑄-learning

• Unstable training due to bootstrapping & sparse reward

• Slow updates due to large action space

• Sensitive to off-policy data quality

8

… Limited success for training text generation

New RL for Text Generation: Soft 𝑄-Learning (SQL)

• Goal

• Induced policy

9

• Goal: entropy regularized

• Induced policy

(Hard) 𝑄-learning SQL

𝑎! = argmax$ 𝑄#∗(𝒔! , 𝑎)

Generation model’s “logits” now act as 𝑄-values !

𝜋#∗ 𝑎! 𝒔!) = softmax(𝑄#∗ 𝑎! 𝒔!)

logits
𝑄-values

New RL for Text Generation: Soft 𝑄-Learning (SQL)

• Goal

• Induced policy

• Training objective:
• Based on temporal consistency

• Unstable training / slow updates
10

• Goal: entropy regularized

• Induced policy

• Training objective:
• Based on path consistency
• Stable / efficient

(Hard) 𝑄-learning SQL

𝑎! = argmax$ 𝑄#∗(𝒔! , 𝑎) 𝜋#∗ 𝑎! 𝒔!) = softmax(𝑄#∗ 𝑎! 𝒔!)

Efficient Training via Path Consistency

• (Multi-step) path consistency

• Objective

13

Stable updates: Non-zero
reward signal 𝑟" as
regression target

[Nachum et al., 2017]

𝜋∗ 𝑎 𝒔) = softmax(𝑄∗ 𝑎 𝒔)

Fast updates: gradient
involves 𝑄$ values of all
tokens in the vocab

Implementation is easy

15

Applications & Experiments

16

Application (I): Prompt Optimization for Controlling LMs

17

• Optimize discrete prompts to steer pretrained LMs to produce desired outputs

Classification

Generation

Application (I): Prompt Optimization for Controlling LMs

18

• Optimize discrete prompts to steer pretrained LMs to produce desired outputs

Comparison of different (prompting) paradigms for using pretrained LMs
on downstream tasks, in terms of a number of desirable properties.

Application (I): Prompt Optimization for Controlling LMs

19

• Few-shot classification

Application (I): Prompt Optimization for Controlling LMs

20

• Text style transfer

Controlling sentiment

The film is full of imagination!

The film is strictly routine!

Pos

Neg

Application (I): Prompt Optimization for Controlling LMs

21

• Text style transfer

Application (I): Prompt Optimization for Controlling LMs

22

• Topic-control generation

Application (I): Prompt Optimization for Controlling LMs

23
Topic accuracy

Language perplexity

• Steered decoding: PPLM, GeDi
• SQL achieves better overall accuracy+fluency

• Prompt control by SQL, MLE+PG > PPLM, GeDi
• and much faster at inference!

Time cost for generating one sentence

Application (I): Prompt Optimization for Controlling LMs

24

Interesting (Surprising) observations:

Application (I): Prompt Optimization for Controlling LMs

25

Interesting (Surprising) observations:

• Optimized prompts tend to be ungrammatical gibberish

Affect differed judgments (- analysis

GPT2-large

prompt input continuation

The film is full of imagination! The film is strictly routine!

Application (I): Prompt Optimization for Controlling LMs

26

Interesting (Surprising) observations:

• Optimized prompts tend to be ungrammatical gibberish
• Adding fluency constraint harms the performance

<|endoftext|>We are not in

GPT2-large

prompt input continuation

The film is full of imagination! The film is strictly routine!

Application (I): Prompt Optimization for Controlling LMs

27

Interesting (Surprising) observations:

• Optimized prompts tend to be ungrammatical gibberish
• Adding fluency constraint harms the performance

• Those gibberish prompts are transferrable between LMs!

<|endoftext|>We are not in

prompt input continuation

The film is full of imagination! The film is strictly routine!

GPT2-xlGPT2-large

Application (I): Prompt Optimization for Controlling LMs

28

Interesting (Surprising) observations:

• Optimized prompts tend to be ungrammatical gibberish
• Adding fluency constraint harms the performance

• Those gibberish prompts are transferrable between LMs!

Application (I): Prompt Optimization for Controlling LMs

29

Interesting (Surprising) observations:

• Optimized prompts tend to be ungrammatical gibberish
• Adding fluency constraint harms the performance

• Those gibberish prompts are transferrable between LMs!

LM prompting may not follow human language patterns

Application (II): Universal Adversarial Attacks

30

premises hypothesis (attack)

The Old One always comforted Ca'daan, except today.

Entailment classifier

Your gift is appreciated by each and every student …

At the other end of Pennsylvania Avenue, people …

“entailment” “neutral” “contradiction”

The person saint-pierre-et-saint-paul is ..

Application (II): Universal Adversarial Attacks

31

• Attacking entailment classifier
• Generate readable hypotheses that are classified as

“entailment” for all premises

• Unconditional hypothesis generation model

• Training data:
• No direct supervision data available

• “Weak” data: all hypotheses in MultiNLI corpus

• Rewards:
• Entailment classifier to attack

• Pretrained LM for perplexity

• BLEU w.r.t input premises

• Repetition penalty

Previous adversarial algorithms are
not applicable here:
• only attack for specific premise
• not readable

Application (II): Universal Adversarial Attacks

32

• SQL (full) > MLE+PG (PG alone does not work)

• MLE+PG collapses: cannot generate more diverse samples

Samples of highest attack rate

Application (III): Learning from Noisy (Negative) Text

33

• Entailment generation
• Given a premise, generates a hypothesis that entails the premise

• “Sophie is walking a dog outside her house” -> “Sophie is outdoor”

• Negative sample: ”Sophie is inside her house”

• Training data:
• Subsampled 50K (premise, hypothesis) noisy pairs from SNLI

• Average entailment probability: 50%

• 20K examples have entailment probability < 20% (≈ negative samples)

• Rewards:
• Entailment classifier

• Pretrained LM for perplexity

• BLEU w.r.t input premises (which effectively prevents trivial generations)

Application (III): Learning from Noisy (Negative) Text

34

• MLE (and variants) and pure off-policy RL (GOLD-s) do not work ← rely heavy on data quality

• SQL (full) > MLE+PG (PG alone does not work)

• SQL (single-step only) does not work: the multi-step SQL objective is crucial

Entailment-rate and language-quality vs diversity (top-𝑝 decoding w/ different 𝑝)

Key Takeaways

35

• Learning text generation from reward
• Previous RL for text generation (e.g., policy gradient, Q-learning):

• Low data efficiency; unstable training; slow updates; sensitive to training data quality

• SQL
• Objectives based on path consistency

• Stable training from scratch given sparse reward

• Fast updates given large action space

• Opens up enormous opportunities
• For integrating more advanced RL (replay buffer, model-based RL, hindsight, …)

• To enable massive new applications in text generation

